1,361
Views
88
CrossRef citations to date
0
Altmetric
Original Article

Evidence of the involvement of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: A link between the inflammasome and parturition

, , MD, , , , , , , , , , , , , , , , & show all
Pages 605-616 | Received 01 Jan 2008, Accepted 21 Mar 2008, Published online: 07 Jul 2009

References

  • Cerretti D P, Kozlosky C J, Mosley B, Nelson N, Van Ness K, Greenstreet T A, March C J, Kronheim S R, Druck T, Cannizzaro L A, et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science 1992; 256: 97–100
  • Miller D K, Ayala J M, Egger L A, Raju S M, Yamin T T, Ding G J, Gaffney E P, Howard A D, Palyha O C, Rolando A M, et al. Purification and characterization of active human interleukin-1 beta-converting enzyme from THP.1 monocytic cells. J Biol Chem 1993; 268: 18062–18069
  • Thornberry N A, Bull H G, Calaycay J R, Chapman K T, Howard A D, Kostura M J, Miller D K, Molineaux S M, Weidner J R, Aunins J, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768–774
  • Kostura M J, Tocci M J, Limjuco G, Chin J, Cameron P, Hillman A G, Chartrain N A, Schmidt J A. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A 1989; 86: 5227–5231
  • Alnemri E S, Livingston D J, Nicholson D W, Salvesen G, Thornberry N A, Wong W W, Yuan J. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171
  • Mariathasan S, Newton K, Monack D M, Vucic D, French D M, Lee W P, Roose-Girma M, Erickson S, Dixit V M. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004; 430: 213–218
  • Matute-Bello G. Targeting caspase-1 in sepsis: A novel approach to an old problem. Intensive Care Med 2007; 33: 755–757
  • Martinon F, Burns K, Tschopp J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417–426
  • Petrilli V, Dostert C, Muruve D A, Tschopp J. The inflammasome: A danger sensing complex triggering innate immunity. Curr Opin Immunol 2007; 19: 615–622
  • Ogura Y, Sutterwala F S, Flavell R A. The inflammasome: First line of the immune response to cell stress. Cell 2006; 126: 659–662
  • Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: Master switches of inflammation. Cell Death Differ 2007; 14: 10–22
  • Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature 2006; 442: 39–44
  • Romero R, Parvizi S T, Oyarzun E, Mazor M, Wu Y K, Avila C, Athanassiadis A P, Mitchell M D. Amniotic fluid interleukin-1 in spontaneous labor at term. J Reprod Med 1990; 35: 235–238
  • Dudley D J. Pre-term labor: An intra-uterine inflammatory response syndrome?. J Reprod Immunol 1997; 36: 93–109
  • Hagberg H, Mallard C, Jacobsson B. Role of cytokines in preterm labour and brain injury. BJOG 2005; 112(Suppl 1)16–18
  • Chan E C, Fraser S, Yin S, Yeo G, Kwek K, Fairclough R J, Smith R. Human myometrial genes are differentially expressed in labor: A suppression subtractive hybridization study. J Clin Endocrinol Metab 2002; 87: 2435–2441
  • Bisits A M, Smith R, Mesiano S, Yeo G, Kwek K, MacIntyre D, Chan E C. Inflammatory aetiology of human myometrial activation tested using directed graphs. PLoS Comput Biol 2005; 1: 132–136
  • Romero R, Espinoza J, Goncalves L F, Kusanovic J P, Friel L A, Nien J K. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med 2006; 11: 317–326
  • Haddad R, Tromp G, Kuivaniemi H, Chaiworapongsa T, Kim Y M, Mazor M, Romero R. Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am J Obstet Gynecol 2006; 195: 394.e1–24
  • Norman J E, Bollapragada S, Yuan M, Nelson S M. Inflammatory pathways in the mechanism of parturition. BMC Pregnancy Childbirth 2007; 7(Suppl 1)S7
  • Romero R, Espinoza J, Goncalves L F, Kusanovic J P, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Semin Reprod Med 2007; 25: 21–39
  • Keelan J A, Marvin K W, Sato T A, Coleman M, McCowan L M, Mitchell M D. Cytokine abundance in placental tissues: Evidence of inflammatory activation in gestational membranes with term and preterm parturition. Am J Obstet Gynecol 1999; 181: 1530–1536
  • Romero R, Mazor M, Brandt F, Sepulveda W, Avila C, Cotton D B, Dinarello C A. Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. Am J Reprod Immunol 1992; 27: 117–123
  • Romero R, Tartakovsky B. The natural interleukin-1 receptor antagonist prevents interleukin-1-induced preterm delivery in mice. Am J Obstet Gynecol 1992; 167: 1041–1045
  • Romero R, Sepulveda W, Mazor M, Brandt F, Cotton D B, Dinarello C A, Mitchell M D. The natural interleukin-1 receptor antagonist in term and preterm parturition. Am J Obstet Gynecol 1992; 167: 863–872
  • Winkler M, Kemp B, Fischer D C, Maul H, Hlubek M, Rath W. Tissue concentrations of cytokines in the lower uterine segment during preterm parturition. J Perinat Med 2001; 29: 519–527
  • Fidel P L, Jr, Romero R, Wolf N, Cutright J, Ramirez M, Araneda H, Cotton D B. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol 1994; 170: 1467–1475
  • Romero R, Avila C, Santhanam U, Sehgal P B. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest 1990; 85: 1392–1400
  • Romero R, Sepulveda W, Kenney J S, Archer L E, Allison A C, Sehgal P B. Interleukin 6 determination in the detection of microbial invasion of the amniotic cavity. Ciba Found Symp 1992; 167: 205–220
  • Romero R, Yoon B H, Kenney J S, Gomez R, Allison A C, Sehgal P B. Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol 1993; 30: 167–183
  • Romero R, Manogue K R, Mitchell M D, Wu Y K, Oyarzun E, Hobbins J C, Cerami A. Infection and labor. IV. Cachectin-tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor. Am J Obstet Gynecol 1989; 161: 336–341
  • Romero R, Mazor M, Sepulveda W, Avila C, Copeland D, Williams J. Tumor necrosis factor in preterm and term labor. Am J Obstet Gynecol 1992; 166: 1576–1587
  • Baumann P, Romero R, Berry S, Gomez R, McFarlin B, Araneda H, Cotton D B, Fidel P. Evidence of participation of the soluble tumor necrosis factor receptor I in the host response to intrauterine infection in preterm labor. Am J Reprod Immunol 1993; 30: 184–193
  • Maymon E, Ghezzi F, Edwin S S, Mazor M, Yoon B H, Gomez R, Romero R. The tumor necrosis factor alpha and its soluble receptor profile in term and preterm parturition. Am J Obstet Gynecol 1999; 181: 1142–1148
  • Fortunato S J, Menon R, Lombardi S J. Role of tumor necrosis factor-alpha in the premature rupture of membranes and preterm labor pathways. Am J Obstet Gynecol 2002; 187: 1159–1162
  • Lonergan M, Aponso D, Marvin K W, Helliwell R J, Sato T A, Mitchell M D, Chaiwaropongsa T, Romero R, Keelan J A. Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL), TRAIL receptors, and the soluble receptor osteoprotegerin in human gestational membranes and amniotic fluid during pregnancy and labor at term and preterm. J Clin Endocrinol Metab 2003; 88: 3835–3844
  • Pacora P, Romero R, Maymon E, Gervasi M T, Gomez R, Edwin S S, Yoon B H. Participation of the novel cytokine interleukin 18 in the host response to intra-amniotic infection. Am J Obstet Gynecol 2000; 183: 1138–1143
  • Athayde N, Romero R, Maymon E, Gomez R, Pacora P, Yoon B H, Edwin S S. Interleukin 16 in pregnancy, parturition, rupture of fetal membranes, and microbial invasion of the amniotic cavity. Am J Obstet Gynecol 2000; 182: 135–141
  • Romero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition. Am J Obstet Gynecol 1991; 165: 813–820
  • Cherouny P H, Pankuch G A, Romero R, Botti J J, Kuhn D C, Demers L M, Appelbaum P C. Neutrophil attractant/activating peptide-1/interleukin-8: Association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. Am J Obstet Gynecol 1993; 169: 1299–1303
  • Romero R, Gomez R, Galasso M, Munoz H, Acosta L, Yoon B H, Svinarich D, Cotton D B. Macrophage inflammatory protein-1 alpha in term and preterm parturition: Effect of microbial invasion of the amniotic cavity. Am J Reprod Immunol 1994; 32: 108–113
  • Athayde N, Romero R, Maymon E, Gomez R, Pacora P, Araneda H, Yoon B H. A role for the novel cytokine RANTES in pregnancy and parturition. Am J Obstet Gynecol 1999; 181: 989–994
  • Gonzalez B E, Ferrer I, Valls C, Borras M, Lailla J M. The value of interleukin-8, interleukin-6 and interleukin-1beta in vaginal wash as predictors of preterm delivery. Gynecol Obstet Invest 2005; 59: 175–178
  • Esplin M S, Romero R, Chaiworapongsa T, Kim Y M, Edwin S, Gomez R, Mazor M, Adashi E Y. Monocyte chemotactic protein-1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intra-amniotic infection. J Matern Fetal Neonatal Med 2005; 17: 365–373
  • Esplin M S, Peltier M R, Hamblin S, Smith S, Fausett M B, Dildy G A, Branch D W, Silver R M, Adashi E Y. Monocyte chemotactic protein-1 expression is increased in human gestational tissues during term and preterm labor. Placenta 2005; 26: 661–671
  • Ammala M, Nyman T, Salmi A, Rutanen E M. The interleukin-1 system in gestational tissues at term: Effect of labour. Placenta 1997; 18: 717–723
  • Taniguchi T, Matsuzaki N, Kameda T, Shimoya K, Jo T, Saji F, Tanizawa O. The enhanced production of placental interleukin-1 during labor and intrauterine infection. Am J Obstet Gynecol 1991; 165: 131–137
  • Dudley D J, Collmer D, Mitchell M D, Trautman M S. Inflammatory cytokine mRNA in human gestational tissues: Implications for term and preterm labor. J Soc Gynecol Investig 1996; 3: 328–335
  • Romero R, Brody D T, Oyarzun E, Mazor M, Wu Y K, Hobbins J C, Durum S K. Infection and labor. III. Interleukin-1: A signal for the onset of parturition. Am J Obstet Gynecol 1989; 160: 1117–1123
  • Romero R, Mazor M, Tartakovsky B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol 1991; 165: 969–971
  • Sadowsky D W, Adams K M, Gravett M G, Witkin S S, Novy M J. Preterm labor is induced by intraamniotic infusions of interleukin-1beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am J Obstet Gynecol 2006; 195: 1578–1589
  • Nhan T Q, Liles W C, Schwartz S M. Physiological functions of caspases beyond cell death. Am J Pathol 2006; 169: 729–737
  • Creagh E M, Conroy H, Martin S J. Caspase-activation pathways in apoptosis and immunity. Immunol Rev 2003; 193: 10–21
  • Joshi V D, Kalvakolanu D V, Cross A S. Simultaneous activation of apoptosis and inflammation in pathogenesis of septic shock: A hypothesis. FEBS Lett 2003; 555: 180–184
  • Wilson K P, Black J A, Thomson J A, Kim E E, Griffith J P, Navia M A, Murcko, M A, Chambers S P, Aldape R A, Raybuck S A, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 1994; 370: 270–275
  • Hersh D, Monack D M, Smith M R, Ghori N, Falkow S, Zychlinsky A. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A 1999; 96: 2396–2401
  • Hilbi H, Moss J E, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell R A, Yuan J, Sansonetti P J, Zychlinsky A. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 1998; 273: 32 895–32 900
  • Tocci M J. Structure and function of interleukin-1 beta converting enzyme. Vitam Horm 1997; 53: 27–63
  • Singer I I, Scott S, Chin J, Bayne E K, Limjuco G, Weidner J, Miller D K, Chapman K, Kostura M J. The interleukin-1 beta-converting enzyme (ICE) is localized on the external cell surface membranes and in the cytoplasmic ground substance of human monocytes by immuno-electron microscopy. J Exp Med 1995; 182: 1447–1459
  • Ayala J M, Yamin T T, Egger L A, Chin J, Kostura M J, Miller D K. IL-1 beta-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor. J Immunol 1994; 153: 2592–2599
  • Miossec C, Decoen M C, Durand L, Fassy F, Diu-Hercend A. Use of monoclonal antibodies to study interleukin-1 beta-converting enzyme expression: Only precursor forms are detected in interleukin-1 beta-secreting cells. Eur J Immunol 1996; 26: 1032–1042
  • Earnshaw W C, Martins L M, Kaufmann S H. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999; 68: 383–424
  • Nicholson D W, Ali A, Thornberry N A, Vaillancourt J P, Ding C K, Gallant M, Gareau Y, Griffin P R, Labelle M, Lazebnik Y A, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37–43
  • Walker N P, Talanian R V, Brady K D, Dang L C, Bump N J, Ferenz C R, Franklin S, Ghayur T, Hackett M C, Hammill L D, et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: A (p20/p10)2 homodimer. Cell 1994; 78: 343–352
  • Moran L B, Duke D C, Graeber M B. The microglial gene regulatory network activated by interferon-gamma. J Neuroimmunol 2007; 183: 1–6
  • Cerretti D P, Hollingsworth L T, Kozlosky C J, Valentine M B, Shapiro D N, Morris S W, Nelson N. Molecular characterization of the gene for human interleukin-1 beta converting enzyme (IL1BC). Genomics 1994; 20: 468–473
  • Nett M A, Cerretti D P, Berson D R, Seavitt J, Gilbert D J, Jenkins N A, Copeland N G, Black R A, Chaplin D D. Molecular cloning of the murine IL-1 beta converting enzyme cDNA. J Immunol 1992; 149: 3254–3259
  • Keane K M, Giegel D A, Lipinski W J, Callahan M J, Shivers B D. Cloning, tissue expression and regulation of rat interleukin 1 beta converting enzyme. Cytokine 1995; 7: 105–110
  • Ahmed M, Shaban Z, Yamaji D, Okamatsu-Ogura Y, Soliman M, Abd E M, Ishioka K, Makondo K, Saito M, Kimura K. Induction of proinflammatory cytokines and caspase-1 by leptin in monocyte/macrophages from Holstein cows. J Vet Med Sci 2007; 69: 509–514
  • Coward W R, Marei A, Yang A, Vasa-Nicotera M M, Chow S C. Statin-induced proinflammatory response in mitogen-activated peripheral blood mononuclear cells through the activation of caspase-1 and IL-18 secretion in monocytes. J Immunol 2006; 176: 5284–5292
  • Singer I I, Scott S, Hall G L, Limjuco G, Chin J, Schmidt J A. Interleukin 1 beta is localized in the cytoplasmic ground substance but is largely absent from the Golgi apparatus and plasma membranes of stimulated human monocytes. J Exp Med 1988; 167: 389–407
  • Black R A, Kronheim S R, Sleath P R. Activation of interleukin-1 beta by a co-induced protease. FEBS Lett 1989; 247: 386–390
  • Hazuda D J, Lee J C, Young P R. The kinetics of interleukin 1 secretion from activated monocytes. Differences between interleukin 1 alpha and interleukin 1 beta. J Biol Chem 1988; 263: 8473–8479
  • Black R A, Kronheim S R, Cantrell M, Deeley M C, March C J, Prickett K S, Wignall J, Conlon P J, Cosman D, Hopp T P, et al. Generation of biologically active interleukin-1 beta by proteolytic cleavage of the inactive precursor. J Biol Chem 1988; 263: 9437–9442
  • Howard A D, Palyha O C, Griffin P R, Peterson E P, Lenny A B, Ding G J, Pickup D J, Thornberry N A, Schmidt J A, Tocci M J. Human IL-1 beta processing and secretion in recombinant baculovirus-infected Sf9 cells is blocked by the cowpox virus serpin crmA. J Immunol 1995; 154: 2321–2332
  • Kuida K, Lippke J A, Ku G, Harding M W, Livingston D J, Su M S, Flavell R A. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 1995; 267: 2000–2003
  • Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J, et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 1995; 80: 401–411
  • Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 1997; 386: 619–623
  • Beutler B, Cerami A. The endogenous mediator of endotoxic shock. Clin Res 1987; 35: 192–197
  • Mantovani A, Muzio M, Ghezzi P, Colotta C, Introna M. Regulation of inhibitory pathways of the interleukin-1 system. Ann N Y Acad Sci 1998; 840: 338–351
  • Burns K, Martinon F, Tschopp J. New insights into the mechanism of IL-1beta maturation. Curr Opin Immunol 2003; 15: 26–30
  • Dinarello C A. Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme. Ann N Y Acad Sci 1998; 856: 1–11
  • Librach C L, Feigenbaum S L, Bass K E, Cui T Y, Verastas N, Sadovsky Y, Quigley J P, French D L, Fisher S J. Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J Biol Chem 1994; 269: 17 125–17 131
  • Simon C, Frances A, Piquette G, Hendrickson M, Milki A, Polan M L. Interleukin-1 system in the materno-trophoblast unit in human implantation: Immunohistochemical evidence for autocrine/paracrine function. J Clin Endocrinol Metab 1994; 78: 847–854
  • Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995; 378: 88–91
  • Dinarello C A. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 1999; 103: 11–24
  • Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K, Tanabe F, Konishi K, Micallef M, Fujii M, et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol 1996; 156: 4274–4279
  • Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming M A, Hayashi N, Higashino K, Okamura H, Nakanishi K, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 1997; 275: 206–209
  • Pirhonen J, Sareneva T, Kurimoto M, Julkunen I, Matikainen S. Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol 1999; 162: 7322–7329
  • Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A, Hanzawa K, Kumagai K, Okamura H, Takada H. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 2001; 167: 6568–6575
  • Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okamura H, Nakanishi K, Akira S. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 1998; 8: 383–390
  • Gracie J A, Robertson S E, McInnes I B. Interleukin-18. J Leukoc Biol 2003; 73: 213–224
  • Hoshino T, Wiltrout R H, Young H A. IL-18 is a potent coinducer of IL-13 in NK and T cells: A new potential role for IL-18 in modulating the immune response. J Immunol 1999; 162: 5070–5077
  • Hoshino T, Yagita H, Ortaldo J R, Wiltrout R H, Young H A. In vivo administration of IL-18 can induce IgE production through Th2 cytokine induction and up-regulation of CD40 ligand (CD154) expression on CD4+ T cells. Eur J Immunol 2000; 30: 1998–2006
  • Tsutsui H, Nakanishi K, Matsui K, Higashino K, Okamura H, Miyazawa Y, Kaneda K. IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol 1996; 157: 3967–3973
  • Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H. Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol 1996; 173: 230–235
  • Yoshimoto T, Takeda K, Tanaka T, Ohkusu K, Kashiwamura S, Okamura H, Akira S, Nakanishi K. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: Synergism with IL-18 for IFN-gamma production. J Immunol 1998; 161: 3400–3407
  • Micallef M J, Ohtsuki T, Kohno K, Tanabe F, Ushio S, Namba M, Tanimoto T, Torigoe K, Fujii M, Ikeda M, et al. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: Synergism with interleukin-12 for interferon-gamma production. Eur J Immunol 1996; 26: 1647–1651
  • Dao T, Mehal W Z, Crispe I N. IL-18 augments perforin-dependent cytotoxicity of liver NK-T cells. J Immunol 1998; 161: 2217–2222
  • Gracie J A, Forsey R J, Chan W L, Gilmour A, Leung B P, Greer M R, Kennedy K, Carter R, Wei X Q, Xu D, et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 1999; 104: 1393–1401
  • Leung B P, Culshaw S, Gracie J A, Hunter D, Canetti C A, Campbell C, Cunha F, Liew F Y, McInnes I B. A role for IL-18 in neutrophil activation. J Immunol 2001; 167: 2879–2886
  • Hook C E, Matyszak M K, Gaston J S. Infection of epithelial and dendritic cells by Chlamydia trachomatis results in IL-18 and IL-12 production, leading to interferon-gamma production by human natural killer cells. FEMS Immunol Med Microbiol 2005; 45: 113–120
  • Lu H, Shen C, Brunham R C. Chlamydia trachomatis infection of epithelial cells induces the activation of caspase-1 and release of mature IL-18. J Immunol 2000; 165: 1463–1469
  • Muneta Y, Minagawa Y, Shimoji Y, Nagata R, Markham P F, Browning G F, Mori Y. IL-18 expression in pigs following infection with Mycoplasma hyopneumoniae. J Interferon Cytokine Res 2006; 26: 637–644
  • Tanaka H, Narita M, Teramoto S, Saikai T, Oashi K, Igarashi T, Abe S. Role of interleukin-18 and T-helper type 1 cytokines in the development of Mycoplasma pneumoniae pneumonia in adults. Chest 2002; 121: 1493–1497
  • Narita M, Tanaka H, Abe S, Yamada S, Kubota M, Togashi T. Close association between pulmonary disease manifestation in Mycoplasma pneumoniae infection and enhanced local production of interleukin-18 in the lung, independent of gamma interferon. Clin Diagn Lab Immunol 2000; 7: 909–914
  • Kinjo Y, Kawakami K, Uezu K, Yara S, Miyagi K, Koguchi Y, Hoshino T, Okamoto M, Kawase Y, Yokota K, et al. Contribution of IL-18 to Th1 response and host defense against infection by Mycobacterium tuberculosis: A comparative study with IL-12p40. J Immunol 2002; 169: 323–329
  • Vankayalapati R, Wizel B, Weis S E, Samten B, Girard W M, Barnes P F. Production of interleukin-18 in human tuberculosis. J Infect Dis 2000; 182: 234–239
  • Yamada G, Shijubo N, Shigehara K, Okamura H, Kurimoto M, Abe S. Increased levels of circulating interleukin-18 in patients with advanced tuberculosis. Am J Respir Crit Care Med 2000; 161: 1786–1789
  • Garcia V E, Uyemura K, Sieling P A, Ochoa M T, Morita C T, Okamura H, Kurimoto M, Rea T H, Modlin R L. IL-18 promotes type 1 cytokine production from NK cells and T cells in human intracellular infection. J Immunol 1999; 162: 6114–6121
  • Mastroeni P, Clare S, Khan S, Harrison J A, Hormaeche C E, Okamura H, Kurimoto M, Dougan G. Interleukin 18 contributes to host resistance and gamma interferon production in mice infected with virulent Salmonella typhimurium. Infect Immun 1999; 67: 478–483
  • Sansonetti P J, Phalipon A, Arondel J, Thirumalai K, Banerjee S, Akira S. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 2000; 12: 581–590
  • Bohn E, Sing A, Zumbihl R, Bielfeldt C, Okamura H, Kurimoto M, Heesemann J, Autenrieth I B. IL-18 (IFN-gamma-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J Immunol 1998; 160: 299–307
  • Qureshi M H, Zhang T, Koguchi Y, Nakashima K, Okamura H, Kurimoto M, Kawakami K. Combined effects of IL-12 and IL-18 on the clinical course and local cytokine production in murine pulmonary infection with Cryptococcus neoformans. Eur J Immunol 1999; 29: 643–649
  • Kawakami K, Qureshi M H, Zhang T, Okamura H, Kurimoto M, Saito A. IL-18 protects mice against pulmonary and disseminated infection with Cryptococcus neoformans by inducing IFN-gamma production. J Immunol 1997; 159: 5528–5534
  • Mencacci A, Bacci A, Cenci E, Montagnoli C, Fiorucci S, Casagrande A, Flavell R A, Bistoni F, Romani L. Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect Immun 2000; 68: 5126–5131
  • Cai G, Kastelein R, Hunter C A. Interleukin-18 (IL-18) enhances innate IL-12-mediated resistance to Toxoplasma gondii. Infect Immun 2000; 68: 6932–6938
  • Yap G S, Ortmann R, Shevach E, Sher A. A heritable defect in IL-12 signaling in B10.Q/J mice. II. Effect on acute resistance to Toxoplasma gondii and rescue by IL-18 treatment. J Immunol 2001; 166: 5720–5725
  • Fujioka N, Akazawa R, Ohashi K, Fujii M, Ikeda M, Kurimoto M. Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J Virol 1999; 73: 2401–2409
  • Tokmadzic V S, Tsuji Y, Bogovic T, Laskarin G, Cupurdija K, Strbo N, Koyama K, Okamura H, Podack E R, Rukavina D. IL-18 is present at the maternal–fetal interface and enhances cytotoxic activity of decidual lymphocytes. Am J Reprod Immunol 2002; 48: 191–200
  • Ostojic S, Dubanchet S, Chaouat G, Abdelkarim M, Truyens C, Capron F. Demonstration of the presence of IL-16, IL-17 and IL-18 at the murine fetomaternal interface during murine pregnancy. Am J Reprod Immunol 2003; 49: 101–112
  • Ledee-Bataille N, Dubanchet S, Coulomb-L'hermine A, Durand-Gasselin I, Frydman R, Chaouat G. A new role for natural killer cells, interleukin (IL)- 12, and IL-18 in repeated implantation failure after in vitro fertilization. Fertil Steril 2004; 81: 59–65
  • Laskarin G, Strbo N, Bogovic C T, Juretic K, Ledee B N, Chaouat G, Rukavina D. Physiological role of IL-15 and IL-18 at the maternal–fetal interface. Chem Immunol Allergy 2005; 89: 10–25
  • Jacobsson B, Holst R M, Mattsby-Baltzer I, Nikolaitchouk N, Wennerholm U B, Hagberg H. Interleukin-18 in cervical mucus and amniotic fluid: Relationship to microbial invasion of the amniotic fluid, intra-amniotic inflammation and preterm delivery. BJOG 2003; 110: 598–603
  • Wang X, Hagberg H, Mallard C, Zhu C, Hedtjarn M, Tiger C F, Eriksson K, Rosen A, Jacobsson B. Disruption of interleukin-18, but not interleukin-1, increases vulnerability to preterm delivery and fetal mortality after intrauterine inflammation. Am J Pathol 2006; 169: 967–976
  • Fazleabas A T, Kim J J, Strakova Z. Implantation: Embryonic signals and the modulation of the uterine environment—a review. Placenta 2004; 25(Suppl A)S26–31
  • Ida A, Tsuji Y, Muranaka J, Kanazawa R, Nakata Y, Adachi S, Okamura H, Koyama K. IL-18 in pregnancy: The elevation of IL-18 in maternal peripheral blood during labour and complicated pregnancies. J Reprod Immunol 2000; 47: 65–74
  • Jokhi P P, King A, Loke Y W. Cytokine production and cytokine receptor expression by cells of the human first trimester placental-uterine interface. Cytokine 1997; 9: 126–137
  • Menon R, Swan K F, Lyden T W, Rote N S, Fortunato S J. Expression of inflammatory cytokines (interleukin-1 beta and interleukin-6) in amniochorionic membranes. Am J Obstet Gynecol 1995; 172: 493–500
  • Menon R, Lombardi S J, Fortunato S J. IL-18, a product of choriodecidual cells, increases during premature rupture of membranes but fails to turn on the Fas-FasL-mediated apoptosis pathway. J Assist Reprod Genet 2001; 18: 276–284
  • White C A, Dimitriadis E, Sharkey A M, Stoikos C J, Salamonsen L A. Interleukin 1 beta is induced by interleukin 11 during decidualization of human endometrial stromal cells, but is not released in a bioactive form. J Reprod Immunol 2007; 73: 28–38
  • Lindstrom T M, Bennett P R. The role of nuclear factor kappa B in human labour. Reproduction 2005; 130: 569–581
  • Hertelendy F, Rastogi P, Molnar M, Romero R. Interleukin-1beta-induced prostaglandin E2 production in human myometrial cells: Role of a pertussis toxin-sensitive component. Am J Reprod Immunol 2001; 45: 142–147
  • Hertelendy F, Romero R, Molnar M, Todd H, Baldassare J J. Cytokine-initiated signal transduction in human myometrial cells. Am J Reprod Immunol 1993; 30: 49–57
  • Romero R, Durum S, Dinarello C A, Oyarzun E, Hobbins J C, Mitchell M D. Interleukin-1 stimulates prostaglandin biosynthesis by human amnion. Prostaglandins 1989; 37: 13–22
  • Mitchell M D, Chang M C, Chaiworapongsa T, Lan H Y, Helliwell R J, Romero R, Sato T A. Identification of 9alpha,11beta-prostaglandin F2 in human amniotic fluid and characterization of its production by human gestational tissues. J Clin Endocrinol Metab 2005; 90: 4244–4248
  • Belt A R, Baldassare J J, Molnar M, Romero R, Hertelendy F. The nuclear transcription factor NF-kappaB mediates interleukin-1beta-induced expression of cyclooxygenase-2 in human myometrial cells. Am J Obstet Gynecol 1999; 181: 359–366
  • Romero R, Emamian M, Wan M, Quintero R, Hobbins J C, Mitchell M D. Prostaglandin concentrations in amniotic fluid of women with intra-amniotic infection and preterm labor. Am J Obstet Gynecol 1987; 157: 1461–1467
  • Romero R, Wu Y K, Sirtori M, Oyarzun E, Mazor M, Hobbins J C, Mitchell M D. Amniotic fluid concentrations of prostaglandin F2 alpha, 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) and 11-deoxy-13,14-dihydro-15-keto-11,16-cyclo-prostaglandin E2 (PGEM-LL) in preterm labor. Prostaglandins 1989; 37: 149–161
  • Romero R, Wu Y K, Brody D T, Oyarzun E, Duff G W, Durum S K. Human decidua: A source of interleukin-1. Obstet Gynecol 1989; 73: 31–34
  • Sakao Y, Takeda K, Tsutsui H, Kaisho T, Nomura F, Okamura H, Nakanishi K, Akira S. IL-18-deficient mice are resistant to endotoxin-induced liver injury but highly susceptible to endotoxin shock. Int Immunol 1999; 11: 471–480
  • Dinarello C A. Therapeutic strategies to reduce IL-1 activity in treating local and systemic inflammation. Curr Opin Pharmacol 2004; 4: 378–385
  • Boost K A, Hoegl S, Hofstetter C, Flondor M, Stegewerth K, Platacis I, Pfeilschifter J, Muhl H, Zwissler B. Targeting caspase-1 by inhalation-therapy: Effects of Ac-YVAD-CHO on IL-1 beta, IL-18 and downstream proinflammatory parameters as detected in rat endotoxaemia. Intensive Care Med 2007; 33: 863–871
  • Norman J, Yang J, Fink G, Carter G, Ku G, Denham W, Livingston D. Severity and mortality of experimental pancreatitis are dependent on interleukin-1 converting enzyme (ICE). J Interferon Cytokine Res 1997; 17: 113–118
  • Joshi V D, Kalvakolanu D V, Hebel J R, Hasday J D, Cross A S. Role of caspase 1 in murine antibacterial host defenses and lethal endotoxemia. Infect Immun 2002; 70: 6896–6903
  • Sarkar A, Hall M W, Exline M, Hart J, Knatz N, Gatson N T, Wewers M D. Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 2006; 174: 1003–1010
  • Hotchkiss R S, Chang K C, Swanson P E, Tinsley K W, Hui J J, Klender P, Xanthoudakis S, Roy S, Black C, Grimm E, et al. Caspase inhibitors improve survival in sepsis: A critical role of the lymphocyte. Nat Immunol 2000; 1: 496–501
  • Hotchkiss R S, Swanson P E, Cobb J P, Jacobson A, Buchman T G, Karl I E. Apoptosis in lymphoid and parenchymal cells during sepsis: Findings in normal and T- and B-cell-deficient mice. Crit Care Med 1997; 25: 1298–1307
  • Wang S D, Huang K J, Lin Y S, Lei H Y. Sepsis-induced apoptosis of the thymocytes in mice. J Immunol 1994; 152: 5014–5021
  • Ayala A, Herdon C D, Lehman D L, Ayala C A, Chaudry I H. Differential induction of apoptosis in lymphoid tissues during sepsis: Variation in onset, frequency, and the nature of the mediators. Blood 1996; 87: 4261–4275
  • Bilbo S D, Biedenkapp J C, Der-Avakian A, Watkins L R, Rudy J W, Maier S F. Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. J Neurosci 2005; 25: 8000–8009
  • Micci M A, Pattillo M T, Kahrig K M, Pasricha P J. Caspase inhibition increases survival of neural stem cells in the gastrointestinal tract. Neurogastroenterol Motil 2005; 17: 557–564

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.