542
Views
0
CrossRef citations to date
0
Altmetric
Review

Anti-neuraminidase immunity in the combat against influenza

&
Pages 474-484 | Received 08 Dec 2023, Accepted 12 Apr 2024, Published online: 23 Apr 2024

References

  • Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet. 2018 Mar 31;391(10127):1285–1300. doi: 10.1016/S0140-6736(17)33293-2
  • Paget J, Spreeuwenberg P, Charu V, et al. Global mortality associated with seasonal influenza epidemics: new burden estimates and predictors from the GLaMOR project. J Glob Health. 2019 Dec;9(2):020421.
  • Sandbulte MR, Westgeest KB, Gao J, et al. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc Natl Acad Sci USA. 2011 Dec 20;108(51):20748–20753. doi: 10.1073/pnas.1113801108
  • Jiang L, Changsom D, Lerdsamran H, et al. Cross-reactive antibodies against H7N9 and H5N1 avian influenza viruses in Thai population. Asian Pac J Allergy Immunol. 2017 Mar;35(1):20–26.
  • Rockman S, Brown LE, Barr IG, et al. Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. J Virol. 2013 Mar;87(6):3053–3061.
  • Chen Z, Kim L, Subbarao K, et al. The 2009 pandemic H1N1 virus induces anti-neuraminidase (NA) antibodies that cross-react with the NA of H5N1 viruses in ferrets. Vaccine. 2012;30(15):2516–2522. doi: 10.1016/j.vaccine.2012.01.090
  • Air GM. Influenza neuraminidase. Influenza Other Respir Viruses. 2012 Jul;6(4):245–256. doi: 10.1111/j.1750-2659.2011.00304.x
  • Laver WG, Valentine RC. Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus. Virology. 1969;38(1):105–119. doi: 10.1016/0042-6822(69)90132-9
  • Bateman A, Martin M-J, Orchard S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res.2021 Jan 8;49(D1):D480–D489. doi: 10.1093/nar/gkaa1100
  • Bossart-Whitaker P, Carson M, Babu YS, et al. Three-dimensional structure of influenza a N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid. J Mol Biol. 1993 Aug 20;232(4):1069–1083. doi: 10.1006/jmbi.1993.1461
  • Shtyrya YA, Mochalova LV, Bovin NV. Influenza virus neuraminidase: structure and function. Acta Naturae. 2009 Jul;1(2):26–32. doi: 10.32607/20758251-2009-1-2-26-32
  • Ward CW, Colman PM, Laver WG. The disulphide bonds of an Asian influenza virus neuraminidase. FEBS Lett. 1983;153(1):29–33. doi: 10.1016/0014-5793(83)80113-6
  • Selimova LM, Zaides VM, Zhdanov VM. Disulfide bonding in influenza virus proteins as revealed by polyacrylamide gel electrophoresis. J Virol. 1982 Nov;44(2):450–457. doi: 10.1128/jvi.44.2.450-457.1982
  • Du W, de Vries E, van Kuppeveld FJM, et al. Second sialic acid-binding site of influenza a virus neuraminidase: binding receptors for efficient release. FEBS J. 2020 Dec 14;288(19):5598–5612. doi: 10.1111/febs.15668
  • Du W, Guo H, Nijman VS, et al. The 2nd sialic acid-binding site of influenza a virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLOS Pathog. 2019 Jun;15(6):e1007860.
  • Varghese JN, Colman PM, van Donkelaar A, et al. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Natl Acad Sci USA. 1997 Oct 28;94(22):11808–11812. doi: 10.1073/pnas.94.22.11808
  • Sun X, Li Q, Wu Y, et al. Structure of influenza virus N7: the last piece of the neuraminidase “jigsaw” puzzle. J Virol. 2014 Aug;88(16):9197–9207.
  • Du W, Wolfert MA, Peeters B, et al. Mutation of the second sialic acid-binding site of influenza a virus neuraminidase drives compensatory mutations in hemagglutinin. PLOS Pathog. 2020 Aug;16(8):e1008816.
  • Dai M, McBride R, Dortmans J, et al. Mutation of the second sialic acid-binding site, resulting in reduced neuraminidase activity, preceded the emergence of H7N9 influenza a virus. J Virol. 2017 May 1;91(9). doi: 10.1128/JVI.00049-17
  • Du W, de Vries E, van Kuppeveld FJM, et al. Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J. 2021 Oct;288(19):5598–5612.
  • Johansson BE, Brett IC. Variation in the divalent cation requirements of influenza a virus N2 neuraminidases. J Biochem. 2003 Sep;134(3):345–352. doi: 10.1093/jb/mvg151
  • Baker NJ, Gandhi SS. Effect of Ca++ on the stability of influenza virus neuraminidase. Arch Virol. 1976;52(1–2):7–18. doi: 10.1007/BF01317860
  • Brett IC, Johansson BE. Variation in the divalent cation requirements of influenza a virus N1 neuraminidases. J Biochem. 2006 Mar;139(3):439–447. doi: 10.1093/jb/mvj051
  • Giurgea LT, Park JK, Walters KA, et al. The effect of calcium and magnesium on activity, immunogenicity, and efficacy of a recombinant N1/N2 neuraminidase vaccine. NPJ Vaccin. 2021 Apr 6;6(1):48. doi: 10.1038/s41541-021-00310-x
  • Wang H, Dou D, Ostbye H, et al. Structural restrictions for influenza neuraminidase activity promote adaptation and diversification. Nat Microbiol. 2019 Dec;4(12):2565–2577.
  • Sun Y, Tan Y, Wei K, et al. Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol. 2013 Mar;87(5):2963–2968.
  • Castrucci MR, Kawaoka Y. Biologic importance of neuraminidase stalk length in influenza A virus. J Virol. 1993 Feb;67(2):759–764. doi: 10.1128/jvi.67.2.759-764.1993
  • Blumenkrantz D, Roberts KL, Shelton H, et al. The short stalk length of highly pathogenic avian influenza H5N1 virus neuraminidase limits transmission of pandemic H1N1 virus in ferrets. J Virol. 2013 Oct;87(19):10539–10551.
  • Li Y, Chen S, Zhang X, et al. A 20-amino-acid deletion in the neuraminidase stalk and a five-amino-acid deletion in the NS1 protein both contribute to the pathogenicity of H5N1 avian influenza viruses in mallard ducks. PLOS ONE. 2014;9(4):e95539. doi: 10.1371/journal.pone.0095539
  • Chen S, Quan K, Wang D, et al. Truncation or deglycosylation of the neuraminidase stalk enhances the pathogenicity of the H5N1 subtype avian influenza virus in mallard ducks. Front Microbiol. 2020;11:583588. doi: 10.3389/fmicb.2020.583588
  • Park S, Il Kim J, Lee I, et al. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza a viruses. Sci Rep. 2017 Sep 7;7(1):10928. doi: 10.1038/s41598-017-11348-0
  • Bi Y, Xiao H, Chen Q, et al. Changes in the length of the neuraminidase stalk region impact H7N9 virulence in mice. J Virol. 2016 Feb 15;90(4):2142–2149. doi: 10.1128/JVI.02553-15
  • Stech O, Veits J, Abdelwhab EM, et al. The neuraminidase stalk deletion serves as major virulence determinant of H5N1 highly pathogenic avian influenza viruses in chicken. Sci Rep. 2015 Aug 26;5(1):13493. doi: 10.1038/srep13493
  • Munier S, Larcher T, Cormier-Aline F, et al. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J Virol. 2010 Jan;84(2):940–952.
  • Wu CY, Lin CW, Tsai TI, et al. Influenza A surface glycosylation and vaccine design. Proc Natl Acad Sci USA. 2017 Jan 10;114(2):280–285. doi: 10.1073/pnas.1617174114
  • Kendal AP. Epidemiologic implications of changes in the influenza virus genome. Am J Med. 1987;82(6):4–14. doi: 10.1016/0002-9343(87)90554-7
  • Seitz C, Casalino L, Konecny R, et al. Multiscale simulations examining glycan shield effects on drug binding to influenza neuraminidase. Biophys J. 2020 Dec 1;119(11):2275–2289. doi: 10.1016/j.bpj.2020.10.024
  • Martinet W, Saelens X, Deroo T, et al. Protection of mice against a lethal influenza challenge by immunization with yeast-derived recombinant influenza neuraminidase. Eur J Biochem. 1997 Jul 1;247(1):332–338. doi: 10.1111/j.1432-1033.1997.00332.x
  • Gao J, Couzens L, Burke DF, et al. Antigenic drift of the influenza A(H1N1)pdm09 virus neuraminidase results in reduced effectiveness of A/California/7/2009 (H1N1pdm09)-specific antibodies. MBio. 2019 Apr 9;10(2). doi: 10.1128/mBio.00307-19
  • Wan H, Gao J, Yang H, et al. The neuraminidase of A(H3N2) influenza viruses circulating since 2016 is antigenically distinct from the A/Hong Kong/4801/2014 vaccine strain. Nat Microbiol. 2019 Dec;4(12):2216–2225.
  • Powell H, Pekosz A, Lowen AC. Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLOS Pathog. 2020 Jun;16(6):e1008411. doi: 10.1371/journal.ppat.1008411
  • Wang F, Wan Z, Wu J, et al. A cross-reactive monoclonal antibody against neuraminidases of both H9N2 and H3N2 Influenza viruses shows protection in mice challenging models. Front Microbiol. 2021;12:730449. doi: 10.3389/fmicb.2021.730449
  • Ge J, Lin X, Guo J, et al. The antibody response against neuraminidase in human influenza a (H3N2) virus infections during 2018/2019 Flu Season: focusing on the epitopes of 329-N-Glycosylation and E344 in N2. Front Microbiol. 2022;13:845088. doi: 10.3389/fmicb.2022.845088
  • Wang CC, Chen JR, Tseng YC, et al. Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci USA. 2009 Oct 27;106(43):18137–18142. doi: 10.1073/pnas.0909696106
  • Ostbye H, Gao J, Martinez MR, et al. N-Linked glycan sites on the influenza a virus neuraminidase head domain are required for efficient viral incorporation and replication. J Virol. 2020 Sep 15;94(19). doi: 10.1128/JVI.00874-20
  • Yasuhara A, Yamayoshi S, Kiso M, et al. Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza a virus. Nat Microbiol. 2019 Jun;4(6):1024–1034.
  • Chen X, Liu S, Goraya MU, et al. Host immune response to influenza a virus infection. Front Immunol. 2018;9:320. doi: 10.3389/fimmu.2018.00320
  • Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol. 2014 May;14(5):315–328. doi: 10.1038/nri3665
  • Mifsud EJ, Kuba M, Barr IG. Innate immune responses to influenza virus infections in the upper respiratory tract. Viruses. 2021 Oct 17;13(10):2090.
  • Bahadoran A, Lee SH, Wang SM, et al. Immune responses to influenza virus and its correlation to age and inherited factors. Front Microbiol. 2016;7:1841. doi: 10.3389/fmicb.2016.01841
  • Ho AW, Prabhu N, Betts RJ, et al. Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J Immunol. 2011 Dec 1;187(11):6011–6021. doi: 10.4049/jimmunol.1100987
  • Brown DM, Lee S, Garcia-Hernandez Mde L, et al. Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol. 2012 Jun;86(12):6792–6803.
  • Krammer F. The human antibody response to influenza a virus infection and vaccination. Nat Rev Immunol. 2019 Jun;19(6):383–397. doi: 10.1038/s41577-019-0143-6
  • Changsom D, Jiang L, Lerdsamran H, et al. Kinetics, longevity, and cross-reactivity of antineuraminidase antibody after natural infection with influenza a viruses. Clin Vaccine Immunol. 2017 Dec;24(12). doi: 10.1128/CVI.00248-17
  • Couch RB, Kasel JA, Gerin JL, et al. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J Infect Dis. 1974 Apr;129(4):411–420.
  • Bosch BJ, Bodewes R, de Vries RP, et al. Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 A(H1N1) influenza virus infection in ferrets. J Virol. 2010 Oct;84(19):10366–10374.
  • Johansson BE, Bucher DJ, Kilbourne ED. Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of immunity to infection. J Virol. 1989 Mar;63(3):1239–1246. doi: 10.1128/jvi.63.3.1239-1246.1989
  • Johansson BE, Matthews JT, Kilbourne ED. Supplementation of conventional influenza a vaccine with purified viral neuraminidase results in a balanced and broadened immune response. Vaccine. 1998 May;16(9–10):1009–1015. doi: 10.1016/S0264-410X(97)00279-X
  • Johansson BE. Immunization with influenza a virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine. Vaccine. 1999 Apr 9;17(15–16):2073–2080.
  • Johansson BE, Pokorny BA, Tiso VA. Supplementation of conventional trivalent influenza vaccine with purified viral N1 and N2 neuraminidases induces a balanced immune response without antigenic competition. Vaccine. 2002 Feb 22;20(11–12):1670–1674.
  • Johansson BE, Brett IC. Recombinant influenza B virus HA and NA antigens administered in equivalent amounts are immunogenically equivalent and induce equivalent homotypic and broader heterovariant protection in mice than conventional and live influenza vaccines. Hum Vaccin. 2008 Nov;4(6):420–424. doi: 10.4161/hv.4.6.6201
  • Schulman JL, Khakpour M, Kilbourne ED. Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice. J Virol. 1968 Aug;2(8):778–786. doi: 10.1128/jvi.2.8.778-786.1968
  • Johansson BE, Kilbourne ED. Programmed antigenic stimulation: kinetics of the immune response to challenge infections of mice primed with influenza inactivated whole virus or neuraminidase vaccine. Vaccine. 1991;9(5):330–333. doi: 10.1016/0264-410X(91)90059-F
  • Murphy BM, Kasel A, Chanock RM. Association of serum anti-neuraminidase antibody with resistance to INfluenza in man. N Engl J Med. 1972;286(25):1329–1332. doi: 10.1056/NEJM197206222862502
  • Memoli MJ, Shaw PA, Han A, et al. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. MBio. 2016 Apr 19;7(2):e00417–16. doi: 10.1128/mBio.00417-16
  • Park JK, Han A, Czajkowski L, et al. Evaluation of preexisting anti-hemagglutinin stalk antibody as a correlate of protection in a healthy volunteer challenge with influenza A/H1N1pdm virus. MBio. 2018 Jan 23;9(1). doi: 10.1128/mBio.02284-17
  • Weiss CD, Wang W, Lu Y, et al. Neutralizing and neuraminidase antibodies correlate with protection against influenza during a late season A/H3N2 outbreak among unvaccinated military recruits. Clin Infect Dis. 2020 Dec 15;71(12):3096–3102. doi: 10.1093/cid/ciz1198
  • Maier HE, Nachbagauer R, Kuan G, et al. Pre-existing antineuraminidase antibodies are associated with shortened duration of influenza A(H1N1)pdm virus shedding and illness in naturally infected adults. Clin Infect Dis. 2020 May 23;70(11):2290–2297. doi: 10.1093/cid/ciz639
  • Walters KA, Zhu R, Welge M, et al. Differential effects of influenza virus NA, HA head, and HA stalk antibodies on peripheral blood leukocyte gene expression during human infection. MBio. 2019 May 14;10(3). doi: 10.1128/mBio.00760-19
  • Gilchuk IM, Bangaru S, Gilchuk P, et al. Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. Cell Host Microbe. 2019 Dec 11;26(6):715–728 e8. doi: 10.1016/j.chom.2019.10.003
  • Stadlbauer D, Zhu X, McMahon M, et al. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science. 2019 Oct 25;366(6464):499–504. doi: 10.1126/science.aay0678
  • Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015 Mar;14(3):167–182. doi: 10.1038/nrd4529
  • Valkenburg SA, Fang VJ, Leung NH, et al. Cross-reactive antibody-dependent cellular cytotoxicity antibodies are increased by recent infection in a household study of influenza transmission. Clin Transl Immunology. 2019;8(11):e1092. doi: 10.1002/cti2.1092
  • Kim YJ, Ko EJ, Kim MC, et al. Roles of antibodies to influenza a virus hemagglutinin, neuraminidase, and M2e in conferring cross protection. Biochem Biophys Res Commun. 2017 Nov 4;493(1):393–398. doi: 10.1016/j.bbrc.2017.09.011
  • Johansson B, Kilbourne E. Immunization with purified N1 and N2 influenza virus neuraminidases demonstrates cross-reactivity without antigenic competition. Proc Nat Acad Sci. 1994;91(6):2358–2361. doi: 10.1073/pnas.91.6.2358
  • Kilbourne ED, Couch RB, Kasel JA, et al. Purified influenza a virus N2 neuraminidase vaccine is immunogenic and non-toxic in humans. Vaccine. 1995;13(18):1799–1803. doi: 10.1016/0264-410X(95)00127-M
  • Johansson BE, Price PM, Kilbourne ED. Immunogenicity of influenza a virus N2 neuraminidase produced in insect larvae by baculovirus recombinants. Vaccine. 1995 Jun;13(9):841–845. doi: 10.1016/0264-410X(94)00071-T
  • Hocart M, Grajower B, Donabedian A, et al. Preparation and characterization of a purified influenza virus neuraminidase vaccine. Vaccine. 1995 Dec;13(18):1793–1798.
  • Deroo T, Jou WM, Fiers W. Recombinant neuraminidase vaccine protects against lethal influenza. Vaccine. 1996 Apr;14(6):561–569. doi: 10.1016/0264-410X(95)00157-V
  • Skarlupka AL, Zhang X, Blas-Machado U, et al. Multi-influenza ha subtype protection of ferrets vaccinated with an N1 COBRA-based neuraminidase. Viruses. 2023 Jan 9;15(1):184. doi: 10.3390/v15010184
  • Skarlupka AL, Bebin-Blackwell AG, Sumner SF, et al. Universal influenza virus neuraminidase vaccine elicits protective immune responses against human seasonal and pre-pandemic strains. J Virol. 2021 Aug 10;95(17):e0075921. doi: 10.1128/JVI.00759-21
  • Kawai A, Yamamoto Y, Nogimori T, et al. The potential of neuraminidase as an antigen for nasal vaccines to increase cross-protection against influenza viruses. J Virol. 2021 Sep 27;95(20):e0118021. doi: 10.1128/JVI.01180-21
  • Strohmeier S, Carreno JM, Brito RN, et al. Introduction of cysteines in the stalk domain of recombinant influenza virus N1 neuraminidase enhances protein stability and immunogenicity in mice. Vaccines (Basel). 2021 Apr 19;9(4):404. doi: 10.3390/vaccines9040404
  • Gao J, Klenow L, Parsons L, et al. Design of the recombinant influenza Neuraminidase Antigen Is Crucial for Its Biochemical Properties and Protective Efficacy. J Virol. 2021 Nov 23;95(24):e0116021. doi: 10.1128/JVI.01160-21
  • Strohmeier S, Amanat F, Zhu X, et al. A novel recombinant influenza virus neuraminidase vaccine candidate stabilized by a measles virus phosphoprotein tetramerization domain provides robust protection from virus challenge in the mouse model. MBio. 2021 Dec 21;12(6):e0224121. doi: 10.1128/mBio.02241-21
  • Zheng A, Sun W, Xiong X, et al. Enhancing neuraminidase immunogenicity of influenza a viruses by rewiring RNA packaging signals. J Virol. 2020 Jul 30;94(16). doi: 10.1128/JVI.00742-20
  • McMahon M, Strohmeier S, Rajendran M, et al. Correctly folded - but not necessarily functional - influenza virus neuraminidase is required to induce protective antibody responses in mice. Vaccine. 2020 Oct 21;38(45):7129–7137. doi: 10.1016/j.vaccine.2020.08.067
  • Johansson B, Kilbourne E. Dissociation of influenza virus hemagglutinin and neuraminidase eliminates their intravirionic antigenic competition. J Virol. 1993;67(10):5721–5723. doi: 10.1128/jvi.67.10.5721-5723.1993
  • Zhang F, Chen J, Fang F, et al. Maternal immunization with both hemagglutinin- and neuraminidase-expressing DNAs provides an enhanced protection against a lethal influenza virus challenge in infant and adult mice. DNA Cell Biol. 2005 Nov;24(11):758–765.
  • Meseda CA, Atukorale V, Soto J, et al. Immunogenicity and protection against influenza H7N3 in mice by modified vaccinia virus ankara vectors expressing influenza virus hemagglutinin or neuraminidase. Sci Rep. 2018 Mar 29;8(1):5364. doi: 10.1038/s41598-018-23712-9
  • Walz L, Kays SK, Zimmer G, et al. Neuraminidase-inhibiting antibody titers correlate with protection from heterologous influenza virus strains of the same neuraminidase subtype. J Virol. 2018 Sep 1;92(17). doi: 10.1128/JVI.01006-18
  • Kang HJ, Chu KB, Yoon KW, et al. Neuraminidase in virus-like particles contributes to the protection against high dose of avian influenza virus challenge infection. Pathogens. 2021 Oct 7;10(10):1291. doi: 10.3390/pathogens10101291
  • Menne Z, Pliasas VC, Compans RW, et al. Bivalent vaccination with NA1 and NA2 neuraminidase virus-like particles is protective against challenge with H1N1 and H3N2 influenza a viruses in a murine model. Virology. 2021 Oct;562:197–208. doi: 10.1016/j.virol.2021.08.001
  • Li Q, Sun X, Li Z, et al. Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza a virus. Proc Natl Acad Sci USA. 2012 Nov 13;109(46):18897–18902. doi: 10.1073/pnas.1211037109
  • Krammer F, Fouchier RAM, Eichelberger MC, et al. Naction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? mBio. MBio. 2018 Apr 3;9(2). doi: 10.1128/mBio.02332-17
  • Zhuang Q, Wang S, Liu S, et al. Diversity and distribution of type a influenza viruses: an updated panorama analysis based on protein sequences. Virol J. 2019 Jun 26;16(1):85. doi: 10.1186/s12985-019-1188-7
  • Shi W, Lei F, Zhu C, et al. A complete analysis of HA and NA genes of influenza a viruses. PLOS ONE. 2010 Dec 29;5(12):e14454. doi: 10.1371/journal.pone.0014454
  • Kendal AP, Bozeman FM, Ennis FA. Further studies of the neuraminidase content of inactivated influenza vaccines and the neuraminidase antibody responses after vaccination of immunologically primed and unprimed populations. Infect Immun. 1980 Sep;29(3):966–971. doi: 10.1128/iai.29.3.966-971.1980
  • Cate TR, Rayford Y, Niño D, et al. A high dosage influenza vaccine induced significantly more neuraminidase antibody than standard vaccine among elderly subjects. Vaccine. 2010;28(9):2076–2079. doi: 10.1016/j.vaccine.2009.12.041
  • Couch RB, Atmar RL, Keitel WA, et al. Randomized comparative study of the serum antihemagglutinin and antineuraminidase antibody responses to six licensed trivalent influenza vaccines. Vaccine. 2012 Dec 17;31(1):190–195. doi: 10.1016/j.vaccine.2012.10.065
  • Sergeeva MV, Romanovskaya-Romanko EA, Krivitskaya VZ, et al. Longitudinal analysis of neuraminidase and hemagglutinin antibodies to influenza a viruses after immunization with seasonal inactivated influenza vaccines. Vaccines (Basel). 2023 Nov 20;11(11):1731. doi: 10.3390/vaccines11111731
  • Desheva Y, Smolonogina T, Donina S, et al. Study of Neuraminidase-inhibiting antibodies in clinical trials of live influenza vaccines. Antibodies (Basel). 2020 May 29;9(2):20. doi: 10.3390/antib9020020
  • Wohlbold TJ, Nachbagauer R, Xu H, et al. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. MBio. 2015 Mar 10;6(2):e02556. doi: 10.1128/mBio.02556-14
  • Wong SS, Waite B, Ralston J, et al. Hemagglutinin and neuraminidase antibodies are induced in an age- and subtype-dependent manner after influenza virus infection. J Virol. 2020 Mar 17;94(7). doi: 10.1128/JVI.01385-19
  • Gostic KM, Ambrose M, Worobey M, et al. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science. 2016 Nov 11;354(6313):722–726. doi: 10.1126/science.aag1322
  • Hansen L, Zhou F, Amdam H, et al. Repeated influenza vaccination boosts and maintains H1N1pdm09 neuraminidase antibody titers. Front Immunol. 2021;12:748264. doi: 10.3389/fimmu.2021.748264
  • Kirchenbaum GA, Carter DM, Ross TM, et al. Sequential infection in ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts hemagglutinin stalk-specific antibodies. J Virol. 2016 Jan 15;90(2):1116–1128.
  • Kilbourne ED. Comparative efficacy of neuraminidase-specific and conventional influenza virus vaccines in induction of antibody to neuraminidase in humans. J Infect Dis. 1976 Oct;134(4):384–394. doi: 10.1093/infdis/134.4.384
  • Kendal AP, Noble GR, Dowdle WR. Neuraminidase content of influenza vaccines and neuraminidase antibody responses after vaccination of immunologically primed and unprimed populations. J Infect Dis. 1977 Dec;136(Suppl: Supplement 3):S415–S424. doi: 10.1093/infdis/136.Supplement_3.S415
  • Johansson BE, Moran TM, Kilbourne ED. Antigen-presenting B cells and helper T cells cooperatively mediate intravirionic antigenic competition between influenza a virus surface glycoproteins. Proc Natl Acad Sci USA. 1987 Oct;84(19):6869–6873. doi: 10.1073/pnas.84.19.6869
  • Creytens S, Pascha MN, Ballegeer M, et al. Influenza neuraminidase characteristics and potential as a vaccine target. Front Immunol. 2021;12:786617. doi: 10.3389/fimmu.2021.786617
  • Rajendran M, Krammer F, McMahon M. The human antibody response to the influenza virus neuraminidase following infection or vaccination. Vaccines (Basel). 2021 Aug 2;9(8):846.
  • Wan H, Yang H, Shore DA, et al. Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nat Commun. 2015 Feb 10;6(1):6114. doi: 10.1038/ncomms7114
  • Job ER, Schotsaert M, Ibanez LI, et al. Antibodies directed toward neuraminidase N1 control disease in a mouse model of influenza. J Virol. 2018 Feb 15;92(4). doi: 10.1128/JVI.01584-17
  • Yasuhara A, Yamayoshi S, Kiso M, et al. A broadly protective human monoclonal antibody targeting the sialidase activity of influenza a and B virus neuraminidases. Nat Commun. 2022 Nov 3;13(1):6602. doi: 10.1038/s41467-022-34521-0
  • Jiang H, Peng W, Qi J, et al. Structure-based modification of an anti-neuraminidase Human Antibody Restores Protection Efficacy against the drifted influenza virus. MBio. 2020 Oct 6;11(5). doi: 10.1128/mBio.02315-20
  • Momont C, Dang HV, Zatta F, et al. A pan-influenza antibody inhibiting neuraminidase via receptor mimicry. Nature. 2023 Jun;618(7965):590–597.
  • Lei R, Kim W, Lv H, et al. Leveraging vaccination-induced protective antibodies to define conserved epitopes on influenza N2 neuraminidase. Immunity. 2023 Nov 14;56(11):2621–2634 e6. doi: 10.1016/j.immuni.2023.10.005
  • Kirkpatrick Roubidoux E, M M, Carreno JM, et al. Identification and characterization of novel antibody epitopes on the N2 neuraminidase. mSphere. 2021 Feb 10;6(1). doi: 10.1128/mSphere.00958-20
  • Wang F, Wu J, Wang Y, et al. Identification of key residues involved in the neuraminidase antigenic variation of H9N2 influenza virus. Emerg Microbes Infect. 2021 Dec;10(1):210–219.
  • Lu X, Liu F, Zeng H, et al. Evaluation of the antigenic relatedness and cross-protective immunity of the neuraminidase between human influenza a (H1N1) virus and highly pathogenic avian influenza a (H5N1) virus. Virology. 2014 Apr;454-455:169–175. doi: 10.1016/j.virol.2014.02.011
  • Jiang L, Changsom D, Lerdsamran H, et al. Immunobiological properties of influenza A (H7N9) hemagglutinin and neuraminidase proteins. Arch Virol. 2016 Oct;161(10):2693–2704.
  • Piepenbrink MS, Nogales A, Basu M, et al. Broad and protective influenza B virus neuraminidase antibodies in humans after vaccination and their clonal persistence as plasma cells. MBio. 2019 Mar 12;10(2). doi: 10.1128/mBio.00066-19