1,152
Views
0
CrossRef citations to date
0
Altmetric
Meta-analysis

Comparing reactogenicity of COVID-19 vaccine boosters: a systematic review and meta-analysis

ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 266-282 | Received 29 Jun 2023, Accepted 02 Feb 2024, Published online: 26 Feb 2024

References

  • World Health Organisation. WHO Coronavirus (COVID-19) Dashboard [Internet]. [cited 2023 Apr 26]. Available from: https://covid19.who.int/
  • Watson OJ, Barnsley G, Toor J, et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022;22(9):1293–1302. doi: 10.1016/S1473-3099(22)00320-6
  • World Health Organisation. COVID-19 vaccine tracker and landscape [internet]. [cited 2023 Apr 26]. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  • UNICEF. COVID-19 Market Dashboard [Internet]. [cited 2023 Apr 26]. Available from: https://www.unicef.org/supply/covid-19-market-dashboard
  • Sutton N, San Francisco Ramos A, Beales E, et al. Comparing reactogenicity of COVID-19 vaccines: a systematic review and meta-analysis. Expert Rev Vaccines. 2022;21(9):1301–1318. doi: 10.1080/14760584.2022.2098719
  • Shaw RH, Stuart A, Greenland M, et al. Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data. Lancet. 2021;397(10289):2043–2046. doi: 10.1016/S0140-6736(21)01115-6
  • Atmar RL, Lyke KE, Deming ME, et al. Homologous and heterologous COVID-19 booster vaccinations. N Engl J Med. 2022;386(11):1046–1057. doi: 10.1056/NEJMoa2116414
  • Nordström P, Ballin M, Nordström A. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic covid-19 infection in Sweden: a nationwide cohort study. Lancet Reg Health Eur. 2021;11:100249. doi: 10.1016/j.lanepe.2021.100249
  • Goncu Ayhan S, Oluklu D, Atalay A, et al. COVID‐19 vaccine acceptance in pregnant women. Int J Gynecol Obst. 2021;154(2):291–296. doi: 10.1002/ijgo.13713
  • Patterson L, Berry E, Parsons C, et al. Using the COM-B framework to elucidate facilitators and barriers to COVID-19 vaccine uptake in pregnant women: a qualitative study. BMC Pregnancy Childbirth. 2023;23(1):640. doi: 10.1186/s12884-023-05958-y
  • Tse A, Tseng HF, Greene SK, et al. Signal identification and evaluation for risk of febrile seizures in children following trivalent inactivated influenza vaccine in the vaccine safety datalink project, 2010–2011. Vaccine. 2012;30(11):2024–2031. doi: 10.1016/j.vaccine.2012.01.027
  • Duffy J, Hambidge SJ, Jackson LA, et al. Febrile seizure risk after vaccination in children one to five months of age. Pediatr Neurol. 2017;76:72–78. doi: 10.1016/j.pediatrneurol.2017.08.005
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):89. doi: 10.1186/s13643-021-01626-4
  • Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. doi: 10.1186/s13643-016-0384-4
  • Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019:l4898. doi: 10.1136/bmj.l4898
  • Rohatgi A. WebPlotdigitizer [Internet]. [cited 2023 Apr 26]. Available from: https://automeris.io/WebPlotDigitizer
  • Higgins JPT, Thomas J, Chandler J, (editors). Cochrane handbook for systematic reviews of interventions version 6.4 (updated August 2023). Cochrane; 2023.
  • Mathieu E, Ritchie H, Rodés-Guirao L, et al. Coronavirus pandemic (COVID-19) [internet]. Our World In Data. 2020 [cited 2023 Apr 26]. Available from: https://ourworldindata.org/coronavirus
  • Higgins JPT. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557
  • Chowdhury MZI, Turin TC. Variable selection strategies and its importance in clinical prediction modelling. Fam Med Com Health. 2020;8(1):8. doi: 10.1136/fmch-2019-000262
  • Ahi M, Hamidi Farahani R, Basiri P, et al. Comparison of the safety and immunogenicity of FAKHRAVAC and BBIBP-CorV vaccines when administrated as booster dose: a parallel two arms, randomized, double blind clinical trial. Vaccines (Basel) [Internet]. 2022;10(11):1800. doi: 10.3390/vaccines10111800
  • Hall VG, Ferreira VH, Ku T, et al. Randomized trial of a third dose of mRNA-1273 vaccine in transplant recipients. N Engl J Med [Internet]. 2021;385(13):1244–1246. doi: 10.1056/NEJMc2111462
  • Hannawi S, Saifeldin L, Abuquta A, et al. Safety and immunogenicity of a bivalent SARS-CoV-2 protein booster vaccine, SCTV01C, in adults previously vaccinated with mRNA vaccine: a randomized, double-blind, placebo-controlled phase 1/2 clinical trial. EBioMedicine [Internet]. 2023;87:104386. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352396422005680
  • Kumar D, Ferreira VH, Hall VG, et al. Neutralization of SARS-CoV-2 variants in transplant recipients after two and three doses of mRNA-1273 vaccine. Ann Intern Med [Internet]. 2022;175(2):226–233. doi: 10.7326/M21-3480
  • Moreira ED, Kitchin N, Xu X, et al. Safety and efficacy of a third dose of BNT162b2 covid-19 vaccine. N Engl J Med [Internet]. 2022;386(20):1910–1921. doi: 10.1056/NEJMoa2200674
  • Reindl-Schwaighofer R, Heinzel A, Mayrdorfer M, et al. Comparison of SARS-CoV-2 antibody response 4 weeks after homologous vs heterologous third vaccine dose in kidney transplant recipients. JAMA Intern Med [Internet]. 2022;182(2):165. doi: 10.1001/jamainternmed.2021.7372
  • Tabarsi P, Anjidani N, Shahpari R, et al. Immunogenicity and safety of spikoGen®, an adjuvanted recombinant SARS‐CoV‐2 spike protein vaccine as a homologous and heterologous booster vaccination: a randomized placebo‐controlled trial. Immunology [Internet]. 2022;167(3):340–353. doi: 10.1111/imm.13540
  • Wang XY, Mahmood SF, Jin F, et al. Efficacy of heterologous boosting against SARS-CoV-2 using a recombinant interferon-armed fusion protein vaccine (V-01): a randomized, double-blind and placebo-controlled phase III trial. Emerg Microbes Infect. 2022;11(1):1910–1919. doi: 10.1080/22221751.2022.2088406
  • Mok CKP, Chen C, Yiu K, et al. A randomized clinical trial using CoronaVac or BNT162b2 vaccine as a third dose in adults vaccinated with two doses of CoronaVac. Am J Respir Crit Care Med [Internet]. 2022;205(7):844–847. doi: 10.1164/rccm.202111-2655LE
  • Intapiboon P, Seepathomnarong P, Ongarj J, et al. Immunogenicity and safety of an intradermal BNT162b2 mRNA vaccine booster after two doses of inactivated SARS-CoV-2 vaccine in healthy population. Vaccines (Basel) [Internet]. 2021;9(12):1375. doi: 10.3390/vaccines9121375
  • Shinkai M, Sonoyama T, Kamitani A, et al. Immunogenicity and safety of booster dose of S-268019-b or BNT162b2 in Japanese participants: an interim report of phase 2/3, randomized, observer-blinded, noninferiority study. Vaccine [Internet]. 2022;40(32):4328–4333. doi: 10.1016/j.vaccine.2022.06.032
  • Nantanee R, Jantarabenjakul W, Jaru-Ampornpan P, et al. A randomized clinical trial of a fractional low dose of BNT162b2 booster in adults following AZD1222. Vaccines (Basel) [Internet]. 2022;10(6):914. doi: 10.3390/vaccines10060914
  • Launay O, Cachanado M, Luong Nguyen LB, et al. Immunogenicity and safety of beta-adjuvanted recombinant booster vaccine. N Engl J Med [Internet]. 2022;387(4):374–376. doi: 10.1056/NEJMc2206711
  • Munro APS, Feng S, Janani L, et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial. Lancet Infect Dis [Internet]. 2022;22(8):1131–1141. doi: 10.1016/S1473-3099(22)00271-7
  • Poh XY, Tan CW, Lee IR, et al. Antibody response of heterologous vs homologous messenger RNA vaccine boosters against the severe acute respiratory syndrome coronavirus 2 omicron variant: interim results from the PRIBIVAC study, a randomized clinical trial. Clinl Infect Dis [Internet]. 2022;75(12):2088–2096. doi: 10.1093/cid/ciac345
  • Bonelli M, Mrak D, Tobudic S, et al. Additional heterologous versus homologous booster vaccination in immunosuppressed patients without SARS-CoV-2 antibody seroconversion after primary mRNA vaccination: a randomised controlled trial. Ann Rheum Dis [Internet]. 2022;81(5):687–694. doi: 10.1136/annrheumdis-2021-221558
  • Munro APS, Janani L, Cornelius V, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet [Internet]. 2021;398(10318):2258–2276. doi: 10.1016/S0140-6736(21)02717-3
  • Costa Clemens SA, Weckx L, Clemens R, et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet [Internet]. 2022;399(10324):521–529. doi: 10.1016/S0140-6736(22)00094-0
  • Chuang C-H, Huang C-G, Huang C-T, et al. Titers and breadth of neutralizing antibodies against SARS-CoV-2 variants after heterologous booster vaccination in health care workers primed with two doses of ChAdOx1 nCov-19: a single-blinded, randomized clinical trial. J Clin Virol [Internet]. 2022;157:105328. doi: 10.1016/j.jcv.2022.105328
  • Mallory RM, Formica N, Pfeiffer S, et al. Safety and immunogenicity following a homologous booster dose of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373): a secondary analysis of a randomised, placebo-controlled, phase 2 trial. Lancet Infect Dis [Internet]. 2022;22(11):1565–1576. doi: 10.1016/S1473-3099(22)00420-0
  • Zhang Y, Ma X, Yan G, et al. Immunogenicity, durability, and safety of an mRNA and three platform-based COVID-19 vaccines as a third dose following two doses of CoronaVac in China: a randomised, double-blinded, placebo-controlled, phase 2 trial. EClinicalMedicine [Internet]. 2022;54:101680. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589537022004102
  • Jin P, Guo X, Chen W, et al. Safety and immunogenicity of heterologous boost immunization with an adenovirus type-5-vectored and protein-subunit-based COVID-19 vaccine (convidecia/ZF2001): a randomized, observer-blinded, placebo-controlled trial. Beeson JG, editor. PLoS Med [Internet]. 2022;19(5):e1003953. doi: https://doi.org/10.1371/journal.pmed.1003953
  • Al Kaabi N, Yang YK, Du LF, et al. Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients in a randomized phase 2 trial. Nat Commun [Internet]. 2022;13(1):3654. doi: 10.1038/s41467-022-31379-0
  • Li J, Hou L, Guo X, et al. Heterologous AD5-nCOV plus CoronaVac versus homologous CoronaVac vaccination: a randomized phase 4 trial. Nat Med [Internet]. 2022;28(2):401–409. doi: 10.1038/s41591-021-01677-z
  • Nanthapisal S, Puthanakit T, Jaru-Ampornpan P, et al. A randomized clinical trial of a booster dose with low versus standard dose of AZD1222 in adult after 2 doses of inactivated vaccines. Vaccine [Internet]. 2022;40(18):2551–2560. doi: 10.1016/j.vaccine.2022.03.036
  • Omma A, Batirel A, Aydin M, et al. Safety and immunogenicity of inactive vaccines as booster doses for COVID-19 in Türkiye: a randomized trial. Hum Vaccin Immunother [Internet]. 2022;18(6). doi: 10.1080/21645515.2022.2122503
  • Sablerolles RSG, Rietdijk WJR, Goorhuis A, et al. Immunogenicity and reactogenicity of vaccine boosters after Ad26.COV2.S Priming. N Engl J Med [Internet]. 2022;386(10):951–963. doi: 10.1056/NEJMoa2116747
  • Zhang Z, He Q, Zhao W, et al. A heterologous V-01 or variant-matched bivalent V-01D-351 booster following primary series of inactivated vaccine enhances the neutralizing capacity against SARS-CoV-2 delta and omicron strains. J Clin Med. 2022;11(14):11. doi: 10.3390/jcm11144164
  • Graña C, Ghosn L, Evrenoglou T, et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev. John Wiley and Sons Ltd; 2022.
  • Petrelli F, Luciani A, Borgonovo K, et al. Third dose of SARS-CoV-2 vaccine: a systematic review of 30 published studies. J Med Virol. 2022;94(6):2837–2844. doi: 10.1002/jmv.27644
  • Deng J, Ma Y, Liu Q, et al. Comparison of the effectiveness and safety of heterologous booster doses with homologous booster doses for SARS-CoV-2 vaccines: a systematic review and meta-analysis. Int J Environ Res Public Health MDPI. 2022;19(17):10752. doi: 10.3390/ijerph191710752
  • Office for National Statistics (ONS). COVID-19 vaccine refusal, UK: February to March 2021. [Internet] 2021 [cited 2023 Dec 18]. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/bulletins/covid19vaccinerefusaluk/februarytomarch2021#main-themes-for-concern-about-or-unwillingness-to-receive-a-covid-19-vaccine
  • Mayr FB, Talisa VB, Shaikh O, et al. Effectiveness of homologous or heterologous COVID-19 boosters in veterans. N Engl J Med. 2022;386(14):1375–1377. doi: 10.1056/NEJMc2200415
  • Chalkias S, Harper C, Vrbicky K, et al. A bivalent omicron-containing booster vaccine against COVID-19. N Engl J Med. 2022;387(14):1279–1291. doi: 10.1056/NEJMoa2208343
  • Thompson SG, Higgins JPT. How should meta‐regression analyses be undertaken and interpreted? Stat Med. 2002;21(11):1559–1573. doi: 10.1002/sim.1187
  • Melander H, Ahlqvist-Rastad J, Meijer G, et al. Evidence b(i)ased medicine–selective reporting from studies sponsored by pharmaceutical industry: review of studies in new drug applications. BMJ [Internet]. 2003;326(7400):1171–1173. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.326.7400.1171
  • Bonhoeffer J, Kohl K, Chen R, et al. The brighton collaboration: addressing the need for standardized case definitions of adverse events following immunization (AEFI). Vaccine. 2002;21(3–4):298–302. doi: 10.1016/S0264-410X(02)00449-8