1,523
Views
0
CrossRef citations to date
0
Altmetric
Review

The use of electroporation to deliver DNA-based vaccines

, , , , &
Pages 102-123 | Received 29 Aug 2023, Accepted 05 Dec 2023, Published online: 18 Dec 2023

References

  • Elizaga ML, Li SS, Kochar NK, et al. Safety and tolerability of HIV-1 multiantigen pDNA vaccine given with IL-12 plasmid DNA via electroporation, boosted with a recombinant vesicular stomatitis virus HIV gag vaccine in healthy volunteers in a randomized, controlled clinical trial. PLoS One. 2018;13(9):e0202753. doi: 10.1371/journal.pone.0202753
  • Houser KV, Chen GL, Carter C, et al. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat Med. 2022;28(2):383–391. doi: 10.1038/s41591-021-01660-8
  • Hooper J, Paolino KM, Mills K, et al. A phase 2a randomized, double-blind, dose-optimizing study to evaluate the immunogenicity and safety of a bivalent DNA vaccine for hemorrhagic fever with renal syndrome delivered by intramuscular electroporation. Vaccines (Basel). 2020;8(3):1–21. doi: 10.3390/vaccines8030377
  • Hannaman D, Dupuy LC, Ellefsen B, et al. A phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation. Vaccine. 2016;34(31):3607–3612. doi: 10.1016/j.vaccine.2016.04.077
  • Gaudinski MR, Houser KV, Morabito KM, et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet. 2018;391(10120):552–562. doi: 10.1016/S0140-6736(17)33105-7
  • Ledgerwood JE, Pierson TC, Hubka SA, et al. A west Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis. 2011;203(10):1396–1404. doi: 10.1093/infdis/jir054
  • Sarwar UN, Costner P, Enama ME, et al. Safety and immunogenicity of DNA vaccines encoding ebolavirus and marburgvirus wild-type glycoproteins in a phase i clinical trial. J Infect Dis. 2015;211(4):549–557. doi: 10.1093/infdis/jiu511
  • Tebas P, Kraynyak KA, Patel A, et al. Intradermal SynCon® Ebola GP DNA vaccine is temperature stable and safely demonstrates cellular and humoral immunogenicity advantages in healthy volunteers. J Infect Dis. 2019;220(3):400–410. doi: 10.1093/infdis/jiz132
  • Ahn JY, Lee J, Suh YS, et al. Safety and immunogenicity of two recombinant DNA COVID-19 vaccines containing the coding regions of the spike or spike and nucleocapsid proteins: an interim analysis of two open-label, non-randomised, phase 1 trials in healthy adults. Lancet Microbe. 2022;3(3):e173–e183. doi: 10.1016/S2666-5247(21)00358-X
  • Kraynyak KA, Blackwood E, Agnes J, et al. SARS-CoV-2 DNA vaccine INO-4800 induces durable immune responses capable of being boosted in a phase 1 open-label trial. J Infect Dis. 2022;225(11):1923–1932. doi: 10.1093/infdis/jiac016
  • Jenkins M, Kerr D, Fayer R, et al. Serum and colostrum antibody responses induced by jet-injection of sheep with DNA encoding a Cryptosporidium parvum antigen. Vaccine. 1995;13(17):1658–1664. doi: 10.1016/0264-410X(95)00121-G
  • Gül C, Karakavuk T, Karakavuk M, et al. An overview of DNA vaccines development studies against Toxoplasma gondii. Turkiye Parazitoloji Dergisi. 2022;46:253–270. doi: 10.4274/tpd.galenos.2022.02486
  • Sefidi-Heris Y, Jahangiri A, Mokhtarzadeh A, et al. Recent progress in the design of DNA vaccines against tuberculosis. Drug Discov Today. 2020;25(11):1971–1987. doi: 10.1016/j.drudis.2020.09.005
  • Lee J, Arun Kumar S, Jhan YY, et al. Engineering DNA vaccines against infectious diseases. Acta Biomater. 2018;80:31–47. doi: 10.1016/j.actbio.2018.08.033
  • Carter EW, Kerr DE. Optimization of DNA-based vaccination in cows using green fluorescent protein and protein a as a prelude to immunization against staphylococcal mastitis. J Dairy Sci. 2003;86(4):1177–1186. doi: 10.3168/jds.S0022-0302(03)73701-1
  • Scheiblhofer S, Weiss R, Thalhamer J. Genetic vaccination approaches against malaria based on the circumsporozoite protein. Wiener Klinische Wochenschrift, Supplement. 2006;118(S3):9–17. doi: 10.1007/s00508-006-0676-0
  • Cai Y, Rodriguez S, Hebel H. DNA vaccine manufacture: Scale and quality. Expert Rev Vaccines. 2009;8(9):1277–1291. doi: 10.1586/erv.09.84
  • Shafaati M, Saidijam M, Soleimani M, et al. A brief review on DNA vaccines in the era of COVID-19. Future Virol. 2022;17(1):49–66. doi: 10.2217/fvl-2021-0170
  • Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016;15(3):313–329. doi: 10.1586/14760584.2016.1124762
  • Bazhan SI, Antonets DV, Starostina EV, et al. In silico design of influenza a virus artificial epitope-based T-cell antigens and the evaluation of their immunogenicity in mice. J Biomol Struct Dyn. 2022;40(7):3196–3212. doi: 10.1080/07391102.2020.1845978
  • Bazhan SI, Antonets DV, Karpenko LI, et al. In silico designed Ebola virus T-cell multi-epitope DNA vaccine constructions are immunogenic in mice. Vaccines (Basel). 2019;7.
  • Karpenko LI, Bazhan SI, Eroshkin AM, et al. Artificial epitope-based immunogens in HIV-vaccine design. In: Adv HIV AIDS Control. IntechOpen; 2018. p. 205–225. doi: 10.5772/intechopen.77031
  • Liu L. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines (Basel). 2019;7(2):37. doi: 10.3390/vaccines7020037
  • Braathen R, Spång HCL, Hinke DM, et al. A DNA vaccine that encodes an antigen-presenting cell-specific heterodimeric protein protects against cancer and influenza. Mol Ther Methods Clin Dev. 2020;17:378–392. doi: 10.1016/j.omtm.2020.01.007
  • Kim D, Wu Y, Kim YB, et al. Advances in vaccine delivery systems against viral infectious diseases. Drug Deliv Transl Res. 2021;11(4):1401–1419. doi: 10.1007/s13346-021-00945-2
  • Karpenko LI, Apartsin EK, Dudko SG, et al. Cationic polymers for the delivery of the Ebola DNA vaccine encoding artificial t-cell immunogen. Vaccines (Basel). 2020;8(4):8. doi: 10.3390/vaccines8040718
  • Franck CO, Fanslau L, Bistrovic Popov A, et al. Biopolymer-based carriers for DNA vaccine design. Angew Chem Int Ed. 2021;133(24):13333–13351. doi: 10.1002/ange.202010282
  • Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother. 2017;13(12):2837–2848. doi: 10.1080/21645515.2017.1330236
  • Gary EN, Weiner DB. DNA vaccines: prime time is now. Curr Opin Immunol. 2020;65:21–27. doi: 10.1016/j.coi.2020.01.006
  • Weniger BG, Papania MJ. Alternative vaccine delivery methods. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines: Sixth Edition; 2013. p. 1200–1231.
  • Mitragotri S. Current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Discov. 2006;5(7):543–548. doi: 10.1038/nrd2076
  • Wang R, Bian Q, Xu Y, et al. Recent advances in mechanical force-assisted transdermal delivery of macromolecular drugs. Int J Pharm. 2021;602:602. doi: 10.1016/j.ijpharm.2021.120598
  • Momin T, Kansagra K, Patel H, et al. Safety and immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClin Med. 2021;38:101020. doi: 10.1016/j.eclinm.2021.101020
  • Mallapaty S. India’s DNA COVID vaccine is a world first – more are coming. Nature. 2021;597(7875):161–162. doi: 10.1038/d41586-021-02385-x
  • Petkov SP, Heuts F, Krotova OA, et al. Evaluation of immunogen delivery by DNA immunization using non-invasive bioluminescence imaging. Hum Vaccin Immunother. 2013;9(10):2228–2236. doi: 10.4161/hv.25561
  • Eusébio D, Neves AR, Costa D, et al. Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discov Today. 2021;26(11):2575–2592. doi: 10.1016/j.drudis.2021.06.008
  • Saljoughian N, Zahedifard F, Doroud D, et al. Cationic solid–lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol. 2013;35(12):397–408. doi: 10.1111/pim.12042
  • Coster HGL. A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of “punch-through”. Biophys J. 1965;5(5):669–686. doi: 10.1016/S0006-3495(65)86745-5
  • Coster HGL, George EP, Simons R. The electrical characteristics of fixed charge membranes. Biophys J. 1969;9(5):666–684. doi: 10.1016/S0006-3495(69)86411-8
  • Sale AJH, Hamilton WA. Effects of high electric fields on micro-organisms. III. Lysis of erythrocytes and protoplasts. BBA - Biomembr. 1968;163(1):37–43. doi: 10.1016/0005-2736(68)90030-8
  • Neumann E, Schaefer-Ridder M, Wang Y, et al. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841–845. doi: 10.1002/j.1460-2075.1982.tb01257.x
  • Davis HL, Whalen RG, Demeneix BA. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther. 1993;4(2):151–159. doi: 10.1089/hum.1993.4.2-151
  • Neumann E, Kakorin S, Tœnsing K. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg. 1999;48(1):3–16. doi: 10.1016/S0302-4598(99)00008-2
  • McMahon JM, Signori E, Wells KE, et al. Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase – increased expression with reduced muscle damage. Gene Ther. 2001;8(16):1264–1270. doi: 10.1038/sj.gt.3301522
  • Mennuni C, Calvaruso F, Zampaglione I, et al. Hyaluronidase increases electrogene transfer efficiency in skeletal muscle. Hum Gene Ther. 2002;13(3):355–365. doi: 10.1089/10430340252792495
  • Vilquin JT, Kennel PF, Paturneau-Jouas M, et al. Electrotransfer of naked DNA in the skeletal muscles of animal models of muscular dystrophies. Gene Ther. 2001;8(14):1097–1107. doi: 10.1038/sj.gt.3301484
  • Gollins H, McMahon J, Wells KE, et al. High-efficiency plasmid gene transfer into dystrophic muscle. Gene Ther. 2003;10(6):504–512. doi: 10.1038/sj.gt.3301927
  • Vicat JM, Boisseau S, Jourdes P, et al. Brief report: muscle transfection by electroporation with high-voltage and short-pulse currents provides high-level and long-lasting gene expression. Hum Gene Ther. 2000;11(6):909–916. doi: 10.1089/10430340050015518
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol. 2011;23(3):421–429. . doi: 10.1016/j.coi.2011.03.008
  • Cukjati D, Batiuskaite D, André F, et al. Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry. 2007;70(2):501–507. doi: 10.1016/j.bioelechem.2006.11.001
  • Trollet C, Bloquel C, Scherman D, et al. Electrotransfer into Skeletal Muscle for Protein Expression. Curr Gene Ther. 2006;6. doi: 10.1186/1472-6750-6-16
  • Becker SM, Kuznetsov AV. Local temperature rises influence in vivo electroporation pore development: A numerical stratum corneum lipid phase transition model. J Biomech Eng. 2007;129(5):712–721. doi: 10.1115/1.2768380
  • Daugimont L, Baron N, Vandermeulen G, et al. Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol. 2010;236(1):117–125. doi: 10.1007/s00232-010-9283-0
  • Gothelf A, Gehl J. What you always needed to know about electroporation based DNA vaccines. Hum Vaccin Immunother. 2012;8(11):1694–1702. doi: 10.4161/hv.22062
  • Adam L, Tchitchek N, Todorova B, et al. Innate molecular and cellular signature in the skin preceding long-lasting T cell responses after electroporated DNA vaccination. J Immunol. 2020;204(12):3375–3388. doi: 10.4049/jimmunol.1900517
  • Nold-Petry CA, Nold MF, Zepp JA, et al. IL-32–dependent effects of IL-1β on endothelial cell functions. Proc Natl Acad Sci U S A Internet. 2009 [cited 2023 Oct 6];106(10):3883. 10.1073/pnas.0813334106
  • Dolgachev V, Panicker S, Balijepalli S, et al. Electroporation-mediated delivery of FER gene enhances innate immune response and improves survival in a murine model of pneumonia. Gene Ther. 2018;25(5):359–375. doi: 10.1038/s41434-018-0022-y
  • Arnold CE, Rajnicek AM, Hoare JI, et al. Physiological strength electric fields modulate human T cell activation and polarisation. Sci Rep. 2019;9(1). doi: 10.1038/s41598-019-53898-5
  • Chiarella P, Massi E, De Robertis M, et al. Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther. 2008;8(11):1645–1657. doi: 10.1517/14712598.8.11.1645
  • Tebas P, Yang SP, Boyer JD, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of an open-label, phase 1 clinical trial. EClinicalMedicine. 2021;31:31. doi: 10.1016/j.eclinm.2020.100689
  • Polajzer T, Jarm T, Miklavcic D. Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro. Radiol Oncol. 2020;54(3):317–328. doi: 10.2478/raon-2020-0047
  • Schultheis K, Smith TRF, Kiosses WB, et al. Delineating the cellular mechanisms associated with skin electroporation. Hum Gene Ther Methods. 2018;29(4):177–188. doi: 10.1089/hgtb.2017.105
  • Emming S, Bianchi N, Polletti S, et al. A molecular network regulating the proinflammatory phenotype of human memory T lymphocytes. Nat Immunol. 2020;21(4):388–399. doi: 10.1038/s41590-020-0622-8
  • Peletta A, Prompetchara E, Tharakhet K, et al. DNA vaccine administered by cationic lipoplexes or by in vivo electroporation induces comparable antibody responses against sars-cov-2 in mice. Vaccines (Basel). 2021;9(8):874. doi: 10.3390/vaccines9080874
  • Rakoczy K, Kisielewska M, Sędzik M, et al. Electroporation in clinical applications—the potential of Gene Electrotransfer and Electrochemotherapy. Appl Sci (Switzerland). 2022;12(21):10821. doi: 10.3390/app122110821
  • Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines. 2012;11(2):189–209. doi: 10.1586/erv.11.188
  • Modjarrad K, Roberts CC, Mills KT, et al. Safety and immunogenicity of an anti-middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis. 2019;19(9):1013–1022. doi: 10.1016/S1473-3099(19)30266-X
  • Andrade VM, Christensen-Quick A, Agnes J, et al. INO-4800 DNA vaccine induces neutralizing antibodies and T cell activity against global SARS-CoV-2 variants. NPJ Vaccin. 2021;6(1):6. doi: 10.1038/s41541-021-00384-7
  • Krotova O, Starodubova E, Petkov S, et al. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells. PLoS One. 2013;8(5):e62720. doi: 10.1371/journal.pone.0062720
  • Latanova AA, Petkov S, Kilpelainen A, et al. Codon optimization and improved delivery/immunization regimen enhance the immune response against wild-Type and drug-resistant HIV-1 reverse transcriptase, preserving its Th2-polarity. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-26281-z
  • Leroy LA, Mac DA, Kandlur A, et al. Cytokine adjuvants IL-7 and IL-15 improve humoral responses of a SHIV LentiDNA vaccine in animal models. Vaccines (Basel). 2022;10(3):10. doi: 10.3390/vaccines10030461
  • Brisse M, Vrba SM, Kirk N, et al. Emerging concepts and technologies in vaccine development. Front Immunol. 2020;11: doi: 10.3389/fimmu.2020.583077
  • Sokołowska E, Błachnio-Zabielska AU. A critical review of electroporation as a plasmid delivery system in mouse skeletal muscle. Int J Mol Sci. 2019;20(11):2776. doi: 10.3390/ijms20112776
  • VGX-3100 and electroporation in treating Patients with HIV-Positive high-grade anal lesions | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6]. Available from: https://clinicaltrials.gov/study/NCT03603808?tab=table.
  • Safety, Tolerability and Immunogenicity of INO-4800 for COVID-19 in Healthy Volunteers | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6]. Available from: https://clinicaltrials.gov/study/NCT04336410?tab=table.
  • A study to evaluate Safety & immunogenicity of SARS-CoV-2 DNA vaccine delivered intramuscularly followed by electroporation for COVID-19 | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6]. Available from: https://clinicaltrials.gov/study/NCT05102643?tab=table.
  • A first-in-human study to evaluate Safety, tolerability, reactogenicity, and immunogenicity of JNJ-64300535, a DNA vaccine, administered by electroporation-mediated intramuscular injection, in participants with chronic hepatitis B who are on stable Nucleos(t)Ide therapy and virologically suppressed | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6]. Available from: https://clinicaltrials.gov/study/NCT03463369?tab=table.
  • Study of PENNVAXTM-B (gag, Pol, Env) + electroporation in HIV-1 infected Adult participants | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6].
  • Safety, tolerability and immunogenicity of INO-4800 followed by electroporation in healthy volunteers for COVID19 | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6]. Available from: https://clinicaltrials.gov/study/NCT04447781?tab=table.
  • Safety and immunogenicity of HIV DNA-C CN54ENV and recombinant HIV CN54gp140 vaccines in healthy volunteers | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6]. Available from: https://clinicaltrials.gov/study/NCT02589795?tab=table.
  • GLS-5700 in Healthy Volunteers | ClinicalTrials.gov [Internet]. [cited 2023 Nov 15]. Available from: https://clinicaltrials.gov/study/NCT02809443.
  • Dose-finding, Safety study of plasmid DNA Therapeutic vaccine to treat cervical intraepithelial neoplasia | ClinicalTrials.Gov [Internet]. [cited 2023 Nov 15]. Available from: https://clinicaltrials.gov/study/NCT02139267.
  • The Safety and immunogenicity of the DNA-GTU vaccine administered to HIV-infected Patients on ART vs placebo | ClinicalTrials.Gov [Internet]. [cited 2023 Nov 15]. Available from: https://clinicaltrials.gov/study/NCT02457689?tab=table.
  • Study of a DNA-based Venezuelan equine encephalitis virus DNA vaccine administered by electroporation in healthy volunteers | ClinicalTrials.Gov [Internet]. [cited 2023 Nov 15]. Available from: https://clinicaltrials.gov/study/NCT01984983?tab=table.
  • A phase II trial to assess the Safety and immunogenicity of DNA priming administered by the ID Zetajet® with or without ID derma VaxTM electroporation followed by IM MVA boosting in healthy volunteers in Tanzania and Mozambique | ClinicalTrials.Gov [Internet]. [cited 2023 Nov 15]. Available from: https://clinicaltrials.gov/study/NCT01697007?tab=table.
  • Evaluating the Safety of and immune response to an HIV vaccine followed by booster, administered by two devices, in HIV-Uninfected adults | ClinicalTrials.Gov [Internet]. [cited 2023 Nov 15]. Available from: https://clinicaltrials.gov/study/NCT01260727.
  • A study of DNA vaccine with electroporation for the prevention of disease caused by H1 and H5 influenza virus | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6]. Available from: https://clinicaltrials.gov/study/NCT01405885?tab=table.
  • Study of PENNVAXTM-B (gag, Pol, Env) + electroporation in HIV-1 infected Adult participants | ClinicalTrials.Gov [Internet]. [cited 2023 Nov 15]. Available from: https://clinicaltrials.gov/study/NCT01082692?tab=table.
  • Study of VGX-3400X, H5N1 avian influenza virus DNA plasmid + electroporation in healthy adults | ClinicalTrials.Gov [Internet]. [cited 2023 Nov 15]. Available from: https://clinicaltrials.gov/study/NCT01142362.
  • Alter G, Yu J, Liu J, et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. 2021;596(7871):268–272. doi: 10.1038/s41586-021-03681-2
  • Martin JE, Sullivan NJ, Enama ME, et al. A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial. Clin Vaccin Immunol. 2006;13(11):1267–1277. doi: 10.1128/CVI.00162-06
  • Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet. 2020;396(10262):1595–1606. doi: 10.1016/S0140-6736(20)32137-1
  • Haidari G, Day S, Wood M, et al. The Safety and immunogenicity of GTU®MultiHIV DNA vaccine delivered by Transcutaneous and intramuscular injection with or without electroporation in HIV-1 positive subjects on suppressive ART. Front Immunol. 2019;10:10. doi: 10.3389/fimmu.2019.02911
  • Therapeutic vaccination in treated HIV disease | ClinicalTrials.Gov [Internet]. [cited 2023 Oct 6]. Available from: https://clinicaltrials.gov/study/NCT03606213?a=12.
  • Hettinga J, Carlisle R. Vaccination into the dermal compartment: Techniques, challenges, and prospects. Vaccines (Basel). 2020;8(3):534. doi: 10.3390/vaccines8030534
  • Roos AK, Eriksson F, Timmons JA, et al. Skin electroporation: Effects on transgene expression, DNA persistence and local tissue environment. PLoS One. 2009;4(9):4. doi: 10.1371/journal.pone.0007226
  • Kisakov DN, Kisakova LA, Borgoyakova MB, et al. Optimization of in vivo electroporation conditions and delivery of DNA vaccine encoding SARS-CoV-2 RBD using the determined protocol. Pharmaceutics. 2022;14(11):14. doi: 10.3390/pharmaceutics14112259
  • Fusco R, Di Bernardo E, D’Alessio V, et al. Reduction of muscle contraction and pain in electroporation-based treatments: an overview. World J Clin Oncol. 2021;12(5):367–381. doi: 10.5306/wjco.v12.i5.367
  • Petkov S, Kilpeläinen A, Bayurova E, et al. HIV-1 protease as DNA immunogen against Drug resistance in HIV-1 infection: DNA Immunization with Drug resistant HIV-1 protease protects mice from challenge with protease-expressing cells. Cancers (Basel). 2022;15(1):15. doi: 10.3390/cancers15010238
  • Lambert L, Kinnear E, McDonald JU, et al. DNA vaccines encoding antigen targeted to MHC class II induce influenza-specific CD8+ T cell responses, enabling faster resolution of influenza disease. Front Immunol. 2016;7: doi: 10.3389/fimmu.2016.00321
  • Chen J, Huang B, Deng Y, et al. Synergistic immunity and protection in mice by co-immunization with DNA vaccines encoding the spike protein and other structural proteins of SARS-CoV-2. Vaccines (Basel). 2023;11(2):11. doi: 10.3390/vaccines11020243
  • Guan J, Deng Y, Chen H, et al. Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice. Arch Virol. 2015;160(10):2517–2524. doi: 10.1007/s00705-015-2535-7
  • Tretyakova I, Hearn J, Wang E, et al. DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice. J Infect Dis. 2014;209(12):1882–1890. doi: 10.1093/infdis/jiu114
  • Chai KM, Tzeng TT, Shen KY, et al. DNA vaccination induced protective immunity against sars cov-2 infection in hamsterss. PLoS Negl Trop Dis. 2021;15(5):15. doi: 10.1371/journal.pntd.0009374
  • Dormeshkin D, Katsin M, Stegantseva M, et al. Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines (Basel). 2023;11(6):11. doi: 10.3390/vaccines11061014
  • Choi H, Kudchodkar SB, Reuschel EL, et al. Protective immunity by an engineered DNA vaccine for Mayaro virus. PLoS Negl Trop Dis. 2019;13(2):e0007042. doi: 10.1371/journal.pntd.0007042
  • Zhao G, Zhang Z, Ding Y, et al. A DNA vaccine encoding the full-length spike protein of beta variant (B.1.351) elicited broader cross-reactive immune responses against other SARS-CoV-2 variants. Vaccines (Basel). 2023;11(3):11. doi: 10.3390/vaccines11030513
  • Choi H, Kudchodkar SB, Ho M, et al. A novel synthetic DNA vaccine elicits protective immune responses against Powassan virus. PLoS Negl Trop Dis. 2020;14(10):14. doi: 10.1371/journal.pntd.0008788
  • Muthumani K, Griffin BD, Agarwal S, et al. In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMenv DNA vaccine. NPJ Vaccin. 2016;1(1):1. doi: 10.1038/npjvaccines.2016.21
  • Babuadze GG, Fausther-Bovendo H, de LaVega MA, et al. Two DNA vaccines protect against severe disease and pathology due to SARS-CoV-2 in Syrian hamsters. NPJ Vaccin. 2022;7(1). doi: 10.1038/s41541-022-00461-5
  • Muthumani K, Wise MC, Broderick KE, et al. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo. PLoS One. 2013;8(12):e84234. doi: 10.1371/journal.pone.0084234
  • Jiang J, Ramos SJ, Bangalore P, et al. Integration of needle-free jet injection with advanced electroporation delivery enhances the magnitude, kinetics, and persistence of engineered DNA vaccine induced immune responses. Vaccine. 2019;37(29):3832–3839. doi: 10.1016/j.vaccine.2019.05.054
  • Patel A, Reuschel EL, Kraynyak KA, et al. Protective efficacy and long-term immunogenicity in cynomolgus macaques by Ebola virus glycoprotein synthetic DNA vaccines. J Infect Dis. 2019;219(4):544–555. doi: 10.1093/infdis/jiy537
  • Cashman KA, Wilkinson ER, Shaia CI, et al. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Hum Vaccin Immunother. 2017;13(12):2902–2911. doi: 10.1080/21645515.2017.1356500
  • Hirao LA, Draghia-Akli R, Prigge JT, et al. Multivalent smallpox DNA vaccine delivered by intradermal electroporation drives protective immunity in nonhuman primates against lethal monkeypox challenge. J Infect Dis. 2011;203(1):95–102. doi: 10.1093/infdis/jiq017
  • Jiang J, Banglore P, Cashman KA, et al. Immunogenicity of a protective intradermal DNA vaccine against Lassa virus in cynomolgus macaques. Hum Vaccin Immunother. 2019;15(9):2066–2074. doi: 10.1080/21645515.2019.1616499
  • Xie P, Li Y, Li Y, et al. Immune effect of a Newcastle disease virus DNA vaccine with IL-12 as a molecular adjuvant delivered by electroporation. Arch Virol. 2020;165(9):1959–1968. doi: 10.1007/s00705-020-04669-5
  • Sheng Z, Chen H, Feng K, et al. Electroporation-mediated Immunization of a candidate DNA vaccine expressing Dengue virus serotype 4 prM-E antigen confers long-term protection in mice. Virol Sin. 2019;34(1):88–96. doi: 10.1007/s12250-019-00090-8
  • Sheng Z, Gao N, Cui X, et al. Electroporation enhances protective immune response of a DNA vaccine against Japanese encephalitis in mice and pigs. Vaccine. 2016;34(47):5751–5757. doi: 10.1016/j.vaccine.2016.10.001
  • Chen H, Zheng X, Wang R, et al. Immunization with electroporation enhances the protective effect of a DNA vaccine candidate expressing prME antigen against dengue virus serotype 2 infection. Clin Immunol. 2016;171:41–49. doi: 10.1016/j.clim.2016.08.021
  • Prompetchara E, Ketloy C, Keelapang P, et al. Induction of neutralizing antibody response against four dengue viruses in mice by intramuscular electroporation of tetravalent DNA vaccines. PLoS One. 2014;9(6):e92643. doi: 10.1371/journal.pone.0092643
  • Prompetchara E, Ketloy C, Tharakhet K, et al. DNA vaccine candidate encoding SARS-CoV-2 spike proteins elicited potent humoral and Th1 cell-mediated immune responses in mice. PLoS One. 2021;16(3):e0248007. doi: 10.1371/journal.pone.0248007
  • Mucker EM, Golden JW, Hammerbeck CD, et al. A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5, and A33 proteins protects rabbits against lethal rabbitpox virus aerosol challenge. J Virol. 2022;96(3). doi: 10.1128/JVI.01504-21
  • De PD, Van GE, Chen A, et al. A therapeutic hepatitis b virus DNA vaccine induces specific immune responses in mice and non-human primates. Vaccines (Basel). 2021;9(9):969. doi: 10.3390/vaccines9090969
  • Cashman K, Broderick K, Wilkinson E, et al. Enhanced efficacy of a codon-optimized DNA vaccine encoding the glycoprotein precursor gene of Lassa virus in a Guinea pig disease model when delivered by Dermal Electroporation. Vaccines (Basel). 2013;1(3):262–277. doi: 10.3390/vaccines1030262
  • Martins M, Do Nascimento GM, Conforti A, et al. A linear SARS-CoV-2 DNA vaccine candidate reduces virus shedding in ferrets. Arch Virol. 2023;168(4):168. doi: 10.1007/s00705-023-05746-1
  • Hawman DW, Ahlén G, Appelberg KS, et al. A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a cynomolgus macaque model. Nat Microbiol. 2020;6(2):187–195. doi: 10.1038/s41564-020-00815-6
  • Ivory C, Chadee K. DNA vaccines: designing strategies against parasitic infections. Genet Vaccines Ther. 2004;2(1):17. doi: 10.1186/1479-0556-2-17
  • Jain S, Afley P, Dohre SK, et al. Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice. Vaccine. 2014;32(35):4537–4542. doi: 10.1016/j.vaccine.2014.06.012
  • Cao Y, Hayashi CTH, Zavala F, et al. Effective functional immunogenicity of a DNA vaccine combination delivered via in vivo electroporation targeting malaria infection and transmission. Vaccines (Basel). 2022;10(7):10. doi: 10.3390/vaccines10071134
  • Kim NY, Chang DS, Kim Y, et al. Enhanced immune response to DNA vaccine encoding Bacillus anthracis PA-D4 protects mice against anthrax spore challenge. PLoS One. 2015;10(10):10. doi: 10.1371/journal.pone.0139671
  • Ferraro B, Talbott KT, Balakrishnan A, et al. Inducing humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using exogenous plasmid DNA. Infect Immun. 2013;81(10):3709–3720. doi: 10.1128/IAI.00180-13
  • Vijayachari P, Vedhagiri K, Mallilankaraman K, et al. Immunogenicity of a novel enhanced consensus DNA vaccine encoding the leptospiral protein LipL45. Hum Vaccin Immunother. 2015;11(8):1945–1953. doi: 10.1080/21645515.2015.1047117
  • Liang Y, Cui L, Xiao L, et al. Immunotherapeutic effects of different doses of Mycobacterium tuberculosis ag85a/b DNA vaccine delivered by Electroporation. Front Immunol. 2022;13: doi: 10.3389/fimmu.2022.876579
  • Datta D, Bansal GP, Gerloff DL, et al. Immunogenicity and malaria transmission reducing potency of Pfs48/45 and Pfs25 encoded by DNA vaccines administered by intramuscular electroporation. Vaccine. 2017;35(2):264–272. doi: 10.1016/j.vaccine.2016.11.072
  • Datta D, Bansal GP, Kumar R, et al. Evaluation of the impact of codon optimization and N-linked glycosylation on functional immunogenicity of Pfs25 DNA vaccines delivered by in vivo electroporation in preclinical studies in mice. Clin Vaccin Immunol. 2015;22(9):1013–1019. doi: 10.1128/CVI.00185-15
  • Kumar R, Nyakundi R, Kariuki T, et al. Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons. Vaccine. 2013;31(31):3140–3147. doi: 10.1016/j.vaccine.2013.05.006
  • Donate A, Heller R. Assessment of delivery parameters with the multi-electrode array for development of a DNA vaccine against Bacillus anthracis. Bioelectrochemistry. 2013;94:1–6. doi: 10.1016/j.bioelechem.2013.04.004
  • Broderick KE, Humeau LM. Electroporation-enhanced delivery of nucleic acid vaccines. Expert Rev Vaccines. 2015;14(2):195–204. doi: 10.1586/14760584.2015.990890