1,824
Views
0
CrossRef citations to date
0
Altmetric
Review

Influenza B virus neuraminidase: a potential target for next-generation vaccines?

, , &
Pages 39-48 | Received 14 Sep 2023, Accepted 29 Nov 2023, Published online: 14 Dec 2023

References

  • Kosik I, Yewdell JW. Influenza a virus hemagglutinin specific antibodies interfere with virion neuraminidase activity via two distinct mechanisms. Virology. 2017;500:178–183. doi: 10.1016/j.virol.2016.10.024
  • Hensen L, Kedzierska K, Koutsakos M. Innate and adaptive immunity toward influenza B viruses. Future Microbiol. 2020;15(11):1045–1058. doi: 10.2217/fmb-2019-0340
  • Koutsakos M, Nguyen TH, Barclay WS, et al. Knowns and unknowns of influenza B viruses. Future Microbiol. 2016;11(1):119–135. doi: 10.2217/fmb.15.120
  • Caini S, Kusznierz G, Garate VV, et al. The epidemiological signature of influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS One. 2019;14(9):e0222381. doi: 10.1371/journal.pone.0222381
  • Barr IG, Vijaykrishna D, Sullivan SG Differential age susceptibility to influenza B/Victoria lineage viruses in the 2015 Australian influenza season. Eurosurveillance. 2016;21(4):30118. doi: 10.2807/1560-7917.ES.2016.21.4.30118
  • Paget J, Caini S, Del Riccio M, et al. Has influenza B/Yamagata become extinct and what implications might this have for quadrivalent influenza vaccines? Eurosurveillance. 2022;27(39):2200753. doi: 10.2807/1560-7917.ES.2022.27.39.2200753
  • Osterhaus A, Rimmelzwaan G, Martina B, et al. Influenza B virus in seals. Science. 2000;288(5468):1051–1053. doi: 10.1126/science.288.5468.1051
  • Ohishi K, Ninomiya A, Kida H, et al. Serological evidence of transmission of human influenza a and B viruses to Caspian seals (phoca caspica). Microbiol Immunol. 2002;46(9):639–644. doi: 10.1111/j.1348-0421.2002.tb02746.x
  • Ran Z, Shen H, Lang Y, et al. Domestic pigs are susceptible to infection with influenza B viruses. J Virol. 2015;89(9):4818–4826. doi: 10.1128/JVI.00059-15
  • Koutsakos M, Wheatley AK, Laurie K, et al. Influenza lineage extinction during the COVID-19 pandemic? Nature Rev Microbiol. 2021;19(12):741–742. doi: 10.1038/s41579-021-00642-4
  • Dhanasekaran V, Sullivan S, Edwards KM, et al. Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nat Commun. 2022;13(1):1721. doi: 10.1038/s41467-022-29402-5
  • Bedford T, Suchard MA, Lemey P, et al. Integrating influenza antigenic dynamics with molecular evolution. Elife. 2014;3:e01914. doi:10.7554/eLife.01914
  • de Jong JC, Beyer Walter E.P., Palache WE, et al. Mismatch between the 1997/1998 influenza vaccine and the major epidemic a (H3N2) virus strain as the cause of an inadequate vaccine‐induced antibody response to this strain in the elderly. J Med Virol. 2000;61(1):94–99. doi: 10.1002/(SICI)1096-9071(200005)61:1<94:AID-JMV15>3.0.CO;2-C
  • Krammer F, Palese P Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015;14(3):167–182. doi: 10.1038/nrd4529
  • JE S, PC S. Importance of antigenic composition of influenza virus vaccine in protecting against the natural disease; observations during the winter of 1947-1948. Am J Public Health Nations Health. 1949;39(3):345–355. doi: 10.2105/AJPH.39.3.345
  • Payne A-M. The influenza programme of WHO. Bullet World Health Organ. 1953;8(5–6):755.
  • Hutchinson EC, Charles PD, Hester SS, et al. Conserved and host-specific features of influenza virion architecture. Nat Commun. 2014;5(1):1–11. doi: 10.1038/ncomms5816
  • Wang Q, Tian X, Chen X, et al. Structural basis for receptor specificity of influenza B virus hemagglutinin. Proceedings of the National Academy of Sciences. 2007;104 (43):p. 16874–16879.
  • Burmeister W, Ruigrok R, Cusack S The 2.2 a resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992;11(1):49–56. doi: 10.1002/j.1460-2075.1992.tb05026.x
  • Du W, de Vries E, van Kuppeveld FJ, et al. Second sialic acid‐binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J. 2021;288(19):5598–5612. doi: 10.1111/febs.15668
  • Cohen M, Zhang X-Q, Senaati HP, et al. Influenza a penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J. 2013;10(1):1–13. doi: 10.1186/1743-422X-10-321
  • Rajendran M, Krammer F, McMahon M The human antibody response to the influenza virus neuraminidase following infection or vaccination. Vaccines. 2021;9(8):846. doi: 10.3390/vaccines9080846
  • Tao J, Wang H, Wang W, et al. Binding mechanism of oseltamivir and influenza neuraminidase suggests perspectives for the design of new anti-influenza drugs. PLoS Comput Biol. 2022;18(7):e1010343. doi: 10.1371/journal.pcbi.1010343
  • Andrews DM, Cherry PC, Humber DC, et al. Synthesis and influenza virus sialidase inhibitory activity of analogues of 4-guanidino-Neu5Ac2en (zanamivir) modified in the glycerol side-chain. Eur J Med Chem. 1999;34(7–8):563–574. doi: 10.1016/S0223-5234(00)80026-4
  • Sarukhanyan E, Shanmugam TA, Dandekar T. In silico studies reveal peramivir and zanamivir as an optimal drug treatment even if H7N9 avian type influenza virus acquires further resistance. Molecules. 2022;27(18):5920. doi: 10.3390/molecules27185920
  • Caceres CJ, Seibert B, Cargnin Faccin F, et al. Influenza antivirals and animal models. FEBS Open Bio. 2022;12(6):1142–1165. doi: 10.1002/2211-5463.13416
  • Trebbien R, Pedersen SS, Vorborg K, et al. Development of oseltamivir and zanamivir resistance in influenza A (H1N1) pdm09 virus, Denmark, 2014. Eurosurveillance. 2017;22(3):30445. doi: 10.2807/1560-7917.ES.2017.22.3.30445
  • Orozovic G, Orozovic K, Järhult JD, Tripp, R., et al. Study of oseltamivir and zanamivir resistance-related mutations in influenza viruses isolated from wild mallards in Sweden. PLoS One. 2014;9(2):e89306. doi: 10.1371/journal.pone.0089306
  • Moscona A Oseltamivir resistance—disabling our influenza defenses. N Engl J Med. 2005;353(25):2633–2636. doi: 10.1056/NEJMp058291
  • Couch RB, Kasel JA, Gerin JL, et al. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J Infect Dis. 1974;129(4):411–420. doi: 10.1093/infdis/129.4.411
  • Murphy BR, Kasel JA, Chanock RM Association of serum anti-neuraminidase antibody with resistance to influenza in man. N Engl J Med. 1972;286(25):1329–1332. doi: 10.1056/NEJM197206222862502
  • Memoli MJ, Shaw PA, Han A, Moscona, A., et al. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. MBio. 2016;7(2):10.1128/mBio.00417-16. doi: 10.1128/mBio.00417-16
  • Maier HE, Nachbagauer R, Kuan G, et al. Pre-existing antineuraminidase antibodies are associated with shortened duration of influenza a (H1N1) pdm virus shedding and illness in naturally infected adults. Clinl Infect Dis. 2020;70(11):2290–2297. doi: 10.1093/cid/ciz639
  • Couch RB, Atmar RL, Franco LM, et al. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J Infect Dis. 2013;207(6):974–981. doi: 10.1093/infdis/jis935
  • Hobson D, Curry R, Beare A, et al. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. Epidemiol Infect. 1972;70(4):767–777. doi: 10.1017/S0022172400022610
  • Monto AS, Petrie JG, Cross RT, et al. Antibody to influenza virus neuraminidase: an independent correlate of protection. J Infect Dis. 2015;212(8):1191–1199. doi: 10.1093/infdis/jiv195
  • Johansson BE, Brett IC. Recombinant influenza B virus HA and NA antigens administered in equivalent amounts are immunogenically equivalent and induce equivalent homotypic and broader heterovariant protection in mice than conventional and live influenza vaccines. Hum Vaccines. 2008;4(6):420–424. doi: 10.4161/hv.4.6.6201
  • Wohlbold TJ, Nachbagauer R, Xu H, Griffin, D E., et al. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. MBio. 2015;6(2):e02556–14. doi: 10.1128/mBio.02556-14
  • McMahon M, Kirkpatrick E, Stadlbauer D, Schultz-Cherry, S., et al. Mucosal immunity against neuraminidase prevents influenza B virus transmission in Guinea Pigs. MBio. 2019;10(3):e00560–19. doi: 10.1128/mBio.00560-19
  • Kim K-H, Li Z, Bhatnagar N, et al. Universal protection against influenza viruses by multi-subtype neuraminidase and M2 ectodomain virus-like particle. PLOS Pathogens. 2022;18(8):e1010755. doi: 10.1371/journal.ppat.1010755
  • Wohlbold TJ, Podolsky KA, Chromikova V, et al. Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes. Nat Microbiol. 2017;2(10):1415–1424. doi: 10.1038/s41564-017-0011-8
  • Madsen A, Dai Y-N, McMahon M, et al. Human antibodies targeting influenza B virus neuraminidase active site are broadly protective. Immunity. 2020;53(4):852–863. e7. doi: 10.1016/j.immuni.2020.08.015
  • Piepenbrink MS, Nogales A, Basu M, Moscona, A., et al. Broad and protective influenza B virus neuraminidase antibodies in humans after vaccination and their clonal persistence as plasma cells. MBio. 2019;10(2):e00066–19. doi: 10.1128/mBio.00066-19
  • Stadlbauer D, Zhu X, McMahon M, et al. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science. 2019;366(6464):499–504. doi: 10.1126/science.aay0678
  • Yasuhara A, Yamayoshi S, Kiso M, et al. A broadly protective human monoclonal antibody targeting the sialidase activity of influenza a and B virus neuraminidases. Nat Commun. 2022;13(1):6602. doi: 10.1038/s41467-022-34521-0
  • Momont C, Dang HV, Zatta F, et al. A pan-influenza antibody inhibiting neuraminidase via receptor mimicry. Nature. 2023;1–8.
  • Gravel C, Li C, Wang J, et al. Qualitative and quantitative analyses of virtually all subtypes of influenza a and B viral neuraminidases using antibodies targeting the universally conserved sequences. Vaccine. 2010;28(36):5774–5784. doi: 10.1016/j.vaccine.2010.06.075
  • Doyle TM, Li C, Bucher DJ, et al. A monoclonal antibody targeting a highly conserved epitope in influenza B neuraminidase provides protection against drug resistant strains. Biochem Biophys Res Commun. 2013;441(1):226–229. doi: 10.1016/j.bbrc.2013.10.041
  • Curry R, Brown J, Baker F, et al. Serological studies with purified neuraminidase antigens of influenza B viruses. Epidemiol Infect. 1974;72(2):197–204. doi: 10.1017/S0022172400023408
  • Air GM, Laver WG, Luo M, et al. Antigenic, sequence, and crystal variation in influenza B neuraminidase. Virology. 1990;177(2):578–587. doi: 10.1016/0042-6822(90)90523-T
  • Virk RK, Jayakumar J, Mendenhall IH, et al. Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity. Proceedings of the National Academy of Sciences. 2020;117 (1):p. 619–628.
  • Vijaykrishna D, Holmes EC, Joseph U, et al. The contrasting phylodynamics of human influenza B viruses. Elife. 2015;4:e05055. doi: 10.7554/eLife.05055
  • Kilbourne ED, Johansson BE, Grajower B. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proceedings of the National Academy of Sciences. 1990;87 (2):p. 786–790.
  • Sandbulte MR, Westgeest KB, Gao J, et al. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proceedings of the National Academy of Sciences. 2011;108 (51):p. 20748–20753.
  • Laver W, Air G, Webster R, et al. Amino acid sequence changes in antigenic variants of type a influenza virus N2 neuraminidase. Virology. 1982;122(2):450–460. doi: 10.1016/0042-6822(82)90244-6
  • Westgeest KB, de Graaf M, Fourment M, et al. Genetic evolution of the neuraminidase of influenza a (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. J Gen Virol. 2012;93(Pt 9):1996. doi: 10.1099/vir.0.043059-0
  • Sultana I, Yang K, Getie-Kebtie M, et al. Stability of neuraminidase in inactivated influenza vaccines. Vaccine. 2014;32(19):2225–2230. doi: 10.1016/j.vaccine.2014.01.078
  • Getie‐Kebtie M, Sultana I, Eichelberger M, et al. Label‐free mass spectrometry‐based quantification of hemagglutinin and neuraminidase in influenza virus preparations and vaccines. Influenza Other Respir Viruses. 2013;7(4):521–530. doi: 10.1111/irv.12001
  • Ito H, Nishimura H, Kisu T, Cao, Y., et al. Low response in eliciting neuraminidase inhibition activity of sera among recipients of a split, monovalent pandemic influenza vaccine during the 2009 pandemic. PLoS One. 2020;15(5):e0233001. doi: 10.1371/journal.pone.0233001
  • Couch RB, Atmar RL, Keitel WA, et al. Randomized comparative study of the serum antihemagglutinin and antineuraminidase antibody responses to six licensed trivalent influenza vaccines. Vaccine. 2012;31(1):190–195. doi: 10.1016/j.vaccine.2012.10.065
  • Johansson BE, Matthews JT, Kilbourne ED. Supplementation of conventional influenza a vaccine with purified viral neuraminidase results in a balanced and broadened immune response. Vaccine. 1998;16(9–10):1009–1015. doi: 10.1016/S0264-410X(97)00279-X
  • Johansson BE, Pokorny BA, Tiso VA Supplementation of conventional trivalent influenza vaccine with purified viral N1 and N2 neuraminidases induces a balanced immune response without antigenic competition. Vaccine. 2002;20(11–12):1670–1674. doi: 10.1016/S0264-410X(01)00490-X
  • Bosch BJ, Bodewes R, de Vries RP, et al. Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 a (H1N1) influenza virus infection in ferrets. J Virol. 2010;84(19):10366–10374. doi: 10.1128/JVI.01035-10
  • Schotsaert M, Ysenbaert T, Smet A, et al. Long-lasting cross-protection against influenza A by neuraminidase and M2e-based immunization strategies. Sci Rep. 2016;6(1):24402. doi: 10.1038/srep24402
  • Liu W-C, Lin C-Y, Tsou Y-T, et al. Cross-reactive neuraminidase-inhibiting antibodies elicited by immunization with recombinant neuraminidase proteins of H5N1 and pandemic H1N1 influenza a viruses. J Virol. 2015;89(14):7224–7234. doi: 10.1128/JVI.00585-15
  • Pardi N, Carreño JM, O’Dell G, et al. Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza B viruses. Nat Commun. 2022;13(1):4677. doi: 10.1038/s41467-022-32149-8