730
Views
0
CrossRef citations to date
0
Altmetric
Review

Progress and challenges in the clinical evaluation of immune responses to respiratory mucosal vaccines

, , , , , , , , , & show all
Pages 362-370 | Received 25 Jan 2024, Accepted 28 Feb 2024, Published online: 12 Mar 2024

References

  • Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe. 2023;31(1):146–157. doi:10.1016/j.chom.2022.11.016
  • Timeline: WHO’s COVID-19 response; WHO; 2024 Jan 24 [cited 2024 Jan 24]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline.
  • Sullivan SJ, Jacobson RM, Dowdle WR, et al. 2009 H1N1 influenza. Mayo Clin Proc. 2010;85(1):64–76. doi:10.4065/mcp.2009.0588
  • Confirmed death cases of COVID-19; WHO; 2024 Jan 24 [cited 2024 Jan 24]. Available from: https://covid19.who.int/.
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383(27):2603–2615. doi: 10.1056/NEJMoa2034577
  • Halperin SA, Ye L, MacKinnon-Cameron D, et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet. 2022;399(10321):237–248. doi: 10.1016/S0140-6736(21)02753-7
  • Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022;185(5):847–859.e11. doi: 10.1016/j.cell.2022.01.015
  • Bleier BS, Ramanathan M Jr., Lane AP. COVID-19 vaccines may not prevent nasal SARS-CoV-2 infection and asymptomatic transmission. Otolaryngol Head Neck Surg. 2021;164(2):305–307. doi:10.1177/0194599820982633
  • Sano K, Bhavsar D, Singh G, et al. SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals. Nat Commun. 2022;13(1):5135. doi: 10.1038/s41467-022-32389-8
  • Tang J, Zeng C, Cox TM, et al. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Sci Immunol. 2022;7(76):eadd4853. doi: 10.1126/sciimmunol.add4853
  • Nickel O, Rockstroh A, Wolf J, et al. Evaluation of the systemic and mucosal immune response induced by COVID-19 and the BNT162b2 mRNA vaccine for SARS-CoV-2. PloS One. 2022;17(10):e0263861. doi: 10.1371/journal.pone.0263861
  • Ascough S, Vlachantoni I, Kalyan M, et al. Local and systemic immunity against respiratory syncytial virus induced by a novel intranasal vaccine. A randomized, double-blind, placebo-controlled clinical trial. Am J Respir Crit Care Med. 2019;200(4):481–492. doi: 10.1164/rccm.201810-1921OC
  • Eiden J, Fierro C, Schwartz H, et al. Intranasal M2SR (M2-deficient single replication) H3N2 influenza vaccine provides enhanced mucosal and serum antibodies in adults. J Infect Dis. 2022;227(1):103–112. doi: 10.1093/infdis/jiac433
  • Pilapitiya D, Wheatley AK, Tan HX. Mucosal vaccines for SARS-CoV-2: triumph of hope over experience. EBioMedicine. 2023;92:104585. doi:10.1016/j.ebiom.2023.104585
  • Nakahashi-Ouchida R, Fujihashi K, Kurashima Y, et al. Nasal vaccines: solutions for respiratory infectious diseases. Trends Mol Med. 2023;29(2):124–140. doi:10.1016/j.molmed.2022.10.009
  • Chavda VP, Vora LK, Pandya AK, et al. Intranasal vaccines for SARS-CoV-2: from challenges to potential in COVID-19 management. Drug Discov Today. 2021;26(11):2619–2636. doi:10.1016/j.drudis.2021.07.021
  • Rudenko L, van den Bosch H, Kiseleva I, et al. Live attenuated pandemic influenza vaccine: clinical studies on A/17/California/2009/38 (H1N1) and licensing of the Russian-developed technology to WHO for pandemic influenza preparedness in developing countries. Vaccine. 2011;29(Suppl 1):A40–44. doi: 10.1016/j.vaccine.2011.04.122
  • Treanor JJ, Kotloff K, Betts RF, et al. Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza a (H1N1), a (H3N2), and B viruses. Vaccine. 1999;18(9–10):899–906. doi: 10.1016/S0264-410X(99)00334-5
  • Rudenko L, Yeolekar L, Kiseleva I, et al. Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: process challenges and success stories. Vaccine. 2016;34(45):5436–5441. doi:10.1016/j.vaccine.2016.08.018
  • Tang R, Zheng H, Wang BS, et al. Safety and immunogenicity of aerosolised Ad5-nCov, intramuscular Ad5-nCov, or inactivated COVID-19 vaccine CoronaVac given as the second booster following three doses of CoronaVac: a multicentre, open-label, phase 4, randomised trial. Lancet Respir Med. 2023;11(7):613–623. doi: 10.1016/S2213-2600(23)00049-8
  • Singh C, Verma S, Reddy P, et al. Phase III Pivotal comparative clinical trial of intranasal (iNCOVACC) and intramuscular COVID-19 vaccine (Covaxin((R))). NPJ Vaccin. 2023;8(1):125. doi: 10.1038/s41541-023-00717-8
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–681. doi: 10.1016/S0140-6736(21)00234-8
  • Zhu F, Zhuang C, Chu K, et al. Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir Med. 2022;10(8):749–760. doi: 10.1016/S2213-2600(22)00131-X
  • Banihashemi SR, Es-Haghi A, Fallah Mehrabadi MH, et al. Safety and efficacy of combined intramuscular/intranasal RAZI-COV PARS vaccine candidate against SARS-CoV-2: a preclinical study in several animal models. Front Immunol. 2022;13:836745. doi: 10.3389/fimmu.2022.836745
  • Xu H, Cai L, Hufnagel S, et al. Intranasal vaccine: factors to consider in research and development. Int J Pharm. 2021;609:121180. doi:10.1016/j.ijpharm.2021.121180
  • Zhao B, Yang J, He B, et al. A safe and effective mucosal RSV vaccine in mice consisting of RSV phosphoprotein and flagellin variant. Cell Rep. 2021;36(3):109401. doi: 10.1016/j.celrep.2021.109401
  • Yang J, Liu MQ, Liu L, et al. A triple-RBD-based mucosal vaccine provides broad protection against SARS-CoV-2 variants of concern. Cell Mol Immunol. 2022;19(11):1279–1289. doi: 10.1038/s41423-022-00929-3
  • Ye T, Jiao Z, Li X, et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature. 2023;624(7992):630–638. doi: 10.1038/s41586-023-06809-8
  • Lei H, Alu A, Yang J, et al. Cationic crosslinked carbon dots-adjuvanted intranasal vaccine induces protective immunity against omicron-included SARS-CoV-2 variants. Nat Commun. 2023;14(1):2678. doi: 10.1038/s41467-023-38066-8
  • Twigg HL 3rd. Humoral immune defense (antibodies): recent advances. Proc Am Thorac Soc. 2005;2(5):417–421. doi:10.1513/pats.200508-089JS
  • Kirkeby L, Rasmussen TT, Reinholdt J, et al. Immunoglobulins in nasal secretions of healthy humans: structural integrity of secretory immunoglobulin A1 (IgA1) and occurrence of neutralizing antibodies to IgA1 proteases of nasal bacteria. Clin Diagn Lab Immunol. 2000;7(1):31–39. doi:10.1128/CDLI.7.1.31-39.2000
  • Rojas R, Apodaca G. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol. 2002;3(12):944–955. doi:10.1038/nrm972
  • Woof JM, Russell MW. Structure and function relationships in IgA. Mucosal Immunol. 2011;4(6):590–597. doi:10.1038/mi.2011.39
  • Lindh E. Increased risistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J Immunol. 1975;114(1 Pt 2):284–286. doi:10.4049/jimmunol.114.1_Part_2.284
  • Suzuki T, Kawaguchi A, Ainai A, et al. Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. Proc Natl Acad Sci U S A. 2015;112(25):7809–7814. doi: 10.1073/pnas.1503885112
  • Marcotte H, Cao Y, Zuo F, et al. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of omicron lineages. Proc Natl Acad Sci U S A. 2024;121(3):e2315354120. doi: 10.1073/pnas.2315354120
  • Renegar KB, Small PA Jr., Boykins LG, et al. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol. 2004;173(3):1978–1986. doi:10.4049/jimmunol.173.3.1978
  • Renegar KB, Jackson GD, Mestecky J. In vitro comparison of the biologic activities of monoclonal monomeric IgA, polymeric IgA, and secretory IgA. J Immunol. 1998;160(3):1219–1223. doi:10.4049/jimmunol.160.3.1219
  • Brokstad KA, Cox RJ, Eriksson JC, et al. High prevalence of influenza specific antibody secreting cells in nasal mucosa. Scand J Immunol. 2001;54(1–2):243–247. doi:10.1046/j.1365-3083.2001.00947.x
  • Wright PF, Murphy BR, Kervina M, et al. Secretory immunological response after intranasal inactivated influenza A virus vaccinations: evidence for immunoglobulin A memory. Infect Immun. 1983;40(3):1092–1095. doi:10.1128/iai.40.3.1092-1095.1983
  • Marking U, Bladh O, Havervall S, et al. 7-month duration of SARS-CoV-2 mucosal immunoglobulin-A responses and protection. Lancet Infect Dis. 2023;23(2):150–152. doi: 10.1016/S1473-3099(22)00834-9
  • Liew F, Talwar S, Cross A, et al. SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination. EBioMedicine. 2023;87:104402. doi: 10.1016/j.ebiom.2022.104402
  • Zuo F, Marcotte H, Hammarstrom L, et al. Mucosal IgA against SARS-CoV-2 omicron infection. N Engl J Med. 2022;387(21):e55.
  • Sheikh-Mohamed S, Isho B, Chao GYC, et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunol. 2022;15(5):799–808. doi: 10.1038/s41385-022-00511-0
  • Bagga B, Harrison L, Roddam P, et al. Unrecognized prolonged viral replication in the pathogenesis of human RSV infection. J Clin Virol. 2018;106:1–6. doi:10.1016/j.jcv.2018.06.014
  • Habibi MS, Jozwik A, Makris S, et al. Impaired antibody-mediated protection and defective IgA B-cell memory in experimental infection of adults with respiratory syncytial virus. Am J Respir Crit Care Med. 2015;191(9):1040–1049. doi: 10.1164/rccm.201412-2256OC
  • Miyamoto S, Nishiyama T, Ueno A, et al. Infectious virus shedding duration reflects secretory IgA antibody response latency after SARS-CoV-2 infection. Proc Natl Acad Sci U S A. 2023;120(52):e2314808120. doi: 10.1073/pnas.2314808120
  • Wagstaffe HR, Thwaites RS, Reynaldi A, et al. Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults. Sci Immunol. 2024;9(92):eadj9285. doi: 10.1126/sciimmunol.adj9285
  • Poon MML, Rybkina K, Kato Y, et al. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci Immunol. 2021;6(65):eabl9105. doi: 10.1126/sciimmunol.abl9105
  • Grau-Exposito J, Sanchez-Gaona N, Massana N, et al. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat Commun. 2021;12(1):3010. doi: 10.1038/s41467-021-23333-3
  • Jeyanathan M, Fritz DK, Afkhami S, et al. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. JCI Insight. 2022;7(3). doi: 10.1172/jci.insight.155655
  • Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol. 2016;16(2):79–89. doi:10.1038/nri.2015.3
  • Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity. 2014;41(6):886–897. doi:10.1016/j.immuni.2014.12.007
  • Heeg M, Goldrath AW. Insights into phenotypic and functional CD8(+) T(RM) heterogeneity. Immunol Rev. 2023;316(1):8–22. doi:10.1111/imr.13218
  • Schenkel JM, Fraser KA, Beura LK, et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science. 2014;346(6205):98–101. doi:10.1126/science.1254536
  • Wu T, Hu Y, Lee YT, et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukocyte Biol. 2014;95(2):215–224. doi: 10.1189/jlb.0313180
  • Zhao J, Zhao J, Mangalam AK, et al. Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity. 2016;44(6):1379–1391. doi: 10.1016/j.immuni.2016.05.006
  • Shenoy AT, Wasserman GA, Arafa EI, et al. Lung CD4(+) resident memory T cells remodel epithelial responses to accelerate neutrophil recruitment during pneumonia. Mucosal Immunol. 2020;13(2):334–343. doi: 10.1038/s41385-019-0229-2
  • Teijaro JR, Turner D, Pham Q, et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol. 2011;187(11):5510–5514. doi:10.4049/jimmunol.1102243
  • Son YM, Cheon IS, Wu Y, et al. Tissue-resident CD4(+) T helper cells assist the development of protective respiratory B and CD8(+) T cell memory responses. Sci Immunol. 2021;6(55). doi: 10.1126/sciimmunol.abb6852
  • Allie SR, Bradley JE, Mudunuru U, et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat Immunol. 2019;20(1):97–108. doi: 10.1038/s41590-018-0260-6
  • Barker KA, Etesami NS, Shenoy AT, et al. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest. 2021;131(11). doi: 10.1172/JCI141810
  • Tan HX, Juno JA, Esterbauer R, et al. Lung-resident memory B cells established after pulmonary influenza infection display distinct transcriptional and phenotypic profiles. Sci Immunol. 2022;7(67):eabf5314. doi: 10.1126/sciimmunol.abf5314
  • Oh JE, Song E, Moriyama M, et al. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Sci Immunol. 2021;6(66):eabj5129. doi: 10.1126/sciimmunol.abj5129
  • Netea MG, Dominguez-Andres J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375–388. doi: 10.1038/s41577-020-0285-6
  • Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. doi: 10.1126/science.aaf1098
  • Yao Y, Jeyanathan M, Haddadi S, et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell. 2018;175(6):1634–1650 e1617. doi: 10.1016/j.cell.2018.09.042
  • Zhang L, Jiang Y, He J, et al. Intranasal influenza-vectored COVID-19 vaccine restrains the SARS-CoV-2 inflammatory response in hamsters. Nat Commun. 2023;14(1):4117. doi: 10.1038/s41467-023-39560-9
  • Strugnell RA, Wijburg OL. The role of secretory antibodies in infection immunity. Nat Rev Microbiol. 2010;8(9):656–667. doi:10.1038/nrmicro2384
  • Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol. 2013;4:185. doi:10.3389/fimmu.2013.00185
  • Zhu F, Huang S, Liu X, et al. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2023;11(12):1075–1088. doi: 10.1016/S2213-2600(23)00349-1
  • de Silva TI, Gould V, Mohammed NI, et al. Comparison of mucosal lining fluid sampling methods and influenza-specific IgA detection assays for use in human studies of influenza immunity. J Immunol Methods. 2017;449:1–6. doi: 10.1016/j.jim.2017.06.008
  • Bergin PJ, Langat R, Omosa-Manyonyi G, et al. Assessment of anti-HIV-1 antibodies in oral and nasal compartments of volunteers from 3 different populations. J Acquir Immune Defic Syndr. 2016;73(2):130–137. doi: 10.1097/QAI.0000000000001094
  • DeFrancesco L. COVID-19 antibodies on trial. Nat Biotechnol. 2020;38(11):1242–1252. doi:10.1038/s41587-020-0732-8
  • DISCOVERY MS. V-PLEX COVID-19 serology assays insert. Rockville (MD): Mesoscale;2023.
  • Keech C, Miller VE, Rizzardi B, et al. Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus-diphtheria-acellular pertussis vaccine: a randomised, double-blind, phase 2b trial. Lancet. 2023;401(10379):843–855. doi: 10.1016/S0140-6736(22)02644-7
  • Madhavan M, Ritchie AJ, Aboagye J, et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. EBioMedicine. 2022;85:104298. doi: 10.1016/j.ebiom.2022.104298
  • Feng CG, Britton WJ. CD4+ and CD8+ T cells mediate adoptive immunity to aerosol infection of mycobacterium bovis bacillus Calmette-Guérin. J Infect Dis. 2000;181(5):1846–1849. doi:10.1086/315466
  • Lim JME, Tan AT, Le Bert N, et al. SARS-CoV-2 breakthrough infection in vaccinees induces virus-specific nasal-resident CD8+ and CD4+ T cells of broad specificity. J Exp Med. 2022;219(10). doi: 10.1084/jem.20220780
  • Jochems SP, Piddock K, Rylance J, et al. Novel analysis of immune cells from nasal microbiopsy demonstrates reliable, reproducible data for immune populations, and superior cytokine detection compared to nasal wash. PloS One. 2017;12(1):e0169805. doi: 10.1371/journal.pone.0169805
  • Roukens AHE, Pothast CR, Konig M, et al. Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8(+) T cell responses following COVID-19. Nat Immunol. 2022;23(1):23–32. doi: 10.1038/s41590-021-01095-w
  • Lim JME, Tan AT, Bertoletti A. Protocol to detect antigen-specific nasal-resident T cells in humans. STAR Protoc. 2023;4(1):101995. doi:10.1016/j.xpro.2022.101995
  • Lindsey BB, Jagne YJ, Armitage EP, et al. Effect of a Russian-backbone live-attenuated influenza vaccine with an updated pandemic H1N1 strain on shedding and immunogenicity among children in the Gambia: an open-label, observational, phase 4 study. Lancet Respir Med. 2019;7(8):665–676. doi: 10.1016/S2213-2600(19)30086-4
  • Hoft DF, Xia M, Zhang GL, et al. PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4(+) T cell transcriptomal molecular signatures. Mucosal Immunol. 2018;11(2):486–495. doi: 10.1038/mi.2017.67
  • Walrath JR, Silver RF. The α4β1 integrin in localization of Mycobacterium tuberculosis-specific T helper type 1 cells to the human lung. Am J Respir Cell Mol Biol. 2011;45(1):24–30. doi:10.1165/rcmb.2010-0241OC
  • Jozwik A, Habibi MS, Paras A, et al. RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection. Nat Commun. 2015;6(1):10224. doi: 10.1038/ncomms10224
  • Interim statement on COVID-19 vaccines in the context of the circulation of the omicron SARS-CoV-2 variant from the WHO Technical Advisory Group on COVID-19 vaccine composition (TAG-CO-VAC). WHO; 2022 Mar 8 [cited 2024 Jan 4]. Available from: https://www.who.int/news/item/08-03-2022-interim-statement-on-covid-19-vaccines-in-the-context-of-the-circulation-of-the-omicron-sars-cov-2-variant-from-the-who-technical-advisory-group-on-covid-19-vaccine-composition-(tag-co-vac)-08-march-2022
  • Fact sheet: HHS details $5 billion ‘project NextGen’ initiative to stay ahead of COVID-19; HHS Press Office; 2023 May 11 [cited 2024 Jan 4]. Available from: https://www.hhs.gov/about/news/2023/05/11/fact-sheet-hhs-details-5-billion-project-nextgen-initiative-stay-ahead-covid.html