2,889
Views
0
CrossRef citations to date
0
Altmetric
Review

Multiple antigen presenting system (MAPS): state of the art and potential applications

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 196-204 | Received 30 Sep 2023, Accepted 21 Dec 2023, Published online: 08 Jan 2024

References

  • Bonanni P, Santos JI. Vaccine evolution. Perspect Vaccin. 2011;1(1):1–24. doi: 10.1016/j.pervac.2011.05.001
  • World Health Organization. Vaccines and immunization. [cited 2023 Jun 20]. Available from: https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1
  • Brice Y, Morgan L, Kirmani M, et al. COVID-19 vaccine evolution and beyond. Neurosci Insights. 2023;18:26331055231180543. doi: 10.1177/26331055231180543
  • Lofano G, Mallett CP, Bertholet S, et al. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines. 2020;5(1):88. doi: 10.1038/s41541-020-00238-8
  • Piot P, Larson HJ, O’Brien KL, et al. Immunization: vital progress, unfinished agenda. Nature. 2019;575(7781):119–129. doi: 10.1038/s41586-019-1656-7
  • Soni D, Bobbala S, Li S, et al. The sixth revolution in pediatric vaccinology: immunoengineering and delivery systems. Pediatr Res. 2021;89(6):1364–1372. doi: 10.1038/s41390-020-01112-y
  • Zhang F, Lu YJ, Malley R. Multiple antigen-presenting system (MAPS) to induce comprehensive B- and T-cell immunity. Proc Natl Acad Sci U S A. 2013;110(33):13564–13569.
  • Vesikari T, Sadzot-Delvaux C, Rentier B, et al. Increasing coverage and efficiency of measles, mumps, and rubella vaccine and introducing universal varicella vaccination in Europe: a role for the combined vaccine. Pediatr Infect Dis J. 2007;26(7):632–638. doi: 10.1097/INF.0b013e3180616c8f
  • Austrian R. A brief history of pneumococcal vaccines. Drugs Aging. 1999;15(Supplement 1):1–10. doi: 10.2165/00002512-199915001-00001
  • Briles DE, Paton JC, Mukerji R, et al. Pneumococcal vaccines. Microbiol Spectr. 2019;7(6). doi: 10.1128/microbiolspec.GPP3-0028-2018
  • Oliveira GS, Oliveira MLS, Miyaji EN, et al. Pneumococcal vaccines: past findings, present work, and future strategies. Vaccines. 2021;9(11):1338. doi: 10.3390/vaccines9111338
  • Centers for Disease Control and Prevention. Pneumococcal Polysaccharide VIS. [cited 2023 Nov 23]. Available from: https://www.cdc.gov/vaccines/hcp/vis/vis-statements/ppv.html
  • Daniels CC, Rogers PD, Shelton CM. A Review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J Pediatr Pharmacol Ther. 2016;21(1):27–35. doi: 10.5863/1551-6776-21.1.27
  • Rappuoli R. Glycoconjugate vaccines: Principles and mechanisms. Sci Transl Med. 2018;10(456):eaat4615. doi: 10.1126/scitranslmed.aat4615
  • Rappuoli R, De Gregorio E, Costantino P. On the mechanisms of conjugate vaccines. Proc Natl Acad Sci U S A. 2019;116(1):14–16. doi: 10.1073/pnas.1819612116
  • Pollard AJ, Perrett KP, Beverley PC. Maintaining protection against invasive bacteria with protein–polysaccharide conjugate vaccines. Nat Rev Immunol. 2009;9(3):213–220. doi: 10.1038/nri2494
  • Andrews NJ, Waight PA, Burbidge P, et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect Dis. 2014;14(9):839–846. doi: 10.1016/S1473-3099(14)70822-9
  • Cannon K, Cardona JF, Yacisin K, et al. Safety and immunogenicity of a 20-valent pneumococcal conjugate vaccine coadministered with quadrivalent influenza vaccine: a phase 3 randomized trial. Vaccine. 2023;41(13):2137–2146. doi: 10.1016/j.vaccine.2022.11.046
  • Food and Drug Administration. Vaxneuvance. [cited 2023 Jul 28]. Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/vaxneuvance
  • Food and Drug Administration. Prevnar 20. [cited 2023 Jul 28]. Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/prevnar-20
  • Rupp R, Hurley D, Grayson S, et al. A dose ranging study of 2 different formulations of 15-valent pneumococcal conjugate vaccine (PCV15) in healthy infants. Hum Vaccin Immunother. 2019;15(3):549–559. doi: 10.1080/21645515.2019.1568159
  • Stacey HL, Rosen J, Peterson JT, et al. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV-15) compared to PCV-13 in healthy older adults. Hum Vaccin Immunother. 2019;15(3):530–539. doi: 10.1080/21645515.2018.1532249
  • Bazhenova A, Gao F, Bolgiano B, et al. Glycoconjugate vaccines against Salmonella enterica serovars and shigella species: existing and emerging methods for their analysis. Biophys Rev. 2021;13(2):221–246. doi: 10.1007/s12551-021-00791-z
  • Crum-Cianflone N, Sullivan E. Meningococcal vaccinations. Infect Dis Ther. 2016;5(2):89–112. doi: 10.1007/s40121-016-0107-0
  • Løchen A, Croucher NJ, Anderson RM. Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Sci Rep. 2020;10(1):18977. doi: 10.1038/s41598-020-75691-5
  • Kwun MJ, Ion AV, Cheng H-C, et al. Post-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA. Genome Med. 2022;14(1):144. doi: 10.1186/s13073-022-01147-2
  • Moffitt KL, Malley R. Next generation pneumococcal vaccines. Curr Opin Immunol. 2011;23(3):407–413. doi: 10.1016/j.coi.2011.04.002
  • UNICEF. Immunization. [cited 2023 Jun 20]. Available from: https://data.unicef.org/topic/child-health/immunization/#status
  • World Health Organization. Immunization coverage. [cited 2023 Jun 20]. Available from: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage
  • Colloca S, Barnes E, Folgori A, et al. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci Transl Med. 2012;4(115):115ra112. doi: 10.1126/scitranslmed.3002925
  • Gilbert SC, Warimwe GM. Rapid development of vaccines against emerging pathogens: the replication-deficient simian adenovirus platform technology. Vaccine. 2017;35(35):4461–4464. doi: 10.1016/j.vaccine.2017.04.085
  • Pinschewer DD. Virally vectored vaccine delivery: medical needs, mechanisms, advantages and challenges. Swiss Med Wkly. 2017;147:w14465.
  • Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol Ther. 2004;10(4):616–629. doi: 10.1016/j.ymthe.2004.07.013
  • Park JW, Lagniton PNP, Liu Y, et al. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci. 2021;17(6):1446–1460. doi: 10.7150/ijbs.59233
  • Ulmer JB, Mansoura MK, Geall AJ. Vaccines ‘on demand’: science fiction or a future reality. Expert Opin Drug Discov. 2015;10(2):101–106. doi: 10.1517/17460441.2015.996128
  • Pulendran B, Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454–475. doi: 10.1038/s41573-021-00163-y
  • Harding CM, Feldman MF. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology. 2019;29(7):519–529. doi: 10.1093/glycob/cwz031
  • Kämpf MM, Braun M, Sirena D, et al. In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microb Cell Fact. 2015;14(1):12. doi: 10.1186/s12934-015-0195-7
  • Romano MR, Berti F, Rappuoli R. Classical- and bioconjugate vaccines: comparison of the structural properties and immunological response. Curr Opin Immunol. 2022;78:102235. doi: 10.1016/j.coi.2022.102235
  • Micoli F, MacLennan CA. Outer membrane vesicle vaccines. Semin Immunol. 2020;50:101433. doi: 10.1016/j.smim.2020.101433
  • Piccioli D, Bartolini E, Micoli F. GMMA as a ‘plug and play’ technology to tackle infectious disease to improve global health: context and perspectives for the future. Expert Rev Vaccines. 2022;21(2):163–172. doi: 10.1080/14760584.2022.2009803
  • Tennant SM, MacLennan CA, Simon R, et al. Nontyphoidal salmonella disease: Current status of vaccine research and development. Vaccine. 2016;34(26):2907–2910. doi: 10.1016/j.vaccine.2016.03.072
  • Zhang F, Thompson C, Ma N, et al. Carrier proteins facilitate the generation of antipolysaccharide immunity via multiple mechanisms. MBio. 2022;13(3):e0379021. doi: 10.1128/mbio.03790-21
  • Lesch HP, Kaikkonen MU, Pikkarainen JT, et al. Avidin-biotin technology in targeted therapy. Expert Opin Drug Deliv. 2010;7(5):551–564. doi: 10.1517/17425241003677749
  • Besin G, Stevenson T, Malley R, et al. Synergistic protective effect of antibodies against polysaccharide type 3 and pneumococcal proteins in a highly virulent type 3 invasive disease model in mice (abstract 360/#606). Toronto (Canada): ISPPD; 2022. Available from: https://info.kenes.com/flip/isppd22/
  • Boerth EM, Gong J, Roffler B, et al. Induction of broad immunity against invasive salmonella disease by a quadrivalent combination salmonella MAPS vaccine targeting Salmonella Enterica serovars typhimurium, enteritidis, typhi, and paratyphi a. Vaccines. 2023;11(11):1671. doi: 10.3390/vaccines11111671
  • Boerth EM, Zhang F, Gong J, et al. A MAPS Vaccine Against Shigella Flexneri 2a, 3a, And 6 And Shigella Sonnei (Abstract ADJ08). Vaccines Against Shigella and ETEC (VASE) Conference; Washington (DC); 2022. Available from: https://custom.cvent.com/6DCDF4E0CF23495C882F4A5114961CE5/files/event/7f7e0f2602e8495e86b26300e082e0c5/3eea70d0ecf3455b9c29d204ad5c9d3a.pdf
  • Chichili GR, Smulders R, Santos V, et al. Phase 1/2 study of a novel 24-valent pneumococcal vaccine in healthy adults aged 18 to 64 years and in older adults aged 65 to 85 years. Vaccine. 2022;40(31):4190–4198. doi: 10.1016/j.vaccine.2022.05.079
  • Cieslewicz B, Makrinos D, Burke H, et al. Preclinical immunogenicity and efficacy of a Multiple Antigen-Presenting System (MAPSTM) SARS-CoV-2 vaccine. Vaccines. 2022;10(7):1069. doi: 10.3390/vaccines10071069
  • O’Hara JM, Wakabayashi S, Siddiqi N, et al. A MAPS vaccine induces multipronged systemic and tissue-resident cellular responses and protects mice against mycobacterium tuberculosis. MBio. 2023;14(1):e0361122. doi: 10.1128/mbio.03611-22
  • Zhang F, Boerth EM, Gong J, et al. A bivalent MAPS vaccine induces protective antibody responses against salmonella typhi and paratyphi A. Vaccines. 2022;11(1):91. doi: 10.3390/vaccines11010091
  • Zhang F, Ledue O, Jun M, et al. Protection against staphylococcus aureus colonization and infection by B- and T-Cell-mediated mechanisms. MBio. 2018;9(5):e01949–01918. doi: 10.1128/mBio.01949-18
  • Helppolainen SH, Nurminen KP, Määttä JAE, et al. Rhizavidin from Rhizobium etli: the first natural dimer in the avidin protein family. Biochem J. 2007;405(3):397–405. doi: 10.1042/BJ20070076
  • Malley R. Glycoconjugates and MAPS. World vaccine congress; Washington (DC), USA; 2023.