2,718
Views
0
CrossRef citations to date
0
Altmetric
Review

The durability of vaccine-induced protection: an overview

ORCID Icon &
Pages 389-408 | Received 18 Jan 2024, Accepted 12 Mar 2024, Published online: 20 Mar 2024

References

  • Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenza viruses, and other respiratory viruses. Cell Host Microbe. 2023;31(1):146–157.
  • Markowitz LE, Preblud SR, Fine PE, et al. Duration of live measles vaccine-induced immunity. Pediatr Infect Dis J. 1990; 9(2): 101–110. doi: 10.1097/00006454-199002000-00008
  • Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med. 2007;357(19):1903–1915.
  • World Health Organization. Rubella vaccines: WHO position paper. Wkly Epidemiol Rec. 2020;95:301–324.
  • Crooke SN, Riggenbach MM, Ovsyannikova IG, et al. Durability of humoral immune responses to rubella following MMR vaccination. Vaccine. 2020;38(51):8185–8193. doi: 10.1016/j.vaccine.2020.10.076
  • Poland JD, Calisher CH, Monath TP, et al. Persistence of neutralizing antibody 30-35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ. 1981;59(6):895–900.
  • Reinhardt B, Jaspert R, Niedrig M, et al. Development of viremia and humoral and cellular parameters of immune activation after vaccination with yellow fever virus strain 17D: a model of human flavivirus infection. J Med Virol. 1998;56(2):159–67. doi: 10.1002/(SICI)1096-9071(199810)56:2<159:AID-JMV10>3.0.CO;2-B
  • Groot H, Riberiro RB. Neutralizing and haemagglutination-inhibiting antibodies to yellow fever 17 years after vaccination with 17D vaccine. Bull World Health Organ. 1962;27(6):699–707.
  • Niedrig M, Lademann M, Emmerich P, et al. Assessment of IgG antibodies against yellow fever virus after vaccination with 17D by different assays: neutralization test, haemagglutination inhibition test, immunofluorescence assay and ELISA. Trop Med Int Health. 1999 Dec;4(12):867–71.
  • Coulange Bodilis H, Benabdelmoumen G, Gergely A, et al. Persistance à long terme des anticorps neutralisants de la fièvre jaune chez les personnes âgées de 60 ans et plus [Long term persistence of yellow fever neutralising antibodies in elderly persons]. Bull Soc Pathol Exot. 2011;104(4):260–265. doi: 10.1007/s13149-011-0135-7
  • Marchesani R, Thomas N, Monath, et al. Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX and YF-VAX) in a phase III multicenter, double-blind clinical trial. Am J Trop Med Hyg. 2002;66(5):533–541. doi: 10.4269/ajtmh.2002.66.533
  • World Health Organization. WHO position paper on hepatitis a vaccines – October 2022. Wkly Epidemiol Rec. 2022;97:493–512.
  • Espul C, Benedetti L, Cuello H, et al. Persistence of immunity from 1 year of age after one or two doses of hepatitis a vaccine given to children in Argentina. Hepat Med. 2012;4:53–60. doi: 10.2147/HMER.S33847
  • Urueña A, Badano MN, Baré P, et al. Humoral and cellular immune memory response 12 years following single dose vaccination against hepatitis a in Argentinian children. Vaccine. 2022;40(1):114–121. doi: 10.1016/j.vaccine.2021.11.037
  • Bianchi FP, Larocca AMV, Bozzi A, et al. Long-term persistence of poliovirus neutralizing antibodies in the era of polio elimination: An Italian retrospective cohort study. Vaccine. 2021;39(22):2989–2994. doi: 10.1016/j.vaccine.2021.04.005
  • World Health Organization. Polio vaccines: WHO position paper. Weekly Epidemiol Rec. 2022;97:277–300.
  • Larocca AMV, Bianchi FP, Bozzi A, et al. Long-term immunogenicity of inactivated and oral polio vaccines: an Italian retrospective cohort study. Vaccines (Basel). 2022 17;10(8):1329. doi: 10.3390/vaccines10081329
  • Bhave S, Sapru A, Bavdekar A, et al. Long term immunogenicity of single dose of live attenuated hepatitis a vaccine in Indian children - results of 15-year follow-up. Indian Pediatr. 2021;58(8):749–752. doi: 10.1007/s13312-021-2285-4
  • Chen Y, Zhou CL, Zhang XJ, et al. Immune memory at 17-years of follow-up of a single dose of live attenuated hepatitis a vaccine. Vaccine. 2018;36(1):114–121. doi: 10.1016/j.vaccine.2017.11.036
  • Ott JJ, Irving G, Wiersma ST. Long-term protective effects of hepatitis a vaccines. A systematic review. Vaccine. 2012;31(1):3–11. doi: 10.1016/j.vaccine.2012.04.104
  • World Health Organization. Human papillomavirus vaccines: WHO position paper (2022 update). Wkly Epidemiol Rec. 2022;97:645–672.
  • Porras C, Tsang SH, Herrero R, et al. Efficacy of the bivalent HPV vaccine against HPV 16/18-associated precancer: long-term follow-up results from the Costa Rica vaccine trial. Lancet Oncol. 2020;21(12):1643–1652. doi: 10.1016/S1470-2045(20)30524-6
  • Kjaer SK, Nygård M, Sundström K, et al. Final analysis of a 14-year long-term follow-up study of the effectiveness and immunogenicity of the quadrivalent human papillomavirus vaccine in women from four Nordic countries. E-Clin Med. 2020;23:100401. doi: 10.1016/j.eclinm.2020.100401
  • Olsson SE, Restrepo JA, Reina JC, et al. Long-term immunogenicity, effectiveness, and safety of nine-valent human papillomavirus vaccine in girls and boys 9 to 15 years of age: interim analysis after 8 years of follow-up. Papillomavirus Res. 2020;10:100203. doi: 10.1016/j.pvr.2020.100203
  • Kjaer SK, Nygård M, Sundström K, et al. Long-term effectiveness of the nine-valent human papillomavirus vaccine in Scandinavian women: interim analysis after 8 years of follow-up. Hum Vaccin Immunother. 2021;17(4):943–949. doi: 10.1080/21645515.2020.1839292
  • Shilling H, Garland SM, Atchison S, et al. Human papillomavirus prevalence and risk factors among Australian women 9–12 years after vaccine program introduction. Vaccine. 2021;39(34):4856–4863. doi: 10.1016/j.vaccine.2021.07.005
  • Aronson NE, Santosham M, Comstock GW, et al. Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: a 60-year follow-up study. JAMA. 2004 5;291(17):2086–91. doi: 10.1001/jama.291.17.2086
  • Nguipdop-Djomo P, Heldal E, Rodrigues LC, et al. Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: a retrospective population-based cohort study. Lancet Infect Dis. 2016;16(2):219–26. doi: 10.1016/S1473-3099(15)00400-4
  • Mangtani P, Nguipdop-Djomo P, Keogh RH, et al. The duration of protection of school-aged BCG vaccination in England: a population-based case-control study. Int J Epidemiol. 2018;47(1):193–201. doi: 10.1093/ije/dyx141
  • Abubakar I, Pimpin L, Ariti C, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guérin vaccination against tuberculosis. Health Technol Assess. 2013;17(37):1–372, v–vi. 10.3310/hta17370
  • World Health Organization. Diphtheria vaccine: WHO position paper. Weekly Epidemiol Rec. 2006;91:21–32.
  • Bruce MG, Bruden D, Hurlburt D, et al. Antibody levels and protection after hepatitis B vaccine: results of a 30-year follow-up study and response to a booster dose. J Infect Dis. 2016;214(1):16–22. doi: 10.1093/infdis/jiv748
  • World Health Organization. WHO Immunologic Basis For Immunization: Module 3: Tetanus. 2018 [accessed 2024 Mar 1]. Available from: https://www.who.int/publications/i/item/9789241513616
  • World Health Organization. Tetanus vaccines: WHO position paper. Weekly Epidemiol Rec. 2017;92:53–76.
  • Ferlito C, Biselli R, Mariotti S, et al. R. Tetanus-diphtheria vaccination in adults: the long-term persistence of antibodies is not dependent on polyclonal B-cell activation and the defective response to diphtheria toxoid re-vaccination is associated to HLADRB1*01. Vaccine. 2018;36(45):6718–6725. doi: 10.1016/j.vaccine.2018.09.041
  • World Health Organization. Varicella and herpes zoster vaccines: WHO position paper, June 2014. Wkly Epidemiol Rec. 2014;89(25):265–287.
  • Bayer O, Heininger U, Heiligensetzer C, et al. Metaanalysis of vaccine effectiveness in varicella outbreaks. Vaccine. 2007;25(37–38):6655–60. doi: 10.1016/j.vaccine.2007.07.010
  • World Health Organization. Position paper. Mumps virus vaccines. Wkly Epidemiol Rec. 2007;7:51–60
  • Vashishtha VM, Yadav S, Dabas A, et al. IAP position paper on burden of mumps in India and vaccination strategies. Indian Pediatr. 2015;52(6):505–14. doi: 10.1007/s13312-015-0666-2
  • Demicheli V, Rivetti A, Debalini MG, et al. Vaccines for measles, mumps and rubella in children. Cochrane Database Syst Rev. 2012;2:CD004407. doi: 10.1002/14651858.CD004407.pub3
  • Cohen C, White JM, Savage EJ, et al. Vaccine effectiveness estimates, 2004-2005 mumps outbreak, England. Emerg Infect Dis. 2007;13(1):12–17. doi: 10.3201/eid1301.060649
  • LeBaron CW, Forghani B, Beck C, et al. Persistence of mumps antibodies after 2 doses of measles-mumps-rubella vaccine. J Infect Dis. 2009;199(4):552–560. doi: 10.1086/596207
  • Davidkin I, Jokinen S, Broman M, et al. Persistence of measles, mumps, and rubella antibodies in an MMR-vaccinated cohort: a 20-year follow-up. J Infect Dis. 2008 1;197(7):950–6. doi: 10.1086/528993
  • World Health Organization. Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper – February 2019. Wkly Epidemiol Rec. 2019;94:85–104.
  • Le Polain De Waroux O, Flasche S, Prieto-Merino D, et al. The efficacy and duration of protection of pneumococcal conjugate vaccines against nasopharyngeal carriage: a meta-regression model. Pediatric Infectious Disease Journal. 2015;34(8):858–864. doi: 10.1097/INF.0000000000000717
  • Madhi SA, Klugman KP, Kuwanda L, et al. Quantitative and qualitative anamnestic immune responses to pneumococcal conjugate vaccine in HIV-infected and HIV-uninfected children 5 years after vaccination. J Infect Dis. 2009;199(8):1168–76. doi: 10.1086/597388
  • World Health Organization. Rabies vaccines: WHO position paper – April 2018. Wkly Epidemiol Rec. 2018; 93:201–220. doi: 10.1016/j.vaccine.2018.06.061
  • Briggs DJ, Schwenke JR. Longevity of rabies antibody titre in recipients of human diploid cell rabies vaccine. Vaccine. 1992;10(2):125–9. doi: 10.1016/0264-410X(92)90029-J
  • Thraenhart O, Kreuzfelder E, Hillebrandt M, et al. Long-term humoral and cellular immunity after vaccination with cell culture rabies vaccines in man. Clin Immunol Immunopathol. 1994;71(3):287–92. doi: 10.1006/clin.1994.1088
  • Mansfield KL, Andrews N, Goharriz H, et al. Rabies pre-exposure prophylaxis elicits long-lasting immunity in humans. Vaccine. 2016;34(48):5959–5967. doi: 10.1016/j.vaccine.2016.09.058
  • Chlibek R, Pauksens K, Rombo L, et al. Long-term immunogenicity and safety of an investigational herpes zoster subunit vaccine in older adults. Vaccine. 2016 3;34(6):863–8. doi: 10.1016/j.vaccine.2015.09.073
  • Boutry C, Hastie A, Diez-Domingo J, et al. The adjuvanted recombinant zoster vaccine confers long-term protection against herpes zoster: interim results of an extension study of the pivotal phase 3 clinical trials ZOE-50 and ZOE-70. Clin Infect Dis. 2022;74(8):1459–1467. doi: 10.1093/cid/ciab629
  • Wendelboe AM, Van Rie A, Salmaso S, et al. Duration of immunity against pertussis after natural infection or vaccination. Pediatr Infect Dis J. 2005;24(5 Suppl):S58–61. doi: 10.1097/01.inf.0000160914.59160.41
  • Vashishtha VM, Bansal CP, Gupta SG. Pertussis vaccines: position paper of Indian Academy of Pediatrics (IAP). Indian Pediatr. 2013;50(11):1001–9. doi: 10.1007/s13312-013-0274-y
  • Jenkinson D Duration of effectiveness of pertussis vaccine: evidence from a 10-year community study. Br Med J (Clin Res Ed). 1988;296(6622):612–614. 10.1136/bmj.296.6622.612
  • Campbell H, Amirthalingam G, Andrews N, et al. Accelerating control of pertussis in England and Wales. Emerg Infect Dis. 2012;18(1):38–47. doi: 10.3201/eid1801.110784
  • Mueller J, Koutangni T, Guiso N, et al. Comparative efficacy/effectiveness of schedules in infant immunisation against pertussis, diphtheria and tetanus: systematic review and meta-analysis. Part 2: whole-cell pertussis vaccine. 2014 [accessed 2024 Jan 6]. Available from: http://www.who.int/immunization/sage/meetings/2015/april/6_Report_wP_140813.pdf?ua=1
  • World Health Organization. WHO position paper-pneumococcal vaccines. Duration of Protection and Revaccination. [accessed 2023 Dec 10]. Available from: https://cdn.who.int/media/docs/default-source/immunization/position_paper_documents/pneumococcus/ppv23_additional_summary_duration_protection_revaccination.pdf?sfvrsn=ddf846b_3.
  • Butler JC. Pneumococcal polysaccharide vaccine efficacy. An evaluation of current recommendations. JAMA. 1993;270(15):1826–1831. doi: 10.1001/jama.1993.03510150060030
  • Sara E, Oliver SE, Moro P, et al. Epidemiology and prevention of vaccine-preventable diseases. Haemophilus influenzae [accessed 2024 Jan 5]. Available from: https://www.cdc.gov/vaccines/pubs/pinkbook/hib.html#:~:text=Hib%20conjugate%20vaccines%20are%20highly,children%20who%20are%20fully%20vaccinated
  • World Health Organization. Haemophilus influenzae type b (hib) vaccination position paper – July 2013. Wkly Epidemiol Rec. 2013;88(39):413–426.
  • von Gottberg A, Cohen C, Whitelaw A, et al.; Group for Enteric, Respiratory, Meningeal Disease Surveillance in South Africa (GERMS-SA). Invasive disease due to Haemophilus influenzae serotype b ten years after routine vaccination, South Africa, 2003-2009. Vaccine. 2012;30(3):565–571. doi: 10.1016/j.vaccine.2011.11.066.
  • Ladhani S, Heath PT, Ramsay ME, et al. Long-term immunological follow-up of children with Haemophilus influenzae serotype b vaccine failure in the United Kingdom. Clin Infect Dis. 2009;49(3):372–80. doi: 10.1086/600292
  • Sharma H, Yadav S, Lalwani S, et al. Antibody persistence of two pentavalent DTwP-HB-Hib vaccines to the age of 15-18 months, and response to the booster dose of quadrivalent DTwP-Hib vaccine. Vaccine. 2013;31(3):444–447. doi: 10.1016/j.vaccine.2012.11.038
  • Gunardi H, Rusmil K, Fadlyana E, et al. DTwP-HB-Hib: antibody persistence after a primary series, immune response and safety after a booster dose in children 18-24 months old. BMC Pediatr. 2018;18(1):177. doi: 10.1186/s12887-018-1143-6
  • Hu Z, Rou YL, Chen C, et al. An epidemiological and serological study on duration of protection after meningococcal group a polysaccharide (APS) vaccination. In: Poolman JT, editor. Gonococci and Meningococci. Dordrech: Springer; 1988. p. 199–207.
  • Reingold AL, Broome CV, Hightower AW, et al. Age-specific differences in duration of clinical protection after vaccination with meningococcal polysaccharide A vaccine. Lancet. 1985;2 (8447):114–118. doi: 10.1016/S0140-6736(85)90224-7
  • Andrews N, Borrow R, Miller E Validation of serological correlate of protection for meningococcal C conjugate vaccine by using efficacy estimates from post-licensure surveillance in England. Clin Diagn Lab Immunol. 2003;10(5):780–786. doi: 10.1128/CDLI.10.5.780-786.2003
  • Borrow R, Andrews N, Goldblatt D, et al. Serological basis for use of meningococcal serogroup C conjugate vaccines in the United Kingdom: reevaluation of correlates of protection. Infect Immun. 2001;69(3):1568–73. doi: 10.1128/IAI.69.3.1568-1573.2001
  • Nolan T, Booy R, Marshall HS, et al. Immunogenicity and safety of a quadrivalent meningococcal ACWY-tetanus toxoid conjugate vaccine 6 years after MenC priming as toddlers. Pediatr Infect Dis J. 2019;38(6):643–650. doi: 10.1097/INF.0000000000002334
  • Cohn AC, MacNeil JR, Harrison LH, et al. Active bacterial core surveillance (ABCs) team and MeningNet surveillance partners. Effectiveness and duration of protection of one dose of a meningococcal conjugate vaccine. Pediatrics. 2017;139(2):e20162193. doi: 10.1542/peds.2016-2193
  • Schwartz KL, Kwong JC, Deeks SL, et al. Effectiveness of pertussis vaccination and duration of immunity. CMAJ. 2016;188(16):E399–E406. doi: 10.1503/cmaj.160193
  • Mills KH Immunity to Bordetella pertussis. Microbes Infect. 2001;3(8):655–677. doi: 10.1016/S1286-4579(01)01421-6
  • Klein NP, Bartlett J, Rowhani-Rahbar A, et al. Waning protection after fifth dose of acellular pertussis vaccine in children. N Engl J Med. 2012;367(11):1012–1019. doi: 10.1056/NEJMoa1200850
  • Witt MA, Katz PH, Witt DJ. Unexpectedly limited durability of immunity following acellular pertussis vaccination in preadolescents in a North American outbreak. Clin Infect Dis. 2012;54(12):1730–5. doi: 10.1093/cid/cis287
  • Bell CA, Russell ML, Drews SJ, et al. Acellular pertussis vaccine effectiveness and waning immunity in Alberta, Canada: 2010-2015, a Canadian Immunization Research Network (CIRN) study. Vaccine. 2019;37(30):4140–4146. doi: 10.1016/j.vaccine.2019.05.067
  • Klein NP, Bartlett J, Fireman B, et al. Waning Tdap Effectiveness in Adolescents. Pediatrics. 2016;137(3):e20153326. doi: 10.1542/peds.2015-3326
  • Koepke R, Eickhoff JC, Ayele RA, et al. Estimating the effectiveness of tetanus-diphtheria-acellular pertussis vaccine (Tdap) for preventing pertussis: evidence of rapidly waning immunity and difference in effectiveness by Tdap brand. J Infect Dis. 2014;210(6):942–53. doi: 10.1093/infdis/jiu322
  • Acosta AM, DeBolt C, Tasslimi A, et al. Tdap vaccine effectiveness in adolescents during the 2012 Washington State pertussis epidemic. Pediatrics. 2015;135(6):981–9. doi: 10.1542/peds.2014-3358
  • Briere EC, Pondo T, Schmidt M, et al. Assessment of Tdap vaccination effectiveness in adolescents in integrated health-care systems. J Adolesc Health. 2018;62(6):661–666. doi: 10.1016/j.jadohealth.2017.12.011
  • Sridhar S, Luedtke A, Langevin E, et al. Effect of Dengue Serostatus on Dengue vaccine safety and efficacy. N Engl J Med. 2018;379(4):327–340. doi: 10.1056/NEJMoa1800820
  • Rivera L, Biswal S, Sáez-Llorens X, et al. Three-year efficacy and safety of Takeda’s dengue vaccine Candidate (TAK-003). Clin Infect Dis. 2022;75(1):107–117. doi: 10.1093/cid/ciab864
  • Tricou V Efficacy and safety of Takeda’s tetravalent dengue vaccine Candidate (TAK-003) after 4.5 years of follow-up. Presented at 8th Northern European Conference of Travel Medicine; Jun 2022 [accessed 2023 Dec 12]. Available from: https://assets-dam.takeda.com/raw/upload/v1668754472/legacy-dotcom/siteassets/system/what-we-do/areas-of-focus/vaccines/info/tides-fact-sheet.pdf
  • World Health Organization. Cholera vaccines: WHO position paper–August 2017. Wkly Epidemiol Rec. 2017;92(34):477–498.
  • Bhattacharya SK, Sur D, Ali M, et al. 5-year efficacy of a bivalent killed whole-cell oral cholera vaccine in Kolkata, India: a cluster-randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2013;13(12):1050–1056. doi: 10.1016/S1473-3099(13)70273-1
  • Tandan JB, Ohrr H, Sohn YM, et al. Single dose of SA 14-14-2 vaccine provides long-term protection against Japanese encephalitis: a case-control study in Nepalese children 5 years after immunization. Vaccine. 2007; 25(27):5041–5045. doi: 10.1016/j.vaccine.2007.04.052
  • Khan SA, Choudhury P, Kakati S, et al. Effectiveness of a single dose of Japanese encephalitis vaccine among adults, Assam, India, 2012-2018. Vaccine. 2021;39(35):4973–4978. doi: 10.1016/j.vaccine.2021.07.041
  • Preethi L, Alina MS, Chandran L, et al. Duration of seroprotection of the live attenuated SA-14-14-2 Japanese encephalitis vaccine in children in India. J Travel Med. 2023;30(2):taac147. doi: 10.1093/jtm/taac147
  • Kadlecek V, Borja-Tabora CF, Eder-Lingelbach S, et al. Antibody persistence up to 3 years after primary immunization with inactivated Japanese encephalitis vaccine IXIARO in Philippine children and effect of a booster dose. Pediatr Infect Dis J. 2018;37(9):e233–e240. doi: 10.1097/INF.0000000000002124
  • Taucher C, Kollaritsch H, Dubischar KL. Persistence of the immune response after vaccination with the Japanese encephalitis vaccine, IXIARO® in healthy adults: a five year follow-up study. Vaccine. 2019;37(19):2529–2531. doi: 10.1016/j.vaccine.2019.03.030
  • Paulke-Korinek M, Kollaritsch H, Kundi M, et al. Persistence of antibodies six years after booster vaccination with inactivated vaccine against Japanese encephalitis. Vaccine. 2015;33(30):3600–4. doi: 10.1016/j.vaccine.2015.05.037
  • World Health Organization. Typhoid vaccines: WHO position paper – March 2018. Wkly Epidemiol Rec. 2018;93:153–172.
  • Klugman KP, Koornhof HJ, Robbins JB, et al. Immunogenicity, efficacy and serological correlate of protection of salmonella typhi vi capsular polysaccharide vaccine three years after immunization. Vaccine. 1996;14(5):435–8. doi: 10.1016/0264-410X(95)00186-5
  • Lin FY, Ho VA, Khiem HB, et al. The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N Engl J Med. 2001;344(17):1263–1269.10.1056/NEJM200104263441701
  • Voysey M, Pollard AJ Seroefficacy of Vi polysaccharide-tetanus toxoid typhoid conjugate vaccine (Typbar TCV). Clin Infect Dis. 2018;67(1):18–24. doi: 10.1093/cid/cix1145
  • Vadrevu KM, Raju D, Rani S, et al. Persisting antibody responses to Vi polysaccharide-tetanus toxoid conjugate (Typbar TCV®) vaccine up to 7 years following primary vaccination of children < 2 years of age with, or without, a booster vaccination. Vaccine. 2021 Oct 29;39(45):6682–6690. doi: 10.1016/j.vaccine.2021.07.073
  • Klein NP, Bartlett J, Fireman B, et al. Effectiveness of the live zoster vaccine during the 10 years following vaccination: real world cohort study using electronic health records. BMJ. 2023;383:e076321. doi: 10.1136/bmj-2023-076321
  • World Health Organization. Rotavirus vaccines: WHO position paper - July 2021. Weekly Epidemiological Rec, 2021;96:301–319.
  • Clark A, van Zandvoort K, Flasche S, et al. Efficacy of live oral rotavirus vaccines by duration of follow-up: a meta-regression of randomised controlled trials. Lancet Infect Dis. 2019;19(7):717–727. doi: 10.1016/S1473-3099(19)30126-4
  • Vesikari T, Karvonen A, Ferrante SA, et al. Efficacy of the pentavalent rotavirus vaccine, RotaTeq®, in Finnish infants up to 3 years of age: the Finnish extension study. Eur J Pediatr. 2010;169(11):1379–86. doi: 10.1007/s00431-010-1242-3
  • Phua KB, Lim FS, Lau YL, et al. Rotavirus vaccine RIX4414 efficacy sustained during the third year of life: a randomized clinical trial in an Asian population. Vaccine. 2012;30(30):4552–7. doi: 10.1016/j.vaccine.2012.03.030
  • Vashishtha VM, Kalra A, Choudhury P. Influenza vaccination in India: position paper of Indian Academy of Pediatrics, 2013. Indian Pediatr. 2013;50(9):867–74. doi: 10.1007/s13312-013-0230-x
  • Saha S, Chadha M, Shu Y, et al. Divergent seasonal patterns of influenza types a and B across latitude gradient in tropical asia. Influenza Other Respir Viruses. 2016;10(3):176–184. doi: 10.1111/irv.12372
  • Young B, Sadarangani S, Jiang L, et al. Duration of Influenza vaccine effectiveness: a systematic review, meta-analysis, and meta-regression of test-negative design case-control studies. J Infect Dis. 2018;217(5):731–741. doi: 10.1093/infdis/jix632
  • Ferdinands JM, Fry AM, Reynolds S, et al. Intraseason waning of influenza vaccine protection: evidence from the US influenza vaccine effectiveness network, 2011-12 through 2014-15. Clin Infect Dis. 2016;64(5):544–550. doi: 10.1093/cid/ciw816
  • Regan AK, Fielding JE, Chilver MB, et al. Intra-season decline in influenza vaccine effectiveness during the 2016 southern hemisphere influenza season: a test-negative design study and phylogenetic assessment. Vaccine. 2019;37(19):2634–2641. doi: 10.1016/j.vaccine.2019.02.027
  • Rambhia KJ, Rambhia MT. Early bird gets the flu: what should be done about waning intraseasonal immunity against seasonal influenza? Clin Infect Dis. 2019;68(7):1235–1240. doi: 10.1093/cid/ciy748
  • Feikin DR, Higdon MM, Abu-Raddad LJ, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet. 2022;399(10328):924–944. doi: 10.1016/S0140-6736(22)00152-0
  • Menegale F, Manica M, Zardini A, et al. Evaluation of waning of SARS-CoV-2 vaccine-induced immunity: a systematic review and meta-analysis. JAMA Netw Open. 2023;6(5):e2310650. doi: 10.1001/jamanetworkopen.2023.10650
  • Xu S, Li J, Wang H, et al. Real-world effectiveness and factors associated with effectiveness of inactivated SARS-CoV-2 vaccines: a systematic review and meta-regression analysis. BMC Med. 2023;21(1):160. doi: 10.1186/s12916-023-02861-3
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–17. doi: 10.1038/ni.2039
  • Kamat D, Mathur A. Vaccine immunology. In: Vashishtha V Kalra A (editors) IAP Textbook of Vaccines. 2nd ed. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 31–44.
  • Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity. 2020;53(6):1136–1150. doi: 10.1016/j.immuni.2020.11.006
  • Chen Z, Gao X, Yu D. Longevity of vaccine protection: immunological mechanism, assessment methods, and improving strategy. View. 2022;3(1):20200103.
  • Stebegg M, Kumar SD, Silva-Cayetano A, et al. Regulation of the germinal center response. Front Immunol. 2018;9:2469. doi: 10.3389/fimmu.2018.02469
  • Elgueta R, de Vries VC, Noelle RJ The immortality of humoral immunity. Immunol Rev. 2010;236(1):139–150. doi: 10.1111/j.1600-065X.2010.00924.x
  • Siegrist C-A. Vaccine immunology. In: Plotkin S, Orenstein W, Offit P, editors. Vaccins. 6th ed. Philadelphia, PA: Elsevier-Saunders; 2013; p. 14–32.
  • Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S3–23. doi: 10.1016/j.jaci.2009.12.980
  • Wu X, Wu P, Shen Y, et al. CD8+ resident memory T cells and viral infection. Front Immunol. 2018;9:2093. doi: 10.3389/fimmu.2018.02093
  • Amanna IJ, Slifka MK, Crotty S Immunity and immunological memory following smallpox vaccination. Immunol Rev. 2006;211 1:320–337. doi: 10.1111/j.0105-2896.2006.00392.x
  • Amanna IJ, Slifka MK. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol Rev. 2010;236(1):125–138. doi: 10.1111/j.1600-065X.2010.00912.x
  • Kato Y, Abbott RK, Freeman BL, et al. Multifaceted effects of antigen Valency on B cell response composition and differentiation in vivo. Immunity. 2020;53(3):548–563.e8. doi: 10.1016/j.immuni.2020.08.001
  • Heinz FX, Stiasny K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccin. 2021;6(1):104. doi: 10.1038/s41541-021-00369-6
  • Palin AC, Alter G, Crotty S, et al. The persistence of memory: defining, engineering, and measuring vaccine durability. Nat Immunol. 2022;23(12):1665–1668. doi: 10.1038/s41590-022-01359-z.
  • Kumar P. “Mix and match” of COVID vaccines (heterologous boosters) In: Vashishtha V, Kumar P, and Wadhwa A, editors. COVID-19 vaccines a comprehensive review. 1st ed. Mumbai: Tree Life Media Publishers, 2022: p. 269–279.
  • Slifka MK, Amanna I. How advances in immunology provide insight into improving vaccine efficacy. Vaccine. 2014;32(25):2948–57. doi: 10.1016/j.vaccine.2014.03.078
  • Gordon DM, McGovern TW, Krzych U, et al. Safety, immunogenicity, and efficacy of a recombinant produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J Infect Dis. 1995;171(6):1576–1585. doi: 10.1093/infdis/171.6.1576
  • Bejon P, White MT, Olotu A, et al. Efficacy of RTS, S malaria vaccines: individual-participant pooled analysis of phase 2 data. Lancet Infect Dis. 2013;13(4):319–327. doi: 10.1016/S1473-3099(13)70005-7
  • Graham BS, Gilman MSA, McLellan JS. Structure-Based Vaccine Antigen Design. Annu Rev Med. 2019 Jan 27;70(1):91–104. doi: 10.1146/annurev-med-121217-094234
  • Bugya Z, Prechl J, Szénási T, et al. Multiple levels of immunological memory and their association with vaccination. Vaccines (Basel). 2021 Feb 19;9(2):174. doi: 10.3390/vaccines9020174
  • Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114. doi: 10.3389/fimmu.2013.00114
  • Billeskov R, Beikzadeh B, Berzofsky JA. The effect of antigen dose on T cell-targeting vaccine outcome. Hum Vaccin Immunother. 2019;15(2):407–411. doi: 10.1080/21645515.2018.1527496
  • Styles TM, Gangadhara S, Reddy PBJ, et al. V2 hotspot optimized MVA vaccine expressing stabilized HIV-1 Clade C envelope Gp140 delays acquisition of heterologous Clade C Tier 2 challenges in Mamu-A*01 negative Rhesus Macaques. Front Immunol. 2022;13:914969. doi: 10.3389/fimmu.2022.914969
  • Jegaskanda S, Mason RD, Andrews SF, et al. Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. J Virol. 2018;92(9):e01970–17. doi: 10.1128/JVI.01970-17
  • Mok DZL, Chan KR. The effects of pre-existing antibodies on live-attenuated viral vaccines. Viruses. 2020;12(5):520. doi: 10.3390/v12050520
  • Ciarambino T, Para O, Giordano M. Immune system and COVID-19 by sex differences and age. Womens Health. 2021;17:17455065211022262. doi: 10.1177/17455065211022262
  • Cheung F, Apps R, Dropulic L, et al. Sex and prior exposure jointly shape innate immune responses to a live herpesvirus vaccine. Elife. 2023;12:e80652. doi: 10.7554/eLife.80652
  • Cruz-Tapias P, Castiblanco J, Anaya JM, et al. Major histocompatibility complex: antigen processing and presentation. In: Anaya J, Shoenfeld Y Rojas-Villarraga A, editors. Autoimmunity: from bench to bedside [internet]. Bogota (Colombia): El Rosario University Press; 2013. Chapter 10. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459467/
  • van der Klaauw AA, Horner EC, Pereyra-Gerber P, et al. Accelerated waning of the humoral response to COVID-19 vaccines in obesity. Nat Med. 2023;29(5):1146–1154. doi: 10.1038/s41591-023-02343-2
  • Jordan A, Carding SR, Hall LJ. The early-life gut microbiome and vaccine efficacy. Lancet Microbe. 2022;3(10):e787–e794. doi: 10.1016/S2666-5247(22)00185-9
  • Moroishi Y, Gui J, Nadeau KC, et al. A prospective study of the infant gut microbiome in relation to vaccine response. Pediatr Res. 2023;93(3):725–731. doi: 10.1038/s41390-022-02154-0
  • Xu X, Wu Y, Kummer AG, et al. Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med. 2023;21(1):374. doi: 10.1186/s12916-023-03070-8
  • Varghese T, Kang G, Steele AD. Understanding rotavirus vaccine efficacy and effectiveness in countries with high child mortality. Vaccines (Basel). 2022;10(3):346. doi: 10.3390/vaccines10030346
  • Parker EP, Ramani S, Lopman BA, et al. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol. 2018;13(1):97–118. doi: 10.2217/fmb-2017-0128
  • Reuman PD, Bernstein DI, Keely SP, et al. Influenza-specific ELISA IgA and IgG predict severity of influenza disease in subjects prescreened with hemagglutination inhibition. Antiviral Res. 1990;13(3):103–10. doi: 10.1016/0166-3542(90)90026-4
  • Lavelle EC, Ward RW. Mucosal vaccines — fortifying the frontiers. Nat Rev Immunol. 2022;22(4):236–250. doi: 10.1038/s41577-021-00583-2
  • Nuwarda RF, Alharbi AA, Kayser V. An overview of influenza viruses and vaccines. Vaccines (Basel). 2021;9(9):1032. doi: 10.3390/vaccines9091032
  • Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21:162–177. doi: 10.1038/s41579-022-00841-7
  • Patriarca PA, Wright PF, John TJ. Factors affecting the immunogenicity of oral poliovirus vaccine in developing countries: review. Rev Infect Dis. 1991;13(5):926–39. doi: 10.1093/clinids/13.5.926
  • Otasowie CO, Tanner R, Ray DW, et al. Chronovaccination: Harnessing circadian rhythms to optimize immunisation strategies. Front Immunol. 2022;13:977525. doi: 10.3389/fimmu.2022.977525
  • Cervantes-Silva MP, Carroll RG, Wilk MM, et al. The circadian clock influences T cell responses to vaccination by regulating dendritic cell antigen processing. Nat Commun. 2022;13(1):7217. doi: 10.1038/s41467-022-34897-z
  • Cohen J. How long do vaccines last? The surprising answers may help protect people longer. Science Magazine [accessed 2023 Dec 23]. Available from: https://www.science.org/content/article/how-long-do-vaccines-last-surprising-answers-may-help-protect-people-longer
  • Beukema M, Gong S, Al-Jaawni K, et al. Prolonging the delivery of influenza virus vaccine improves the quantity and quality of the induced immune responses in mice. Front Immunol. 2023;14:1249902. doi: 10.3389/fimmu.2023.1249902
  • Lee JH, Sutton HJ, Cottrell CA, et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature. 2022;609(7929):998–1004. doi: 10.1038/s41586-022-05216-9
  • Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis. 2008 1;47(3):401–409. doi: 10.1086/589862.
  • Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014;14(1):24–35. doi: 10.1038/nri3567
  • Hammarlund E, Lewis MW, Hansen SG, et al. Duration of antiviral immunity after smallpox vaccination. Nature Med. 2003;9(9):1131–1137. doi: 10.1038/nm917
  • Crotty S, Felgner P, Davies H, et al. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol. 2003;171(10):4969–4973. doi: 10.4049/jimmunol.171.10.4969
  • Duan LJ, Cui XM, Zhu KL, et al. SARS-CoV-2 vaccine-induced antibody and T cell response in SARS-CoV-1 survivors. Cell Rep. 2022;40(9):111284. doi: 10.1016/j.celrep.2022.111284
  • McKee AS, Munks MW, MacLeod MK, et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J Immunol. 2009;183(7):4403–4414. 10.4049/jimmunol.0900164
  • Einstein MH, Baron M, Levin MJ, et al. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: follow-up from months 12–24 in a phase III randomized study of healthy women aged 18–45 years. Hum Vaccin. 2011;7(12):1343–1358. doi: 10.4161/hv.7.12.18281
  • Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83–100. doi: 10.1038/s41577-020-00479-7
  • Prabhakaran M, Matassoli F, Leggat D, et al. Adjuvanted SARS-CoV-2 spike protein vaccination elicits long-lived plasma cells in nonhuman primates. Sci Transl Med. 2024;16(728):eadd5960. doi: 10.1126/scitranslmed.add5960