2,608
Views
98
CrossRef citations to date
0
Altmetric
Original Article

CXCL10/IP-10: A missing link between inflammation and anti-angiogenesis in preeclampsia?

, , MD, , , , , , , , , , , & show all
Pages 777-792 | Received 29 Jan 2007, Accepted 02 May 2007, Published online: 07 Jul 2009

References

  • Brosens I A, Robertson W B, Dixon H G. The role of the spiral arteries in the pathogenesis of pre-eclampsia. J Pathol 1970; 101: vi
  • Brosens I, Dixon H G, Robertson W B. Fetal growth retardation and the arteries of the placental bed. Br J Obstet Gynaecol 1977; 84: 656–663
  • De Wolf F, Brosens I, Renaer M. Fetal growth retardation and the maternal arterial supply of the human placenta in the absence of sustained hypertension. Br J Obstet Gynaecol 1980; 87: 678–685
  • Khong T Y, De Wolf F, Robertson W B, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 1986; 93: 1049–1059
  • Pijnenborg R, Anthony J, Davey D A, Rees A, Tiltman A, Vercruysse L, van Assche A. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol 1991; 98: 648–655
  • Meekins J W, Pijnenborg R, Hanssens M, McFadyen I R, van Assche A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol 1994; 101: 669–674
  • Brosens J J, Pijnenborg R, Brosens I A. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: A review of the literature. Am J Obstet Gynecol 2002; 187: 1416–1423
  • Espinoza J, Romero R, Kim Y M, Kusanovic J P, Hassan S, Erez O, Gotsch F, Than N G, Papp Z, Kim C J. Normal and abnormal transformation of the spiral arteries during pregnancy. J Perinat Med 2006; 34: 447–458
  • Campbell S, Diaz-Recasens J, Griffin D R, Cohen-Overbeek T E, Pearce J M, Willson K, Teague M J. New Doppler technique for assessing uteroplacental blood flow. Lancet 1983; 1: 675–677
  • Harrington K F, Campbell S, Bewley S, Bower S. Doppler velocimetry studies of the uterine artery in the early prediction of pre-eclampsia and intra-uterine growth retardation. Eur J Obstet Gynecol Reprod Biol 1991; 42(Suppl)S14–S20
  • Bower S, Schuchter K, Campbell S. Doppler ultrasound screening as part of routine antenatal scanning: Prediction of pre-eclampsia and intrauterine growth retardation. Br J Obstet Gynaecol 1993; 100: 989–994
  • Harrington K, Cooper D, Lees C, Hecher K, Campbell S. Doppler ultrasound of the uterine arteries: The importance of bilateral notching in the prediction of pre-eclampsia, placental abruption or delivery of a small-for-gestational-age baby. Ultrasound Obstet Gynecol 1996; 7: 182–188
  • Dekker G A, Sibai B M. Etiology and pathogenesis of preeclampsia: Current concepts. Am J Obstet Gynecol 1998; 179: 1359–1375
  • Albaiges G, Missfelder-Lobos H, Lees C, Parra M, Nicolaides K H. One-stage screening for pregnancy complications by color Doppler assessment of the uterine arteries at 23 weeks' gestation. Obstet Gynecol 2000; 96: 559–564
  • Papageorghiou A T, Yu C K, Bindra R, Pandis G, Nicolaides K H. Multicenter screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. Ultrasound Obstet Gynecol 2001; 18: 441–449
  • Papageorghiou A T, Yu C K, Nicolaides K H. The role of uterine artery Doppler in predicting adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 2004; 18: 383–396
  • Roberts J M, Taylor R N, Musci T J, Rodgers G M, Hubel C A, McLaughlin M K. Preeclampsia: An endothelial cell disorder. Am J Obstet Gynecol 1989; 161: 1200–1204
  • Redman C W, Sacks G P, Sargent I L. Preeclampsia: An excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999; 180: 499–506
  • Bretelle F, Sabatier F, Blann A, D'Ercole C, Boutiere B, Mutin M, Boubli L, Sampol J, Dignat-George F. Maternal endothelial soluble cell adhesion molecules with isolated small for gestational age fetuses: Comparison with pre-eclampsia. BJOG 2001; 108: 1277–1282
  • Poston L, Chappell L C. Is oxidative stress involved in the aetiology of pre-eclampsia?. Acta Paediatr Suppl 2001; 90: 3–5
  • Johnson M R, Anim-Nyame N, Johnson P, Sooranna S R, Steer P J. Does endothelial cell activation occur with intrauterine growth restriction?. BJOG 2002; 109: 836–839
  • Roberts J M, Lain K Y. Recent insights into the pathogenesis of pre-eclampsia. Placenta 2002; 23: 359–372
  • Redman C W, Sargent I L. Latest advances in understanding preeclampsia. Science 2005; 308: 1592–1594
  • Ness R B, Sibai B M. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol 2006; 195: 40–49
  • Torry D S, Wang H S, Wang T H, Caudle M R, Torry R J. Preeclampsia is associated with reduced serum levels of placenta growth factor. Am J Obstet Gynecol 1998; 179: 1539–1544
  • Taylor R N, Grimwood J, Taylor R S, McMaster M T, Fisher S J, North R A. Longitudinal serum concentrations of placental growth factor: Evidence for abnormal placental angiogenesis in pathologic pregnancies. Am J Obstet Gynecol 2003; 188: 177–182
  • Tsatsaris V, Goffin F, Munaut C, Brichant J F, Pignon M R, Noel A, Schaaps J P, Cabrol D, Frankenne F, Foidart J M. Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: Pathophysiological consequences. J Clin Endocrinol Metab 2003; 88: 5555–5563
  • Chaiworapongsa T, Romero R, Espinoza J, Bujold E, Mee K Y, Goncalves L F, Gomez R, Edwin S. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am J Obstet Gynecol 2004; 190: 1541–1547
  • Levine R J, Maynard S E, Qian C, Lim K H, England L J, Yu K F, Schisterman E F, Thadhani R, Sachs B P, Epstein F H, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672–683
  • Shibata E, Rajakumar A, Powers R W, Larkin R W, Gilmour C, Bodnar L M, Crombleholme W R, Ness R B, Roberts J M, Hubel C A. Soluble fms-like tyrosine kinase 1 is increased in preeclampsia but not in normotensive pregnancies with small-for-gestational-age neonates: Relationship to circulating placental growth factor. J Clin Endocrinol Metab 2005; 90: 4895–4903
  • Levine R J, Lam C, Qian C, Yu K F, Maynard S E, Sachs B P, Sibai B M, Epstein F H, Romero R, Thadhani R, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355: 992–1005
  • Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim Y M, Bdolah Y, Lim K H, Yuan H T, Libermann T A, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12: 642–649
  • Barden A, Graham D, Beilin L J, Ritchie J, Baker R, Walters B N, Michael C A. Neutrophil CD11B expression and neutrophil activation in pre-eclampsia. Clin Sci (Lond) 1997; 92: 37–44
  • Haller H, Ziegler E M, Homuth V, Drab M, Eichhorn J, Nagy Z, Busjahn A, Vetter K, Luft F C. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients. Hypertension 1997; 29: 291–296
  • Sacks G P, Studena K, Sargent K, Redman C W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179: 80–86
  • Gervasi M T, Chaiworapongsa T, Pacora P, Naccasha N, Yoon B H, Maymon E, Romero R. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol 2001; 185: 792–797
  • Chaiworapongsa T, Gervasi M T, Refuerzo J, Espinoza J, Yoshimatsu J, Berman S, Romero R. Maternal lymphocyte subpopulations (CD45RA+ and CD45RO+) in preeclampsia. Am J Obstet Gynecol 2002; 187: 889–893
  • Sunder-Plassmann G, Derfler K, Wagner L, Stockenhuber F, Endler M, Nowotny C, Balcke P. Increased serum activity of interleukin-2 in patients with pre-eclampsia. J Autoimmun 1989; 2: 203–205
  • Greer I A, Lyall F, Perera T, Boswell F, Macara L M. Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: A mechanism for endothelial dysfunction?. Obstet Gynecol 1994; 84: 937–940
  • Vince G S, Starkey P M, Austgulen R, Kwiatkowski D, Redman C W. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol 1995; 102: 20–25
  • Conrad K P, Miles T M, Benyo D F. Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol 1998; 40: 102–111
  • Daniel Y, Kupferminc M J, Baram A, Jaffa A J, Fait G, Wolman I, Lessing J B. Plasma interleukin-12 is elevated in patients with preeclampsia. Am J Reprod Immunol 1998; 39: 376–380
  • Saito S, Umekage H, Sakamoto Y, Sakai M, Tanebe K, Sasaki Y, Morikawa H. Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am J Reprod Immunol 1999; 41: 297–306
  • Saito S, Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol 1999; 117: 550–555
  • Darmochwal-Kolarz D, Leszczynska-Gorzelak B, Rolinski J, Oleszczuk J. T helper 1- and T helper 2-type cytokine imbalance in pregnant women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 1999; 86: 165–170
  • Sakai M, Ogawa K, Shiozaki A, Yoneda S, Sasaki Y, Nagata K, Saito S. Serum granulysin is a marker for Th1 type immunity in pre-eclampsia. Clin Exp Immunol 2004; 136: 114–119
  • Bartha J L, Romero-Carmona R, Comino-Delgado R. Inflammatory cytokines in intrauterine growth retardation. Acta Obstet Gynecol Scand 2003; 82: 1099–1102
  • Neville L F, Mathiak G, Bagasra O. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev 1997; 8: 207–219
  • Strieter R M, Polverini P J, Kunkel S L, Arenberg D A, Burdick M D, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995; 270: 27348–27357
  • Strieter R M, Polverini P J, Arenberg D A, Kunkel S L. The role of CXC chemokines as regulators of angiogenesis. Shock 1995; 4: 155–160
  • Strieter R M, Polverini P J, Arenberg D A, Walz A, Opdenakker G, Van Damme J, Kunkel S L. Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. J Leukoc Biol 1995; 57: 752–762
  • Rollins B J. Chemokines. Blood 1997; 90: 909–928
  • Luster A D. Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–445
  • Belperio J A, Keane M P, Arenberg D A, Addison C L, Ehlert J E, Burdick M D, Strieter R M. CXC chemokines in angiogenesis. J Leukoc Biol 2000; 68: 1–8
  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18: 217–242
  • Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi M C, Napolitano M. Analysis of the role of chemokines in angiogenesis. J Immunol Methods 2003; 273: 83–101
  • Rosenkilde M M, Schwartz T W. The chemokine system—a major regulator of angiogenesis in health and disease. APMIS 2004; 112: 481–495
  • Romagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S. CXC chemokines: The regulatory link between inflammation and angiogenesis. Trends Immunol 2004; 25: 201–209
  • Strieter R M, Burdick M D, Gomperts B N, Belperio J A, Keane M P. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 2005; 16: 593–609
  • Charo I F, Ransohoff R M. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006; 354: 610–621
  • Luster A D, Unkeless J C, Ravetch J V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 1985; 315: 672–676
  • Luster A D, Ravetch J V. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 1987; 166: 1084–1097
  • Luster A D, Ravetch J V. Genomic characterization of a gamma-interferon-inducible gene (IP-10) and identification of an interferon-inducible hypersensitive site. Mol Cell Biol 1987; 7: 3723–3731
  • Kaplan G, Luster A D, Hancock G, Cohn Z A. The expression of a gamma interferon-induced protein (IP-10) in delayed immune responses in human skin. J Exp Med 1987; 166: 1098–1108
  • Gottlieb A B, Luster A D, Posnett D N, Carter D M. Detection of a gamma interferon-induced protein IP-10 in psoriatic plaques. J Exp Med 1988; 168: 941–948
  • Vanguri P, Farber J M. IFN and virus-inducible expression of an immediate early gene, crg-2/IP-10, and a delayed gene, I-A alpha in astrocytes and microglia. J Immunol 1994; 152: 1411–1418
  • Sarris A H, Esgleyes-Ribot T, Crow M, Broxmeyer H E, Karasavvas N, Pugh W, Grossman D, Deisseroth A, Duvic M. Cytokine loops involving interferon-gamma and IP-10, a cytokine chemotactic for CD4+ lymphocytes: An explanation for the epidermotropism of cutaneous T-cell lymphoma?. Blood 1995; 86: 651–658
  • Vanguri P. Interferon-gamma-inducible genes in primary glial cells of the central nervous system: Comparisons of astrocytes with microglia and Lewis with brown Norway rats. J Neuroimmunol 1995; 56: 35–43
  • Cassatella M A, Gasperini S, Calzetti F, Bertagnin A, Luster A D, McDonald P P. Regulated production of the interferon-gamma-inducible protein-10 (IP-10) chemokine by human neutrophils. Eur J Immunol 1997; 27: 111–115
  • Gasperini S, Marchi M, Calzetti F, Laudanna C, Vicentini L, Olsen H, Murphy M, Liao F, Farber J, Cassatella M A. Gene expression and production of the monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein-10 (IP-10) chemokines by human neutrophils. J Immunol 1999; 162: 4928–4937
  • Frigerio S, Junt T, Lu B, Gerard C, Zumsteg U, Hollander G A, Piali L. Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat Med 2002; 8: 1414–1420
  • Cardozo A K, Proost P, Gysemans C, Chen M C, Mathieu C, Eizirik D L. IL-1beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia 2003; 46: 255–266
  • Narumi S, Yoneyama H, Inadera H, Nishioji K, Itoh Y, Okanoue T, Matsushima K. TNF-alpha is a potent inducer for IFN-inducible protein-10 in hepatocytes and unaffected by GM-CSF in vivo, in contrast to IL-1beta and IFN-gamma. Cytokine 2000; 12: 1007–1016
  • Kraft M, Riedel S, Maaser C, Kucharzik T, Steinbuechel A, Domschke W, Luegering N. IFN-gamma synergizes with TNF-alpha but not with viable H. pylori in up-regulating CXC chemokine secretion in gastric epithelial cells. Clin Exp Immunol 2001; 126: 474–481
  • Algood H M, Lin P L, Yankura D, Jones A, Chan J, Flynn J L. TNF influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J Immunol 2004; 172: 6846–6857
  • Villagomez M T, Bae S J, Ogawa I, Takenaka M, Katayama I. Tumour necrosis factor-alpha but not interferon-gamma is the main inducer of inducible protein-10 in skin fibroblasts from patients with atopic dermatitis. Br J Dermatol 2004; 150: 910–916
  • Hardaker E L, Bacon A M, Carlson K, Roshak A K, Foley J J, Schmidt D B, Buckley P T, Comegys M, Panettieri R A, Jr, Sarau H M, et al. Regulation of TNF-alpha- and IFN-gamma-induced CXCL10 expression: Participation of the airway smooth muscle in the pulmonary inflammatory response in chronic obstructive pulmonary disease. FASEB J 2004; 18: 191–193
  • Sheng W S, Hu S, Ni H T, Rowen T N, Lokensgard J R, Peterson P K. TNF-alpha-induced chemokine production and apoptosis in human neural precursor cells. J Leukoc Biol 2005; 78: 1233–1241
  • Berthier-Vergnes O, Bermond F, Flacher V, Massacrier C, Schmitt D, Peguet-Navarro J. TNF-alpha enhances phenotypic and functional maturation of human epidermal Langerhans cells and induces IL-12 p40 and IP-10/CXCL-10 production. FEBS Lett 2005; 579: 3660–3668
  • Shin H S, Drysdale B E, Shin M L, Noble P W, Fisher S N, Paznekas W A. Definition of a lipopolysaccharide-responsive element in the 5′-flanking regions of MuRantes and crg-2. Mol Cell Biol 1994; 14: 2914–2925
  • Nazar A S, Cheng G, Shin H S, Brothers P N, Dhib-Jalbut S, Shin M L, Vanguri P. Induction of IP-10 chemokine promoter by measles virus: Comparison with interferon-gamma shows the use of the same response element but with differential DNA–protein binding profiles. J Neuroimmunol 1997; 77: 116–127
  • Cheng G, Nazar A S, Shin H S, Vanguri P, Shin M L. IP-10 gene transcription by virus in astrocytes requires cooperation of ISRE with adjacent kappaB site but not IRF-1 or viral transcription. J Interferon Cytokine Res 1998; 18: 987–997
  • Gasper N A, Petty C C, Schrum L W, Marriott I, Bost K L. Bacterium-induced CXCL10 secretion by osteoblasts can be mediated in part through toll-like receptor 4. Infect Immun 2002; 70: 4075–4082
  • Shen Q, Zhang R, Bhat N R. MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Res 2006; 1086: 9–16
  • Durand S H, Flacher V, Romeas A, Carrouel F, Colomb E, Vincent C, Magloire H, Couble M L, Bleicher F, Staquet M J, et al. Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol 2006; 176: 2880–2887
  • Ohmori Y, Hamilton T A. Cooperative interaction between interferon (IFN) stimulus response element and kappa B sequence motifs controls IFN gamma- and lipopolysaccharide-stimulated transcription from the murine IP-10 promoter. J Biol Chem 1993; 268: 6677–6688
  • Ohmori Y, Hamilton T A. The interferon-stimulated response element and a kappa B site mediate synergistic induction of murine IP-10 gene transcription by IFN-gamma and TNF-alpha. J Immunol 1995; 154: 5235–5244
  • Osawa Y, Iho S, Takauji R, Takatsuka H, Yamamoto S, Takahashi T, Horiguchi S, Urasaki Y, Matsuki T, Fujieda S. Collaborative action of NF-kappaB and p38 MAPK is involved in CpG DNA-induced IFN-alpha and chemokine production in human plasmacytoid dendritic cells. J Immunol 2006; 177: 4841–4852
  • Park C, Lee S, Cho I H, Lee H K, Kim D, Choi S Y, Oh S B, Park K, Kim J S, Lee S J. TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: Differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia 2006; 53: 248–256
  • Hancock W W, Gao W, Csizmadia V, Faia K L, Shemmeri N, Luster A D. Donor-derived IP-10 initiates development of acute allograft rejection. J Exp Med 2001; 193: 975–980
  • Hancock W W, Lu B, Gao W, Csizmadia V, Faia K, King J A, Smiley S T, Ling M, Gerard N P, Gerard C. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med 2000; 192: 1515–1520
  • Segerer S, Cui Y, Eitner F, Goodpaster T, Hudkins K L, Mack M, Cartron J P, Colin Y, Schlondorff D, Alpers C E. Expression of chemokines and chemokine receptors during human renal transplant rejection. Am J Kidney Dis 2001; 37: 518–531
  • Agostini C, Calabrese F, Rea F, Facco M, Tosoni A, Loy M, Binotto G, Valente M, Trentin L, Semenzato G. Cxcr3 and its ligand CXCL10 are expressed by inflammatory cells infiltrating lung allografts and mediate chemotaxis of T cells at sites of rejection. Am J Pathol 2001; 158: 1703–1711
  • Melter M, Exeni A, Reinders M E, Fang J C, McMahon G, Ganz P, Hancock W W, Briscoe D M. Expression of the chemokine receptor CXCR3 and its ligand IP-10 during human cardiac allograft rejection. Circulation 2001; 104: 2558–2564
  • Zhao D X, Hu Y, Miller G G, Luster A D, Mitchell R N, Libby P. Differential expression of the IFN-gamma-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell alpha chemoattractant in human cardiac allografts: Association with cardiac allograft vasculopathy and acute rejection. J Immunol 2002; 169: 1556–1560
  • Zhang Z, Kaptanoglu L, Haddad W, Ivancic D, Alnadjim Z, Hurst S, Tishler D, Luster A D, Barrett T A, Fryer J. Donor T cell activation initiates small bowel allograft rejection through an IFN-gamma-inducible protein-10-dependent mechanism. J Immunol 2002; 168: 3205–3212
  • Rotondi M, Rosati A, Buonamano A, Lasagni L, Lazzeri E, Pradella F, Fossombroni V, Cirami C, Liotta F, La Villa G, et al. High pretransplant serum levels of CXCL10/IP-10 are related to increased risk of renal allograft failure. Am J Transplant 2004; 4: 1466–1474
  • Hu H, Aizenstein B D, Puchalski A, Burmania J A, Hamawy M M, Knechtle S J. Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction. Am J Transplant 2004; 4: 432–437
  • Zhang Z, Kaptanoglu L, Tang Y, Ivancic D, Rao S M, Luster A, Barrett T A, Fryer J. IP-10-induced recruitment of CXCR3 host T cells is required for small bowel allograft rejection. Gastroenterology 2004; 126: 809–818
  • Panzer U, Reinking R R, Steinmetz O M, Zahner G, Sudbeck U, Fehr S, Pfalzer B, Schneider A, Thaiss F, Mack M, et al. CXCR3 and CCR5 positive T-cell recruitment in acute human renal allograft rejection. Transplantation 2004; 78: 1341–1350
  • Tatapudi R R, Muthukumar T, Dadhania D, Ding R, Li B, Sharma V K, Lozada-Pastorio E, Seetharamu N, Hartono C, Serur D, et al. Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int 2004; 65: 2390–2397
  • Burns W R, Wang Y, Tang P C, Ranjbaran H, Iakimov A, Kim J, Cuffy M, Bai Y, Pober J S, Tellides G. Recruitment of CXCR3+ and CCR5+ T cells and production of interferon-gamma-inducible chemokines in rejecting human arteries. Am J Transplant 2005; 5: 1226–1236
  • Lazzeri E, Rotondi M, Mazzinghi B, Lasagni L, Buonamano A, Rosati A, Pradella F, Fossombroni V, La Villa G, Gacci M, et al. High CXCL10 expression in rejected kidneys and predictive role of pretransplant serum CXCL10 for acute rejection and chronic allograft nephropathy. Transplantation 2005; 79: 1215–1220
  • Sorensen T L, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik V A, Qin S, Rottman J, Sellebjerg F, Strieter R M, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999; 103: 807–815
  • Balashov K E, Rottman J B, Weiner H L, Hancock W W. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A 1999; 96: 6873–6878
  • Simpson J E, Newcombe J, Cuzner M L, Woodroofe M N. Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 2000; 26: 133–142
  • Franciotta D, Martino G, Zardini E, Furlan R, Bergamaschi R, Andreoni L, Cosi V. Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J Neuroimmunol 2001; 115: 192–198
  • Trebst C, Ransohoff R M. Investigating chemokines and chemokine receptors in patients with multiple sclerosis: Opportunities and challenges. Arch Neurol 2001; 58: 1975–1980
  • Christen U, McGavern D B, Luster A D, Von Herrath M G, Oldstone M B. Among CXCR3 chemokines, IFN-gamma-inducible protein of 10 kDa (CXC chemokine ligand (CXCL) 10) but not monokine induced by IFN-gamma (CXCL9) imprints a pattern for the subsequent development of autoimmune disease. J Immunol 2003; 171: 6838–6845
  • Christen U, Von Herrath M G. IP-10 and type 1 diabetes: A question of time and location. Autoimmunity 2004; 37: 273–282
  • Romagnani P, Rotondi M, Lazzeri E, Lasagni L, Francalanci M, Buonamano A, Milani S, Vitti P, Chiovato L, Tonacchera M, et al. Expression of IP-10/CXCL10 and MIG/CXCL9 in the thyroid and increased levels of IP-10/CXCL10 in the serum of patients with recent-onset Graves' disease. Am J Pathol 2002; 161: 195–206
  • Antonelli A, Fallahi P, Rotondi M, Ferrari S M, Serio M, Miccoli P. Serum levels of the interferon-gamma-inducible alpha chemokine CXCL10 in patients with active Graves' disease, and modulation by methimazole therapy and thyroidectomy. Br J Surg 2006; 93: 1226–1231
  • Antonelli A, Fallahi P, Rotondi M, Ferrari S M, Romagnani P, Grosso M, Ferrannini E, Serio M. Increased serum CXCL10 in Graves' disease or autoimmune thyroiditis is not associated with hyper- or hypothyroidism per se, but is specifically sustained by the autoimmune, inflammatory process. Eur J Endocrinol 2006; 154: 651–658
  • Antonelli A, Rotondi M, Fallahi P, Romagnani P, Ferrari S M, Barani L, Ferrannini E, Serio M. Increase of interferon-gamma-inducible CXC chemokine CXCL10 serum levels in patients with active Graves' disease, and modulation by methimazole therapy. Clin Endocrinol (Oxf) 2006; 64: 189–195
  • Antonelli A, Rotondi M, Fallahi P, Romagnani P, Ferrari S M, Buonamano A, Ferrannini E, Serio M. High levels of circulating CXC chemokine ligand 10 are associated with chronic autoimmune thyroiditis and hypothyroidism. J Clin Endocrinol Metab 2004; 89: 5496–5499
  • Antonelli A, Rotondi M, Fallahi P, Romagnani P, Ferrari S M, Paolicchi A, Ferrannini E, Serio M. Increase of interferon-gamma inducible alpha chemokine CXCL10 but not beta chemokine CCL2 serum levels in chronic autoimmune thyroiditis. Eur J Endocrinol 2005; 152: 171–177
  • Keane M P, Arenberg D A, Lynch J P, III, Whyte R I, Iannettoni M D, Burdick M D, Wilke C A, Morris S B, Glass M C, DiGiovine B, et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol 1997; 159: 1437–1443
  • Keane M P, Belperio J A, Arenberg D A, Burdick M D, Xu Z J, Xue Y Y, Strieter R M. IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J Immunol 1999; 163: 5686–5692
  • Strieter R M, Belperio J A, Keane M P. CXC chemokines in angiogenesis related to pulmonary fibrosis. Chest 2002; 122: 298S–301S
  • Mach F, Sauty A, Iarossi A S, Sukhova G K, Neote K, Libby P, Luster A D. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Invest 1999; 104: 1041–1050
  • Herder C, Baumert J, Thorand B, Martin S, Lowel H, Kolb H, Koenig W. Chemokines and incident coronary heart disease: Results from the MONICA/KORA Augsburg case–cohort study, 1984–2002. Arterioscler Thromb Vasc Biol 2006; 26: 2147–2152
  • Rothenbacher D, Muller-Scholze S, Herder C, Koenig W, Kolb H. Differential expression of chemokines, risk of stable coronary heart disease, and correlation with established cardiovascular risk markers. Arterioscler Thromb Vasc Biol 2006; 26: 194–199
  • Strieter R M, Kunkel S L, Arenberg D A, Burdick M D, Polverini P J. Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun 1995; 210: 51–57
  • Luster A D, Greenberg S M, Leder P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med 1995; 182: 219–231
  • Angiolillo A L, Sgadari C, Taub D D, Liao F, Farber J M, Maheshwari S, Kleinman H K, Reaman G H, Tosato G. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 1995; 182: 155–162
  • Sun Y, Finger C, Alvarez-Vallina L, Cichutek K, Buchholz C J. Chronic gene delivery of interferon-inducible protein 10 through replication-competent retrovirus vectors suppresses tumor growth. Cancer Gene Ther 2005; 12: 900–912
  • Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol 2000; 183: S1–S22
  • ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol 2002; 99: 159–167
  • Sibai B M, Ewell M, Levine R J, Klebanoff M A, Esterlitz J, Catalano P M, Goldenberg R L, Joffe G. Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am J Obstet Gynecol 1997; 177: 1003–1010
  • Alexander G R, Himes J H, Kaufman R B, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol 1996; 87: 163–168
  • Nagaoka K, Nojima H, Watanabe F, Chang K T, Christenson R K, Sakai S, Imakawa K. Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. J Biol Chem 2003; 278: 29048–29056
  • Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon T I, Manaster I, et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 2006; 12: 1065–1074
  • Sarris A H, Broxmeyer H E, Wirthmueller U, Karasavvas N, Cooper S, Lu L, Krueger J, Ravetch J V. Human interferon-inducible protein 10: Expression and purification of recombinant protein demonstrate inhibition of early human hematopoietic progenitors. J Exp Med 1993; 178: 1127–1132
  • Sasaki S, Yoneyama H, Suzuki K, Suriki H, Aiba T, Watanabe S, Kawauchi Y, Kawachi H, Shimizu F, Matsushima K, et al. Blockade of CXCL10 protects mice from acute colitis and enhances crypt cell survival. Eur J Immunol 2002; 32: 3197–3205
  • Loetscher M, Gerber B, Loetscher P, Jones S A, Piali L, Clark-Lewis I, Baggiolini M, Moser B. Chemokine receptor specific for IP10 and mig: Structure, function, and expression in activated T-lymphocytes. J Exp Med 1996; 184: 963–969
  • Liu L, Callahan M K, Huang D, Ransohoff R M. Chemokine receptor CXCR3: An unexpected enigma. Curr Top Dev Biol 2005; 68: 149–181
  • Cole K E, Strick C A, Paradis T J, Ogborne K T, Loetscher M, Gladue R P, Lin W, Boyd J G, Moser B, Wood D E, et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): A novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 1998; 187: 2009–2121
  • Cox M A, Jenh C H, Gonsiorek W, Fine J, Narula S K, Zavodny P J, Hipkin R W. Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: Differential binding to receptor states. Mol Pharmacol 2001; 59: 707–715
  • Sauty A, Colvin R A, Wagner L, Rochat S, Spertini F, Luster A D. CXCR3 internalization following T cell–endothelial cell contact: Preferential role of IFN-inducible T cell alpha chemoattractant (CXCL11). J Immunol 2001; 167: 7084–7093
  • Colvin R A, Campanella G S, Sun J, Luster A D. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem 2004; 279: 30219–30227
  • Dajotoy T, Andersson P, Bjartell A, Lofdahl C G, Tapper H, Egesten A. Human eosinophils produce the T cell-attracting chemokines MIG and IP-10 upon stimulation with IFN-gamma. J Leukoc Biol 2004; 76: 685–691
  • Hoffmann A, Levchenko A, Scott M L, Baltimore D. The IkappaB-NF-kappaB signaling module: Temporal control and selective gene activation. Science 2002; 298: 1241–1245
  • Taub D D, Lloyd A R, Conlon K, Wang J M, Ortaldo J R, Harada A, Matsushima K, Kelvin D J, Oppenheim J J. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 1993; 177: 1809–1814
  • Taub D D, Sayers T J, Carter C R, Ortaldo J R. Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. J Immunol 1995; 155: 3877–3888
  • Dewald B, Moser B, Barella L, Schumacher C, Baggiolini M, Clark-Lewis I. IP-10, a gamma-interferon-inducible protein related to interleukin-8, lacks neutrophil activating properties. Immunol Lett 1992; 32: 81–84
  • Qin S, Rottman J B, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch A E, Moser B, Mackay C R. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998; 101: 746–754
  • Muehlinghaus G, Cigliano L, Huehn S, Peddinghaus A, Leyendeckers H, Hauser A E, Hiepe F, Radbruch A, Arce S, Manz R A. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood 2005; 105: 3965–3971
  • Farber J M. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 1997; 61: 246–257
  • Sallusto F, Lenig D, Mackay C R, Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 1998; 187: 875–883
  • Piali L, Weber C, LaRosa G, Mackay C R, Springer T A, Clark-Lewis I, Moser B. The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. Eur J Immunol 1998; 28: 961–972
  • Loetscher M, Loetscher P, Brass N, Meese E, Moser B. Lymphocyte-specific chemokine receptor CXCR3: Regulation, chemokine binding and gene localization. Eur J Immunol 1998; 28: 3696–3705
  • Bonecchi R, Bianchi G, Bordignon P P, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray P A, Mantovani A, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 1998; 187: 129–134
  • Yamamoto J, Adachi Y, Onoue Y, Adachi Y S, Okabe Y, Itazawa T, Toyoda M, Seki T, Morohashi M, Matsushima K, et al. Differential expression of the chemokine receptors by the Th1- and Th2-type effector populations within circulating CD4+ T cells. J Leukoc Biol 2000; 68: 568–574
  • Gangur V, Simons F E, Hayglass K T. Human IP-10 selectively promotes dominance of polyclonally activated and environmental antigen-driven IFN-gamma over IL-4 responses. FASEB J 1998; 12: 705–713
  • Goldberg S H, van der Meer P, Hesselgesser J, Jaffer S, Kolson D L, Albright A V, Gonzalez-Scarano F, Lavi E. CXCR3 expression in human central nervous system diseases. Neuropathol Appl Neurobiol 2001; 27: 127–138
  • Christensen J E, Nansen A, Moos T, Lu B, Gerard C, Christensen J P, Thomsen A R. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3. J Neurosci 2004; 24: 4849–4858
  • Wickham S, Lu B, Ash J, Carr D J. Chemokine receptor deficiency is associated with increased chemokine expression in the peripheral and central nervous systems and increased resistance to herpetic encephalitis. J Neuroimmunol 2005; 162: 51–59
  • Sellner J, Dvorak F, Zhou Y, Haas J, Kehm R, Wildemann B, Meyding-Lamade U. Acute and long-term alteration of chemokine mRNA expression after anti-viral and anti-inflammatory treatment in herpes simplex virus encephalitis. Neurosci Lett 2005; 374: 197–202
  • Narumi S, Kaburaki T, Yoneyama H, Iwamura H, Kobayashi Y, Matsushima K. Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 2002; 32: 1784–1791
  • Wildbaum G, Netzer N, Karin N. Plasmid DNA encoding IFN-gamma-inducible protein 10 redirects antigen-specific T cell polarization and suppresses experimental autoimmune encephalomyelitis. J Immunol 2002; 168: 5885–5892
  • Klein R S. Regulation of neuroinflammation: The role of CXCL10 in lymphocyte infiltration during autoimmune encephalomyelitis. J Cell Biochem 2004; 92: 213–222
  • Klein R S, Izikson L, Means T, Gibson H D, Lin E, Sobel R A, Weiner H L, Luster A D. IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. J Immunol 2004; 172: 550–559
  • Uguccioni M, Gionchetti P, Robbiani D F, Rizzello F, Peruzzo S, Campieri M, Baggiolini M. Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol 1999; 155: 331–336
  • Singh U P, Singh S, Taub D D, Lillard J W, Jr. Inhibition of IFN-gamma-inducible protein-10 abrogates colitis in IL-10 −/− mice. J Immunol 2003; 171: 1401–1406
  • Narumi S, Tominaga Y, Tamaru M, Shimai S, Okumura H, Nishioji K, Itoh Y, Okanoue T. Expression of IFN-inducible protein-10 in chronic hepatitis. J Immunol 1997; 158: 5536–5544
  • Ogawa N, Ping L, Zhenjun L, Takada Y, Sugai S. Involvement of the interferon-gamma-induced T cell-attracting chemokines, interferon-gamma-inducible 10-kD protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjogren's syndrome. Arthritis Rheum 2002; 46: 2730–2741
  • Rhode A, Pauza M E, Barral A M, Rodrigo E, Oldstone M B, Von Herrath M G, Christen U. Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J Immunol 2005; 175: 3516–3524
  • Lit L C, Wong C K, Tam L S, Li E K, Lam C W. Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann Rheum Dis 2006; 65: 209–215
  • Yang J, Richmond A. The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan. Mol Ther 2004; 9: 846–855
  • Romagnani P, Annunziato F, Lasagni L, Lazzeri E, Beltrame C, Francalanci M, Uguccioni M, Galli G, Cosmi L, Maurenzig L, et al. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 2001; 107: 53–63
  • Soejima K, Rollins B J. A functional IFN-gamma-inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. J Immunol 2001; 167: 6576–6582
  • Salcedo R, Resau J H, Halverson D, Hudson E A, Dambach M, Powell D, Wasserman K, Oppenheim J J. Differential expression and responsiveness of chemokine receptors (CXCR1–3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J 2000; 14: 2055–2064
  • Datta D, Flaxenburg J A, Laxmanan S, Geehan C, Grimm M, Waaga-Gasser A M, Briscoe D M, Pal S. Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 cells: Relevance for the development of human breast cancer. Cancer Res 2006; 66: 9509–9518
  • Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003; 197: 1537–1549
  • Proost P, Schutyser E, Menten P, Struyf S, Wuyts A, Opdenakker G, Detheux M, Parmentier M, Durinx C, Lambeir A M, et al. Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood 2001; 98: 3554–3561
  • Sgadari C, Angiolillo A L, Cherney B W, Pike S E, Farber J M, Koniaris L G, Vanguri P, Burd P R, Sheikh N, Gupta G, et al. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci U S A 1996; 93: 13791–13796
  • Teruya-Feldstein J, Jaffe E S, Burd P R, Kanegane H, Kingma D W, Wilson W H, Longo D L, Tosato G. The role of Mig, the monokine induced by interferon-gamma, and IP-10, the interferon-gamma-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein–Barr virus-positive lymphoproliferative disease. Blood 1997; 90: 4099–4105
  • Feldman A L, Friedl J, Lans T E, Libutti S K, Lorang D, Miller M S, Turner E M, Hewitt S M, Alexander H R. Retroviral gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma xenografts. Int J Cancer 2002; 99: 149–153
  • Arenberg D A, Kunkel S L, Polverini P J, Morris S B, Burdick M D, Glass M C, Taub D T, Iannettoni M D, Whyte R I, Strieter R M. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 1996; 184: 981–992
  • Sgadari C, Angiolillo A L, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 1996; 87: 3877–3882
  • Kanegane C, Sgadari C, Kanegane H, Teruya-Feldstein J, Yao L, Gupta G, Farber J M, Liao F, Liu L, Tosato G. Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. J Leukoc Biol 1998; 64: 384–392
  • Tannenbaum C S, Tubbs R, Armstrong D, Finke J H, Bukowski R M, Hamilton T A. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J Immunol 1998; 161: 927–932
  • Pertl U, Luster A D, Varki N M, Homann D, Gaedicke G, Reisfeld R A, Lode H N. IFN-gamma-inducible protein-10 is essential for the generation of a protective tumor-specific CD8 T cell response induced by single-chain IL-12 gene therapy. J Immunol 2001; 166: 6944–6951
  • Koumandakis E, Koumandaki I, Kaklamani E, Sparos L, Aravantinos D, Trichopoulos D. Enhanced phagocytosis of mononuclear phagocytes in pregnancy. Br J Obstet Gynaecol 1986; 93: 1150–1154
  • Naccasha N, Gervasi M T, Chaiworapongsa T, Berman S, Yoon B H, Maymon E, Romero R. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol 2001; 185: 1118–1123
  • Sacks G P, Redman C W, Sargent I L. Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: An intracellular flow cytometric analysis of peripheral blood mononuclear cells. Clin Exp Immunol 2003; 131: 490–497
  • Smarason A K, Gunnarsson A, Alfredsson J H, Valdimarsson H. Monocytosis and monocytic infiltration of decidua in early pregnancy. J Clin Lab Immunol 1986; 21: 1–5
  • Melczer Z, Banhidy F, Csomor S, Toth P, Kovacs M, Winkler G, Cseh K. Influence of leptin and the TNF system on insulin resistance in pregnancy and their effect on anthropometric parameters of newborns. Acta Obstet Gynecol Scand 2003; 82: 432–438
  • Kupferminc M J, Peaceman A M, Wigton T R, Rehnberg K A, Socol M L. Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol 1994; 170: 1752–1757
  • Meekins J W, McLaughlin P J, West D C, McFadyen I R, Johnson P M. Endothelial cell activation by tumour necrosis factor-alpha (TNF-alpha) and the development of pre-eclampsia. Clin Exp Immunol 1994; 98: 110–114
  • Teran E, Escudero C, Moya W, Flores M, Vallance P, Lopez-Jaramillo P. Elevated C-reactive protein and pro-inflammatory cytokines in Andean women with pre-eclampsia. Int J Gynaecol Obstet 2001; 75: 243–249
  • Arriaga-Pizano L, Jimenez-Zamudio L, Vadillo-Ortega F, Martinez-Flores A, Herrerias-Canedo T, Hernandez-Guerrero C. The predominant Th1 cytokine profile in maternal plasma of preeclamptic women is not reflected in the choriodecidual and fetal compartments. J Soc Gynecol Investig 2005; 12: 335–342
  • Dudley D J, Hunter C, Mitchell M D, Varner M W, Gately M. Elevations of serum interleukin-12 concentrations in women with severe pre-eclampsia and HELLP syndrome. J Reprod Immunol 1996; 31: 97–107
  • Hennessy A, Pilmore H L, Simmons L A, Painter D M. A deficiency of placental IL-10 in preeclampsia. J Immunol 1999; 163: 3491–3495
  • Omu A E, Al-Qattan F, Diejomaoh M E, Al-Yatama M. Differential levels of T helper cytokines in preeclampsia: Pregnancy, labor and puerperium. Acta Obstet Gynecol Scand 1999; 78: 675–680
  • Rinehart B K, Terrone D A, Lagoo-Deenadayalan S, Barber W H, Hale E A, Martin J N, Jr, Bennett W A. Expression of the placental cytokines tumor necrosis factor alpha, interleukin 1beta, and interleukin 10 is increased in preeclampsia. Am J Obstet Gynecol 1999; 181: 915–920
  • Wang Y, Walsh S W. TNF alpha concentrations and mRNA expression are increased in preeclamptic placentas. J Reprod Immunol 1996; 32: 157–169
  • Reynolds L P, Redmer D A. Utero-placental vascular development and placental function. J Anim Sci 1995; 73: 1839–1851
  • Kendall R L, Wang G, Thomas K A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996; 226: 324–328
  • Lyall F, Greer I A. The vascular endothelium in normal pregnancy and pre-eclampsia. Rev Reprod 1996; 1: 107–116
  • Cheung C Y. Vascular endothelial growth factor: Possible role in fetal development and placental function. J Soc Gynecol Investig 1997; 4: 169–177
  • Kupferminc M J, Daniel Y, Englender T, Baram A, Many A, Jaffa A J, Gull I, Lessing J B. Vascular endothelial growth factor is increased in patients with preeclampsia. Am J Reprod Immunol 1997; 38: 302–306
  • Lyall F, Greer I A, Boswell F, Fleming R. Suppression of serum vascular endothelial growth factor immunoreactivity in normal pregnancy and in pre-eclampsia. Br J Obstet Gynaecol 1997; 104: 223–228
  • Vuorela P, Hatva E, Lymboussaki A, Kaipainen A, Joukov V, Persico M G, Alitalo K, Halmesmaki E. Expression of vascular endothelial growth factor and placenta growth factor in human placenta. Biol Reprod 1997; 56: 489–494
  • Athanassiades A, Lala P K. Role of placenta growth factor (PIGF) in human extravillous trophoblast proliferation, migration and invasiveness. Placenta 1998; 19: 465–473
  • Clark D E, Smith S K, He Y, Day K A, Licence D R, Corps A N, Lammoglia R, Charnock-Jones D S. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod 1998; 59: 1540–1548
  • Taylor R N, de Groot C J, Cho Y K, Lim K H. Circulating factors as markers and mediators of endothelial cell dysfunction in preeclampsia. Semin Reprod Endocrinol 1998; 16: 17–31
  • Desai J, Holt-Shore V, Torry R J, Caudle M R, Torry D S. Signal transduction and biological function of placenta growth factor in primary human trophoblast. Biol Reprod 1999; 60: 887–892
  • Hayman R, Brockelsby J, Kenny L, Baker P. Preeclampsia: The endothelium, circulating factor(s) and vascular endothelial growth factor. J Soc Gynecol Investig 1999; 6: 3–10
  • Lash G E, Cartwright J E, Whitley G S, Trew A J, Baker P N. The effects of angiogenic growth factors on extravillous trophoblast invasion and motility. Placenta 1999; 20: 661–667
  • Reuvekamp A, Velsing-Aarts F V, Poulina I E, Capello J J, Duits A J. Selective deficit of angiogenic growth factors characterises pregnancies complicated by pre-eclampsia. Br J Obstet Gynaecol 1999; 106: 1019–1022
  • Torry D S, Ahn H, Barnes E L, Torry R J. Placenta growth factor: Potential role in pregnancy. Am J Reprod Immunol 1999; 41: 79–85
  • Charnock-Jones D S, Burton G J. Placental vascular morphogenesis. Baillieres Best Pract Res Clin Obstet Gynaecol 2000; 14: 953–968
  • Hornig C, Barleon B, Ahmad S, Vuorela P, Ahmed A, Weich H A. Release and complex formation of soluble VEGFR-1 from endothelial cells and biological fluids. Lab Invest 2000; 80: 443–454
  • Ong S, Lash G, Baker P N. Angiogenesis and placental growth in normal and compromised pregnancies. Baillieres Best Pract Res Clin Obstet Gynaecol 2000; 14: 969–980
  • Tidwell S C, Ho H N, Chiu W H, Torry R J, Torry D S. Low maternal serum levels of placenta growth factor as an antecedent of clinical preeclampsia. Am J Obstet Gynecol 2001; 184: 1267–1272
  • Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, Alitalo K, Damsky C, Fisher S J. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol 2002; 160: 1405–1423
  • Torry D S, Mukherjea D, Arroyo J, Torry R J. Expression and function of placenta growth factor: Implications for abnormal placentation. J Soc Gynecol Investig 2003; 10: 178–188
  • Maynard S E, Min J Y, Merchan J, Lim K H, Li J, Mondal S, Libermann T A, Morgan J P, Sellke F W, Stillman I E, Epstein F H, Sukhatme V P, Karumanchi S A. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–658
  • Koga K, Osuga Y, Yoshino O, Hirota Y, Ruimeng X, Hirata T, Takeda S, Yano T, Tsutsumi O, Taketani Y. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab 2003; 88: 2348–2351
  • Livingston J C, Chin R, Haddad B, McKinney E T, Ahokas R, Sibai B M. Reductions of vascular endothelial growth factor and placental growth factor concentrations in severe preeclampsia. Am J Obstet Gynecol 2000; 183: 1554–1557
  • Gaber L W, Spargo B H, Lindheimer M D. Renal pathology in pre-eclampsia. Baillieres Clin Obstet Gynaecol 1987; 1: 971–995
  • Kincaid-Smith P. The renal lesion of preeclampsia revisited. Am J Kidney Dis 1991; 17: 144–148
  • Wilczynski J R. Immunological analogy between allograft rejection, recurrent abortion and pre-eclampsia—the same basic mechanism?. Hum Immunol 2006; 67: 492–511
  • Irgens H U, Reisaeter L, Irgens L M, Lie R T. Long term mortality of mothers and fathers after pre-eclampsia: Population based cohort study. BMJ 2001; 323: 1213–1217
  • Meekins J W, Pijnenborg R, Hanssens M, van Assche A, McFadyen I R. Immunohistochemical detection of lipoprotein(a) in the wall of placental bed spiral arteries in normal and severe preeclamptic pregnancies. Placenta 1994; 15: 511–524
  • Katabuchi H, Yih S, Ohba T, Matsui K, Takahashi K, Takeya M, Okamura H. Characterization of macrophages in the decidual atherotic spiral artery with special reference to the cytology of foam cells. Med Electron Microsc 2003; 36: 253–262
  • Harsem N K, Roald B, Braekke K, Staff A C. Acute atherosis in decidual tissue: Not associated with systemic oxidative stress in preeclampsia. Placenta 2007; 28(8–9)958–964
  • Plutzky J. Inflammatory pathways in atherosclerosis and acute coronary syndromes. Am J Cardiol 2001; 88: 10K–15K
  • Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868–874
  • Hansson G K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685–1695
  • Binder C J, Chang M K, Shaw P X, Miller Y I, Hartvigsen K, Dewan A, Witztum J L. Innate and acquired immunity in atherogenesis. Nat Med 2002; 8: 1218–1226
  • Reape T J, Groot P H. Chemokines and atherosclerosis. Atherosclerosis 1999; 147: 213–225
  • Mach F. The role of chemokines in atherosclerosis. Curr Atheroscler Rep 2001; 3: 243–251
  • Burke-Gaffney A, Brooks A V, Bogle R G. Regulation of chemokine expression in atherosclerosis. Vascul Pharmacol 2002; 38: 283–292
  • Shin W S, Szuba A, Rockson S G. The role of chemokines in human cardiovascular pathology: Enhanced biological insights. Atherosclerosis 2002; 160: 91–102
  • Sheikine Y, Hansson G K. Chemokines and atherosclerosis. Ann Med 2004; 36: 98–118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.