1,576
Views
0
CrossRef citations to date
0
Altmetric
Review

The mRNA vaccine, a swift warhead against a moving infectious disease target

&
Pages 336-348 | Received 11 Sep 2023, Accepted 14 Feb 2024, Published online: 01 Mar 2024

References

  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949):1465–1468. doi: 10.1126/science.1690918
  • Pantaleo G, Janes H, Karuna S, et al. Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): a phase 1b, double-blind, placebo-controlled trial. Lancet HIV. 2019;6(11):e737–e749. doi: 10.1016/S2352-3018(19)30262-0
  • Pandya A, Shah Y, Kothari N, et al. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol. 2023;40(7):200. doi: 10.1007/s12032-023-02060-3
  • Hobernik D, Bros M. DNA vaccines—how far from clinical use? Int J Mol Sci. 2018;19(11):3605. doi: 10.3390/ijms19113605
  • C-MR-PR-J. 2005. Media relations-press ,on \CDC. [cited 2023 Jan 17]. Available from: https://www.cdc.gov/media/pressrel/r050718.htm
  • Amanna IJ, Slifka MK. Current trends in West Nile virus vaccine development. Expert Rev Vaccines. 2014;13(5):589–608. doi: 10.1586/14760584.2014.906309
  • Chang DC, Liu WJ, Anraku I, et al. Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat Biotechnol. 2008;26(5):571–577. doi: 10.1038/nbt1400
  • Davis BS, Chang GJ, Cropp B, et al. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol. 2001;75(9):4040–4047. doi: 10.1128/JVI.75.9.4040-4047.2001
  • Pellin MA. The use of oncept melanoma vaccine in veterinary patients: a review of the literature. Vet Sci. 2022;9(11):597. doi: 10.3390/vetsci9110597
  • AOMWAEMAC. 2018. European Medicines Agency––commission. [cited 2023 Jan 17]. Available from: https://www.ema.europa.eu/en/medicines/veterinary/withdrawn-applications/oncept-melanoma
  • Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines (Basel). 2019;7(2):7. doi: 10.3390/vaccines7020037
  • Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279. doi: 10.1038/nrd.2017.243
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 — preliminary report. N Engl J Med. 2020;383(20):1920–1931. doi: 10.1056/NEJMoa2022483
  • Nichols W, Ledwith W, B J, et al. Potential DNA vaccine integration into host cell genome. Ann N Y Acad Sci. 1995;772:30–39. doi: 10.1111/j.1749-6632.1995.tb44729.x
  • Domazet-Loso T. mRNA vaccines: why is the biology of retroposition ignored? Genes (Basel). 2022;13(5):13. doi: 10.3390/genes13050719
  • Knezevic I, Liu MA, Peden K, et al. Development of mRNA vaccines: scientific and regulatory issues. Vaccines (Basel). 2021;9(2):81. doi: 10.3390/vaccines9020081
  • Kis Z, Kontoravdi C, Dey AK, et al. Rapid development and deployment of high-volume vaccines for pandemic response. J Adv Manuf Process. 2020;2(3):e10060. doi: 10.1002/amp2.10060
  • Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–838. doi: 10.1038/s41573-021-00283-5
  • Freyn AW, Ramos da Silva J, Rosado VC, et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol Ther. 2020;28:1569–1584. doi: 10.1016/j.ymthe.2020.04.018
  • Wu K, Choi A, Koch M, et al.2021. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. bioRxiv. doi: 10.1101/2021.04.13.439482
  • Uddin MN, Roni MA. Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines (Basel). 2021;9(9):1033. doi: 10.3390/vaccines9091033
  • Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomed. 2017;12:305–315. doi: 10.2147/IJN.S123062
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383:2603–2615. doi: 10.1056/NEJMoa2034577
  • Walsh EE, Frenck RW Jr., Falsey AR, et al. Safety and immunogenicity of two RNA-Based covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–2450. doi: 10.1056/NEJMoa2027906
  • Sahin U, Kariko K, Tureci O. mRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780. doi: 10.1038/nrd4278
  • Zhang L, More KR, Ojha A, et al. Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. NPJ Vaccines. 2023;8(1):156. doi: 10.1038/s41541-023-00751-6
  • Hajnik RL, Plante JA, Liang Y, et al. Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 omicron and Delta variants in preclinical models. Sci Transl Med. 2022;14(662):eabq1945. doi: 10.1126/scitranslmed.abq1945
  • Galloway A, Cowling VH. mRNA cap regulation in mammalian cell function and fate. Biochim Biophys Acta, Gene Regul Mech. 2019;1862(3):270–279. doi: 10.1016/j.bbagrm.2018.09.011
  • Furuichi Y. Discovery of m7G-cap in eukaryotic mRnas. Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(8):394–409. doi: 10.2183/pjab.91.394
  • Passmore LA, Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol. 2022;23(2):93–106. doi: 10.1038/s41580-021-00417-y
  • Ye Z, Bonam SR, McKay LGA, et al. Monovalent SARS-COV-2 mRNA vaccine using optimal UTRs and LNPs is highly immunogenic and broadly protective against omicron variants. Proc Natl Acad Sci U S A. 2023;120(52):e2311752120. doi: 10.1073/pnas.2311752120
  • Linares-Fernandez S, Lacroix C, Exposito JY, et al. Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol Med. 2020;26(3):311–323. doi: 10.1016/j.molmed.2019.10.002
  • Wadhwa A, Aljabbari A, Lokras A, et al. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020;12(2):102. doi: 10.3390/pharmaceutics12020102
  • Berkovits BD, Mayr C. Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522(7556):363–367. doi: 10.1038/nature14321
  • Cottrell KA, Szczesny P, Djuranovic S. Translation efficiency is a determinant of the magnitude of miRNA-mediated repression. Sci Rep. 2017;7(1):14884. doi: 10.1038/s41598-017-13851-w
  • Naeli P, Winter T, Hackett AP, et al. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J. 2023;290(10):2508–2524. doi: 10.1111/febs.16422
  • Saikia M, Wang X, Mao Y, et al. Codon optimality controls differential mRNA translation during amino acid starvation. RNA. 2016;22(11):1719–1727. doi: 10.1261/rna.058180.116
  • Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. 2018;19(1):20–30. doi: 10.1038/nrm.2017.91
  • Spencer PS, Siller E, Anderson JF, et al. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J Mol Biol. 2012;422(3):328–35. doi: 10.1016/j.jmb.2012.06.010
  • Zhang H, Zhang L, Lin A, et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature. 2023;621(7978):396–403. doi: 10.1038/s41586-023-06127-z
  • Pollard C, Rejman J, De Haes W, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther. 2013;21(1):251–9. doi: 10.1038/mt.2012.202
  • Kormann MS, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 2011;29(2):154–157. doi: 10.1038/nbt.1733
  • Han G, Noh D, Lee H, et al. Advances in mRNA therapeutics for cancer immunotherapy: from modification to delivery. Adv Drug Deliv Rev. 2023;199:114973. doi: 10.1016/j.addr.2023.114973
  • Li M, Wang Z, Xie C, et al. Advances in mRNA vaccines. Int Rev Cell Mol Biol. 2022;372:295–316.
  • Vaidyanathan S, Azizian KT, Haque A, et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids. 2018;12:530–542. doi: 10.1016/j.omtn.2018.06.010
  • Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291. doi: 10.1038/s41392-021-00687-0
  • Nance KD, Meier JL. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent Sci. 2021;7(5):748–756. doi: 10.1021/acscentsci.1c00197
  • Eberle F, Sahin U, Kuhn A, et al. Stabilization of poly(A) sequence encoding Dna sequences. US 2017/0166905A1. 2017.
  • Tossberg JT, Esmond TM, Aune TM. A simplified method to produce mRnas and functional proteins from synthetic double-stranded DNA templates. Biotechniques. 2020;69(4):281–288. doi: 10.2144/btn-2020-0037
  • Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature. 2020;586(7830):594–599. doi: 10.1038/s41586-020-2814-7
  • Sahin U, Muik A, Derhovanessian E, et al. Publisher correction: COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature. 2021;590(7844):E17. doi: 10.1038/s41586-020-03102-w
  • Wang Z, Ren S, Li Q, et al. Hantaviruses use the endogenous host factor P58IPK to combat the PKR antiviral response. PLoS Pathog. 2021;17(10):e1010007. doi: 10.1371/journal.ppat.1010007
  • Rosa SS, Prazeres DMF, Azevedo AM, et al. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine. 2021;39(16):2190–2200. doi: 10.1016/j.vaccine.2021.03.038
  • Zawadzki JK, Bogardus C, Foley JE. Insulin action in obese non-insulin-dependent diabetics and in their isolated adipocytes before and after weight loss. Diabetes. 1987;36(2):227–236. doi: 10.2337/diab.36.2.227
  • Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28(3–4):117–129. doi: 10.1038/s41434-020-00204-y
  • Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun. 2018;9(1):2629. doi: 10.1038/s41467-018-05096-6
  • Lundstrom K. Trans-amplifying RNA: translational application in gene therapy. Mol Ther. 2023;31(6):1507–1508. doi: 10.1016/j.ymthe.2023.03.015
  • Ly HH, Daniel S, Soriano SKV, et al. Optimization of lipid nanoparticles for saRNA expression and cellular activation using a design-of-experiment approach. Mol Pharm. 2022;19(6):1892–1905. doi: 10.1021/acs.molpharmaceut.2c00032
  • Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNA vaccines. Adv Drug Deliv Rev. 2021;170:83–112. doi: 10.1016/j.addr.2020.12.014
  • Shepherd SJ, Issadore D, Mitchell MJ. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials. 2021;274:120826. doi: 10.1016/j.biomaterials.2021.120826
  • Lokugamage MP, Sago CD, Gan Z, et al. Constrained nanoparticles deliver siRNA and sgRNA to T cells in vivo without targeting ligands. Adv Mater. 2019;31(41):e1902251. doi: 10.1002/adma.201902251
  • Zhao X, Chen J, Qiu M, et al. Imidazole-based Synthetic Lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew Chem Int Ed Engl. 2020;59(45):20083–20089. doi: 10.1002/anie.202008082
  • Patel S, Ashwanikumar N, Robinson E, et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat Commun. 2020;11(1):983. doi: 10.1038/s41467-020-14527-2
  • Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–cas gene editing. Nat Nanotech. 2020;15(4):313–320. doi: 10.1038/s41565-020-0669-6
  • Ball RL, Hajj KA, Vizelman J, et al. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA. Nano Lett. 2018;18(6):3814–3822. doi: 10.1021/acs.nanolett.8b01101
  • Zhu X, Tao W, Liu D, et al. Surface De-PEGylation Controls Nanoparticle-Mediated siRNA delivery in vitro and in vivo. Theranostics. 2017;7(7):1990–2002. doi: 10.7150/thno.18136
  • Oberli MA, Reichmuth AM, Dorkin JR, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017;17(3):1326–1335. doi: 10.1021/acs.nanolett.6b03329
  • Akinc A, Goldberg M, Qin J, et al. Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol Ther. 2009;17(5):872–879. doi: 10.1038/mt.2009.36
  • Lee Y, Jeong M, Park J, et al. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med. 2023;55(10):2085–2096. doi: 10.1038/s12276-023-01086-x
  • Singh A. Eliciting B cell immunity against infectious diseases using nanovaccines. Nat Nanotech. 2021;16(1):16–24. doi: 10.1038/s41565-020-00790-3
  • Kedmi R, Veiga N, Ramishetti S, et al. A modular platform for targeted RNAi therapeutics. Nat Nanotech. 2018;13(3):214–219. doi: 10.1038/s41565-017-0043-5
  • Goswami R, Chatzikleanthous D, Lou G, et al. Mannosylation of LNP results in improved potency for self-amplifying RNA (SAM) vaccines. ACS Infect Dis. 2019;5(9):1546–1558. doi: 10.1021/acsinfecdis.9b00084
  • Pardi N, Hogan MJ, Naradikian MS, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med. 2018;215(6):1571–1588. doi: 10.1084/jem.20171450
  • Tam HH, Melo MB, Kang M, et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc Natl Acad Sci U S A. 2016;113(43):E6639–E6648. doi: 10.1073/pnas.1606050113
  • Lederer K, Castano D, Gomez Atria D, et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity. 2020;53(6):1281–1295 e5. doi: 10.1016/j.immuni.2020.11.009
  • Turner JS, O’Halloran JA, Kalaidina E, et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature. 2021;596(7870):109–113. doi: 10.1038/s41586-021-03738-2
  • Doria-Rose N, Suthar MS, Makowski M, et al. Antibody persistence through 6 Months after the Second dose of mRNA-1273 vaccine for covid-19. N Engl J Med. 2021;384:2259–2261. doi: 10.1056/NEJMc2103916
  • Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390(10101):1511–1520. doi: 10.1016/S0140-6736(17)31665-3
  • Lutz J, Lazzaro S, Habbeddine M, et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines. 2017;2(1):29. doi: 10.1038/s41541-017-0032-6
  • Shimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US—December 14, 2020-January 18, 2021. JAMA. 2021;325(11):1101–1102. doi: 10.1001/jama.2021.1967
  • McNeil MM, Weintraub ES, Duffy J, et al. Risk of anaphylaxis after vaccination in children and adults. J Allergy Clin Immunol. 2016;137(3):868–78. doi: 10.1016/j.jaci.2015.07.048
  • Kozma GT, Shimizu T, Ishida T, et al. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Deliv Rev. 2020;154-155:163–175. doi: 10.1016/j.addr.2020.07.024
  • Besin G, Milton J, Sabnis S, et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons. 2019;3(7):282–293. doi: 10.4049/immunohorizons.1900029
  • Goel RR, Painter MM, Apostolidis SA, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021;374:abm0829. doi: 10.1126/science.abm0829
  • Tai W, Feng S, Chai B, et al. An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants. Nat Commun. 2023;14(1):2962. doi: 10.1038/s41467-023-38751-8
  • Garry RF. Lassa fever — the road ahead. Nat Rev Microbiol. 2023;21(2):87–96. doi: 10.1038/s41579-022-00789-8
  • Peck KM, Lauring AS, Sullivan CS. Complexities of viral mutation rates. J Virol. 2018;92(14): 10-128. doi: 10.1128/JVI.01031-17
  • Lynch M, Ackerman MS, Gout JF, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17(11):704–714. doi: 10.1038/nrg.2016.104
  • Sanjuan R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci. 2016;73(23):4433–4448. doi: 10.1007/s00018-016-2299-6
  • Gorbalenya AE, Enjuanes L, Ziebuhr J, et al. Nidovirales: evolving the largest RNA virus genome. Virus Res. 2006;117(1):17–37. doi: 10.1016/j.virusres.2006.01.017
  • Walker AS, Vihta KD, Gethings O, et al. Covid-19 infection survey T. 2021. Tracking the emergence of SARS-CoV-2 alpha variant in the United Kingdom. N Engl J Med. 2021;385(27):2582–2585. doi: 10.1056/NEJMc2103227
  • Aleem A, Akbar Samad AB, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). Treasure Island (FL): StatPearls; 2022.
  • Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021;372(6544):815–821. doi: 10.1126/science.abh2644
  • Tian D, Sun Y, Zhou J, et al. The global epidemic of the SARS-CoV-2 delta variant, key spike mutations and immune escape. Front Immunol. 2021;12:751778. doi: 10.3389/fimmu.2021.751778
  • Yang S, Hemarajata P, Hilt EE, et al. Investigation of SARS-CoV-2 Epsilon variant and hospitalization status by Genomic Surveillance in a single large health system during the 2020-2021 Winter surge in Southern California. Am J Clin Pathol. 2022;157(5):649–652. doi: 10.1093/ajcp/aqab203
  • Araf Y, Akter F, Tang YD, et al. Omicron variant of SARS-CoV-2: genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol. 2022;94(5):1825–1832. doi: 10.1002/jmv.27588
  • Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021;398(10317):2126–2128. doi: 10.1016/S0140-6736(21)02758-6
  • Mohan SV, Hemalatha M, Kopperi H, et al. SARS-CoV-2 in environmental perspective: occurrence, persistence, surveillance, inactivation and challenges. Chem Eng J. 2021;405:126893. doi: 10.1016/j.cej.2020.126893
  • Nashwan A, Yassin M, Soliman A, et al. mRNA-based COVID-19 vaccines booster dose: benefits, risks and coverage. Acta Biomed. 2022;93:e2022236.
  • Barnard RC, Davies NG, Jit M, et al. Centre for Mathematical Modelling of Infectious diseases C-wg,Behaviour, booster vaccines and waning immunity: modelling the medium-term dynamics of SARS-CoV-2 transmission in England in the omicron era. medRxiv. 2022. doi: 10.1101/2021.11.22.21266584
  • Mir EA. Vaccine hesitancy—A persistant pandemic and continued threat to global health. J Biosci Med. 2023;11(3):64–72. doi: 10.4236/jbm.2023.113008
  • Benoit SL, Mauldin RF. The “anti-vax” movement: a quantitative report on vaccine beliefs and knowledge across social media. BMC Public Health. 2021;21(1):2106. doi: 10.1186/s12889-021-12114-8
  • Massey E. A sermon against the dangerous and sinful practice of inoculation. William Meadows; 1722. https://catalogue.nla.gov.au/catalog/3235069
  • D N. Bodily matters: the anti-vaccination movement in England. Duke University Press; 2005. p. 1853–1907. doi: 10.1215/9780822386506
  • Anderson EJ, Rouphael NG, Widge AT. Safety munogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427–2438. doi: 10.1056/NEJMoa2028436
  • Logunov DY, Dolzhikova SD IV, Tukhvatulin AI, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397:671–681. doi: 10.1016/S0140-6736(21)00234-8
  • Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against covid-19. N Engl J Med. 2021;384(23):2187–2201. doi: 10.1056/NEJMoa2101544
  • Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99–111. doi: 10.1016/S0140-6736(20)32661-1
  • Matt Motta TC, Sylvester S, Lunz-Trujillo K. 2020. Identifying the prevalence, correlates, and policy consequences of anti-vaccine social identity. Politics, groups, and identities.
  • Yaqub O, Castle-Clarke S, Sevdalis N, et al. Attitudes to vaccination: a critical review. Soc Sci Med. 2014;112:1–11. doi: 10.1016/j.socscimed.2014.04.018
  • Piltch-Loeb R, Harriman NW, Healey J, et al. COVID-19 vaccine concerns about safety, effectiveness, and policies in the United States. and Italy among Unvaccinated Individuals. Vaccines. 2021;9(10):1138. doi: 10.3390/vaccines9101138
  • Choi Y, Fox AM. Mistrust in public health institutions is a stronger predictor of vaccine hesitancy and uptake than trust in Trump. Soc Sci Med. 2022;314:115440. doi: 10.1016/j.socscimed.2022.115440
  • Williams JTB, O’Leary ST. Denver religious leaders’ vaccine attitudes, practices, and Congregational experiences. J Relig Health. 2019;58(4):1356–1367. doi: 10.1007/s10943-019-00800-2
  • Sheikh A, Iqbal B, Ehtamam A, et al. Reasons for non-vaccination in pediatric patients visiting tertiary care centers in a polio-prone country. Arch Public Health. 2013;71(1):19. doi: 10.1186/0778-7367-71-19
  • Zimmerman T, Shiroma K, Fleischmann KR, et al. Misinformation and COVID-19 vaccine hesitancy. Vaccine. 2023;41(1):136–144. doi: 10.1016/j.vaccine.2022.11.014
  • Freeman D, Lambe S, Yu LM, et al. Injection fears and COVID-19 vaccine hesitancy. Psychol Med. 2021;53(4):1185–1195. doi: 10.1017/S0033291721002609:1-11
  • Albrecht D. Vaccination, politics and COVID-19 impacts. BMC Public Health. 2022;22(1):96. doi: 10.1186/s12889-021-12432-x
  • WHO. 17 Jan 2024. WHO issues its first emergency use validation for a COVID-19 vaccine and emphasizes need for equitable global access. [cited Jan 17]. Available from: https://www.who.int/news/item/31-12-2020-who-issues-its-first-emergency-use-validation-for-a-covid-19-vaccine-and-emphasizes-need-for-equitable-global-access
  • WHO.17 Jan 2024 2022. Prioritizing Diseases for Research and Development in emergency contexts. [cited Jan 17]. Available from: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts
  • WHO. 2022. Expert Committee on Biological Standardization. [cited Jan 17]. Available from: https://www.who.int/our-work/access-to-medicines-and-health-products/expert-committee-on-biological-standardization
  • FDA.2019. The path for vaccines from research to FDA approval. [cited 2024 Jan 17]. Available from: https://www.fda.gov/media/151716/download#:~:text=Manufacturers%20are%20not%20permitted%20to,and%20may%20perform%20confirmatory%20testing