2,792
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Have mRNA vaccines sentenced DNA vaccines to death?

Pages 1154-1167 | Received 01 Sep 2023, Accepted 07 Nov 2023, Published online: 17 Nov 2023

References

  • Qin F, Xia F, Chen H, et al. A Guide to nucleic acid vaccines in the prevention and treatment of infectious diseases and cancers: from basic principles to Current applications. Front Cell Dev Biol [Internet]. 2021;9. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2021.633776
  • Bai Y, Liu D, He Q, et al. Research progress on circular RNA vaccines. Front Immunol [Internet]. 2023;13. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2022.1091797
  • Conforti A, Salvatori E, Lione L, et al. Linear DNA amplicons as a novel cancer vaccine strategy. J Exp Clin Cancer Res. 2022;41(1):195. doi: 10.1186/s13046-022-02402-5
  • Fynan EF, Lu S, Robinson HL. One group’s historical reflections on DNA vaccine development. Hum Gene Ther. 2018;29(9):966–970. doi: 10.1089/hum.2018.066
  • Ulmer JB, Fu T-M, Deck RR, et al. Protective CD4 + and CD8 + T cells against influenza virus induced by vaccination with nucleoprotein DNA. J Virol. 1998;72(7):5648–5653. doi: 10.1128/JVI.72.7.5648-5653.1998
  • Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Sci (1979). 1993;259(5102):1745–1749. doi: 10.1126/science.8456302
  • Gary EN, Weiner DB. DNA vaccines: prime time is now. Curr Opin Immunol [Internet]. 2020;65:21–27. doi: 10.1016/j.coi.2020.01.006
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008;9(10):776–788. doi: 10.1038/nrg2432
  • Jazayeri SD, Poh CL. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet Res [Internet]. 2019;50(1):78. doi: 10.1186/s13567-019-0698-z
  • Aida V, Pliasas VC, Neasham PJ, et al. Novel Vaccine Technologies in Veterinary Medicine: A Herald to Human Medicine Vaccines. Front Vet Sci [Internet]. 2021;8. Available from: https://www.frontiersin.org/articles/10.3389/fvets.2021.654289
  • Khobragade A, Bhate S, Ramaiah V, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet [Internet]. 2022;399(10332):1313–1321. doi: 10.1016/S0140-6736(22)00151-9
  • Khalid K, Poh CL. The development of DNA vaccines against SARS-CoV-2. Adv Med Sci [Internet]. 2023;68(2):213–226. Available from: https://www.sciencedirect.com/science/article/pii/S1896112623000184
  • Tebas P, Roberts CC, Muthumani K, et al. Safety and immunogenicity of an anti–Zika virus DNA vaccine. N Engl J Med. 2021;385(12):e35. doi: 10.1056/NEJMoa1708120
  • Inovio Pharmaceuticals. DNA Medicines Pipeline [Internet]. Inovio Pharmaceuticals. [cited 2023 Sep 28]. Available from: https://inovio.com/dna-medicines-pipeline/.
  • Paulsen GC, Frenck R, Tomashek KM, et al. Safety and immunogenicity of an Andes virus DNA vaccine by needle-free injection: a randomized, controlled phase 1 study. J Infect Dis. 2023. doi:10.1093/infdis/jiad235.
  • Pierini S, Perales-Linares R, Uribe-Herranz M, et al. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology. 2017;6(12):e1398878. doi: 10.1080/2162402X.2017.1398878
  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Sci (1979). 1990;247(4949):1465–1468. doi: 10.1126/science.1690918
  • Zhou X, Berglund P, Rhodes G, et al. Self-replicating semliki forest virus RNA as recombinant vaccine. Vaccine. 1994;12(16):1510–1514. doi: 10.1016/0264-410X(94)90074-4
  • Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol. 1993;23(7):1719–1722. doi: 10.1002/eji.1830230749
  • Conry RM, LoBuglio AF, Wright M, et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 1995;55(7):1397–1400.
  • Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest. 2002;109(3):409–417. doi: 10.1172/JCI0214364
  • Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields Superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–1840. doi: 10.1038/mt.2008.200
  • Lorenz C, Fotin-Mleczek M, Roth G, et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011;8(4):627–636. doi: 10.4161/rna.8.4.15394
  • Probst J, Weide B, Scheel B, et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 2007;14(15):1175–1180. doi: 10.1038/sj.gt.3302964
  • Reichmuth AM, Oberli MA, Jaklenec A, et al. mRNA vaccine delivery using lipid nanoparticles. Ther Del. 2016;7(5):319–334. doi: 10.4155/tde-2016-0006
  • Prize Outreach ABN. The Nobel Prize in physiology or medicine 2023. The Nobel Prize - Med. 2023.
  • Weide B, Carralot J-P, Reese A, et al. Results of the first phase I/II clinical vaccination trial with Direct injection of mRNA. J Immunother. 2008;31(2):180–188. doi: 10.1097/CJI.0b013e31815ce501
  • Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390(10101):1511–1520. doi: 10.1016/S0140-6736(17)31665-3
  • Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther. 2017;25(6):1316–1327. doi: 10.1016/j.ymthe.2017.03.035
  • Essink B, Chu L, Seger W, et al. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infect Dis. 2023;23(5):621–633. doi: 10.1016/S1473-3099(22)00764-2
  • Van Craenenbroeck AH, Smits ELJ, Anguille S, et al. Induction of Cytomegalovirus-specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA–transfected dendritic cells. Transplantation. 2015;99(1):120–127. doi: 10.1097/TP.0000000000000272
  • Allard SD, De Keersmaecker B, de Goede AL, et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol. 2012;142(3):252–268. doi: 10.1016/j.clim.2011.10.010
  • Routy J-P, Boulassel M-R, Yassine-Diab B, et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol. 2010;134(2):140–147. doi: 10.1016/j.clim.2009.09.009
  • Van Gulck E, Vlieghe E, Vekemans M, et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS. 2012;26(4):F1–F12. doi: 10.1097/QAD.0b013e32834f33e8
  • Gandhi RT, Kwon DS, Macklin EA, et al. Immunization of HIV-1-Infected Persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef. J Acquir Immune Defic Syndr. 2016;71(3):246–253. doi: 10.1097/QAI.0000000000000852
  • Krammer F. The role of vaccines in the COVID-19 pandemic: what have we learned? Semin Immunopathol;2023. doi: 10.1007/s00281-023-00996-2
  • NIH. mRNA therapies currently in clinical trials [Internet] [cited 2023 Sep 28]. Available from: https://clinicaltrials.gov/search?intr=mRNA&viewType=Table.
  • Gu Y, Duan J, Yang N, et al. mRNA vaccines in the prevention and treatment of diseases. MedComm (Beijing). 2022;3(3):3. doi: 10.1002/mco2.167
  • Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukocyte Biol. 2000;68(6):793–806. doi: 10.1189/jlb.68.6.793
  • Schlake T, Thess A, Thran M, et al. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci. 2019;76(2):301–328. doi: 10.1007/s00018-018-2935-4
  • Shafaati M, Saidijam M, Soleimani M, et al. A brief review on DNA vaccines in the era of COVID-19. Future Virol. 2022;17(1):49–66. doi: 10.2217/fvl-2021-0170
  • Wang Z, Troilo PJ, Wang X, et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004;11(8):711–721. doi: 10.1038/sj.gt.3302213
  • Ledwith BJ, Manam S, Troilo PJ, et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology. 2000;43(4–6):258–272. doi: 10.1159/000053993
  • Manam S, Ledwith BJ, Barnum AB, et al. Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology. 2000;43:273–281. doi: 10.1159/000053994
  • Ledwith BJ. Plasmid DNA vaccines: assay for integration into host genomic DNA [Internet]. CAS. 2000 [cited 2023 Sep 28]. p. 33–43. Available from: https://chemport-n.cas.org//chemport-n/?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1%3ACAS%3A528%3ADC%2BD3cXnt1OitLw%3D&md5=acd3d7edc17c05e4b7556a9d7aa268bf.
  • Sheets RL, Stein J, Manetz TS, et al. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicol Sci. 2006;91(2):610–619. doi: 10.1093/toxsci/kfj169
  • Pal R, Yu Q, Wang S, et al. Definitive toxicology and biodistribution study of a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 (HIV-1) vaccine in rabbits. Vaccine. 2006;24(8):1225–1234. doi: 10.1016/j.vaccine.2005.07.112
  • Temin HM. Overview of biological effects of addition of DNA molecules to cells. J Med Virol. 1990;31(1):13–17. doi: 10.1002/jmv.1890310105
  • Maecker HT, Umetsu DT, DeKruyff RH, et al. Cytotoxic T Cell Responses to DNA Vaccination: Dependence on Antigen Presentation via Class II MHC. J Immunol. 1998;161(12):6532–6536. doi: 10.4049/jimmunol.161.12.6532
  • Reinscheid M, Luxenburger H, Karl V, et al. COVID-19 mRNA booster vaccine induces transient CD8+ T effector cell responses while conserving the memory pool for subsequent reactivation. Nat Commun. 2022;13(1):4631. doi: 10.1038/s41467-022-32324-x
  • Prud’homme GJ. DNA vaccination against tumors. J Gene Med. 2005;7(1):3–17. doi: 10.1002/jgm.669
  • Granados-Riveron JT, Aquino-Jarquin G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother. 2021;142:111953. doi: 10.1016/j.biopha.2021.111953
  • Rosa SS, Prazeres DMF, Azevedo AM, et al. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine. 2021;39(16):2190–2200. doi: 10.1016/j.vaccine.2021.03.038
  • Amir Kalvanagh P, Karimi H, Soleimanjahi H, et al. The cooperation of IL-29 and PLGA nanoparticles improves the protective immunity of the gD-1 DNA vaccine against herpes simplex virus type 1 in mice. Immunol Invest. 2023;52(7):779–795. doi: 10.1080/08820139.2023.2243979
  • Jiang L, Qian F, He X, et al. Novel chitosan derivative nanoparticles enhance the immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice. J Gene Med. 2007;9(4):253–264. doi: 10.1002/jgm.1017
  • Kulkarni JA, Myhre JL, Chen S, et al. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine [Internet]. 2017;131:1377–1387. Available from: https://www.sciencedirect.com/science/article/pii/S1549963416302313
  • Pfeifle A, Thulasi Raman SN, Lansdell C, et al. DNA lipid nanoparticle vaccine targeting outer surface protein C affords protection against homologous Borrelia burgdorferi needle challenge in mice. Front Immunol [Internet]. 2023;14. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2023.1020134
  • Weide B, Pascolo S, Scheel B, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother. 2009;32(5):498–507. doi: 10.1097/CJI.0b013e3181a00068
  • Chen J, Guo Z, Tian H, et al. Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev. 2016;3:16023. doi: 10.1038/mtm.2016.23
  • Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146–157. doi: 10.1089/nat.2018.0721
  • Eygeris Y, Patel S, Jozic A, et al. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 2020;20(6):4543–4549. doi: 10.1021/acs.nanolett.0c01386
  • Liang F, Lindgren G, Lin A, et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther. 2017;25(12):2635–2647. doi: 10.1016/j.ymthe.2017.08.006
  • Tahtinen S, Tong A-J, Himmels P, et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat Immunol. 2022;23(4):532–542. doi: 10.1038/s41590-022-01160-y
  • Ndeupen S, Qin Z, Jacobsen S, et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021;24:103479. doi: 10.1016/j.isci.2021.103479
  • Li C, Lee A, Grigoryan L, et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–555. doi: 10.1038/s41590-022-01163-9
  • Alameh M-G, Tombácz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021;54(12):2877–2892.e7. doi: 10.1016/j.immuni.2021.11.001
  • Verbeke R, Hogan MJ, Loré K, et al. Innate immune mechanisms of mRNA vaccines. Immunity. 2022;55(11):1993–2005. doi: 10.1016/j.immuni.2022.10.014
  • Pardi N, Secreto AJ, Shan X, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8(1):14630. doi: 10.1038/ncomms14630
  • Duperret EK, Trautz A, Stoltz R, et al. Synthetic DNA-Encoded monoclonal antibody delivery of anti–CTLA-4 antibodies induces tumor shrinkage in vivo. Cancer Res. 2018;78(22):6363–6370. doi: 10.1158/0008-5472.CAN-18-1429
  • Verbeke R, Lentacker I, De Smedt SC, et al. Three decades of messenger RNA vaccine development. Nano Today [Internet]. 2019;28:100766. Available from: https://www.sciencedirect.com/science/article/pii/S1748013219301483
  • Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745. doi: 10.1038/35047123
  • Kowalczyk A, Doener F, Zanzinger K, et al. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine. 2016;34(33):3882–3893. doi: 10.1016/j.vaccine.2016.05.046
  • de Oliveira Mann CC, Hornung V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur J Immunol. 2021;51(8):1897–1910. doi: 10.1002/eji.202049116
  • Francica JR, Sheng Z, Zhang Z, et al. Analysis of immunoglobulin transcripts and hypermutation following SHIVAD8 infection and protein-plus-adjuvant immunization. Nat Commun. 2015;6(1):6565. doi: 10.1038/ncomms7565
  • Lindgren G, Ols S, Liang F, et al. Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells. Front Immunol. 2017;8: doi: 10.3389/fimmu.2017.01539
  • Hellgren F, Cagigi A, Arcoverde Cerveira R, et al. Unmodified rabies mRNA vaccine elicits high cross-neutralizing antibody titers and diverse B cell memory responses. Nat Commun. 2023;14(1):3713. doi: 10.1038/s41467-023-39421-5
  • Thess A, Grund S, Mui BL, et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther. 2015;23(9):1456–1464. doi: 10.1038/mt.2015.103
  • Veselenak RL, Shlapobersky M, Pyles RB, et al. A Vaxfectin®-adjuvanted HSV-2 plasmid DNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccine. 2012;30(49):7046–7051. doi: 10.1016/j.vaccine.2012.09.057
  • Su B, Wang J, Wang X, et al. The effects of IL-6 and TNF-α as molecular adjuvants on immune responses to FMDV and maturation of dendritic cells by DNA vaccination. Vaccine [Internet]. 2008;26(40):5111–5122. Available from: https://www.sciencedirect.com/science/article/pii/S0264410X08003459
  • Yoon HA, Aleyas AG, George JA, et al. Cytokine GM-CSF genetic adjuvant facilitates prophylactic DNA vaccine against pseudorabies virus through enhanced immune responses. Microbiol Immunol [Internet]. 2006;50:83–92. Available from. doi: 10.1111/j.1348-0421.2006.tb03773.x.
  • Arakelian T, Oosterhuis K, Tondini E, et al. Pyroptosis-inducing active caspase-1 as a genetic adjuvant in anti-cancer DNA vaccination. Vaccine [Internet]. 2022;40(13):2087–2098. Available from: https://www.sciencedirect.com/science/article/pii/S0264410X22001621
  • Lee S-J, Song L, Yang M-C, et al. Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation. Vaccine [Internet]. 2015;33(13):1549–1555. Available from: https://www.sciencedirect.com/science/article/pii/S0264410X15001863
  • Chen Y-P, Lin C-C, Xie Y-X, et al. Enhancing immunogenicity of HPV16 E7 DNA vaccine by conjugating codon-optimized GM-CSF to HPV16 E7 DNA. Taiwan J Obstet Gynecol [Internet]. 2021;60(4):700–705. Available from: https://www.sciencedirect.com/science/article/pii/S1028455921001327
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239(1):62–84. doi: 10.1111/j.1600-065X.2010.00980.x
  • Aldrich C, Leroux–Roels I, Huang KB, et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: a phase 1 trial. Vaccine. 2021;39(8):1310–1318. doi: 10.1016/j.vaccine.2020.12.070
  • Blumenthal KG, Greenhawt M, Phillips EJ, et al. An update in COVID-19 vaccine reactions in 2023: progress and understanding. J Allergy Clin Immunol Pract. 2023;11(11):3305–3318. doi: 10.1016/j.jaip.2023.06.057
  • Oster ME, Shay DK, Su JR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA. 2022;327(4):331. doi: 10.1001/jama.2021.24110
  • Comes JDG, Pijlman GP, Hick TAH. Rise of the RNA machines – self-amplification in mRNA vaccine design. Trends Biotechnol. 2023;41(11):1417–1429. doi: 10.1016/j.tibtech.2023.05.007
  • Shen NL, Hartikka J, Horn NA, et al. Development and characterization of lyophilized DNA vaccine formulations. DNA vaccines. (NJ): Humana Press; 2000. p. 23–34.
  • Mohammed AR, Bramwell VW, Coombes AGA, et al. Lyophilisation and sterilisation of liposomal vaccines to produce stable and sterile products. Methods. 2006;40(1):30–38. doi: 10.1016/j.ymeth.2006.05.025
  • Uddin MN, Roni MA. Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines (Basel). 2021;9(9):1033. doi: 10.3390/vaccines9091033
  • Fredriksen AB, Bogen B. Chemokine-idiotype fusion DNA vaccines are potentiated by bivalency and xenogeneic sequences. Blood [Internet]. 2007;110:1797–1805. Available from: 10.1182/blood-2006-06-032938.
  • Fredriksen AB, Sandlie I, Bogen B. DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells. Mol Ther [Internet]. 2006;13:776–785. Available from: 10.1016/j.ymthe.2005.10.019.
  • Torrieri-Dramard L, Lambrecht B, Ferreira HL, et al. Intranasal DNA Vaccination Induces Potent Mucosal and Systemic Immune Responses and Cross-protective Immunity Against Influenza Viruses. Mol Ther [Internet]. 2011;19:602–611. Available from. doi: 10.1038/mt.2010.222.
  • Eusébio D, Neves AR, Costa D, et al. Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discov Today. 2021;26(11):2575–2592. doi: 10.1016/j.drudis.2021.06.008
  • Hirao LA, Wu L, Khan AS, et al. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine. 2008;26(3):440–448. doi: 10.1016/j.vaccine.2007.10.041
  • Ledesma-Feliciano C, Chapman R, Hooper JW, et al. Improved DNA vaccine delivery with needle-free injection systems. Vaccines (Basel). 2023;11(2):280. doi: 10.3390/vaccines11020280
  • Xu Y, Yuen P-W, Lam J-W. Intranasal DNA vaccine for protection against respiratory infectious diseases: the delivery perspectives. Pharmaceutics. 2014;6(3):378–415. doi: 10.3390/pharmaceutics6030378
  • Verbeke R, Lentacker I, Breckpot K, et al. Broadening the message: a Nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells. ACS Nano. 2019;acsnano.8b07660. doi: 10.1021/acsnano.8b07660
  • Cuscino N, Fatima A, Di Pilato V, et al. Computational design and characterization of a multiepitope vaccine against carbapenemase-producing Klebsiella pneumoniae strains, derived from antigens identified through reverse vaccinology. Comput Struct Biotechnol J. 2022;20:4446–4463. doi: 10.1016/j.csbj.2022.08.035
  • 4basebio Technologies [Internet]. 2022 [cited 2022 Dec 15]. Available from: https://www.4basebio.com/technologies/.
  • Touchlight Doggybone [Internet]. 2022 [cited 2022 Dec 15]. Available from: https://www.touchlight.com/platform-technology/overview/.
  • Conforti A, Sanchez E, Salvatori E, et al. A linear DNA vaccine candidate encoding the SARS-CoV-2 Receptor Binding Domain elicits potent immune response and neutralizing antibodies in domestic cats. Mol Ther Methods Clin Dev [Internet]. 2023;28:238–248. doi: 10.1016/j.omtm.2022.12.015
  • Mucker EM, Brocato RL, Principe LM, et al. SARS-CoV-2 Doggybone DNA vaccine produces cross-variant neutralizing antibodies and is protective in a COVID-19 animal model. Vaccines (Basel) [Internet]. 2022;107:1104. https://www.mdpi.com/2076-393X/10/7/1104
  • Schleef M, Schirmbeck R, Reiser M, et al. Minicircle: next generation DNA vectors for vaccination. Gene Ther Solid Cancers. 2015;1317:327–339.
  • Norheim G, Stubsrud E, Skullerud LM, et al. Single dose immunization with a COVID-19 DNA vaccine encoding a chimeric homodimeric protein targeting receptor binding domain (RBD) to antigen-presenting cells induces rapid, strong and long-lasting neutralizing IgG, Th1 dominated CD4+ T cells and strong CD8+ T cell responses in mice. Biorxiv [Internet]. 2020. Available from: http://biorxiv.org/content/early/2020/12/09/2020.12.08.416875.abstract
  • Hillemanns P, Denecke A, Woelber L, et al. A therapeutic antigen-presenting cell-targeting DNA vaccine VB10.16 in HPV16-positive high-grade cervical intraepithelial neoplasia: results from a phase I/IIa trial. Clin Cancer Res [Internet]. 2022;28(22):4885–4892. Available from. doi: 10.1158/1078-0432.CCR-22-1927
  • Nashwan A, Yassin M, Soliman A, et al. mRNA-based COVID-19 vaccines booster dose: benefits, risks and coverage. Acta Biomed. 2022;93:e2022236.
  • Kim SC, Sekhon SS, Shin W-R, et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol. 2022;18(1):1–8. doi: 10.1007/s13273-021-00171-4
  • Yasmin F, Najeeb H, Naeem U, et al. Adverse events following COVID‐19 mRNA vaccines: a systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. Immun Inflamm Dis. 2023;11(3):11. doi: 10.1002/iid3.807
  • Ferrara P, Ponticelli D, Losa L, et al. Risk of repeated adverse effects following booster dose of mRNA COVID-19 vaccine: results from the MOSAICO study. Vaccines (Basel). 2023;11(2):247. doi: 10.3390/vaccines11020247
  • Uversky VN, Redwan EM, Makis W, et al. IgG4 antibodies induced by repeated vaccination may generate immune tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel). 2023;11(5):991. doi: 10.3390/vaccines11050991
  • Mucker EM, Karmali PP, Vega J, et al. Lipid nanoparticle formulation increases efficiency of DNA-Vectored vaccines/Immunoprophylaxis in animals including Transchromosomic Bovines. Sci Rep [Internet]. 2020;10:8764. doi: 10.1038/s41598-020-65059-0.
  • Seok JK, Kim M, Kang HC, et al. Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Arch Pharm Res. 2023;46(6):500–534. doi: 10.1007/s12272-023-01452-3
  • Ruprecht CR, Lanzavecchia A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol. 2006;36(4):810–816. doi: 10.1002/eji.200535744
  • Kim WJ, Roberts CC, Song JY, et al. Immune response enhancement with GLS-5310 DNA primary vaccine against SARS-CoV-2 followed by administration of an mRNA vaccine heterologous boost. Vaccine. 2023;41(29):4206–4211. doi: 10.1016/j.vaccine.2023.06.013