960
Views
45
CrossRef citations to date
0
Altmetric
Original Article

Tissue factor and its natural inhibitor in pre-eclampsia and SGA

, MD, , MD, , , , , , , , , , , , & show all
Pages 855-869 | Received 21 Nov 2007, Accepted 30 May 2008, Published online: 07 Jul 2009

References

  • Romero R. The child is the father of the man. Prenat Neonat Med 1996; 1: 8–11
  • ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Obstet Gynecol 2002; 99: 159–167
  • F G Cunningham, Gant, N F, Leveno, K J, Gilstrap, L C, Hauth, J C, Wenstrom, K D. Williams obstetrics21st edn. McGraw-Hill, New York 2001; 567–618
  • Gervasi M T, Chaiworapongsa T, Pacora P, Naccasha N, Yoon B H, Maymon E, Romero R. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol 2001; 185: 792–797
  • Redman C W, Sacks G P, Sargent I L. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999; 180: 499–506
  • Redman C W, Sargent I L. The pathogenesis of pre-eclampsia. Gynecol Obstet Fertil 2001; 29: 518–522
  • Gratacos E. Lipid-mediated endothelial dysfunction: a common factor to preeclampsia and chronic vascular disease. Eur J Obstet Gynecol Reprod Biol 2000; 92: 63–66
  • Carr D B, McDonald G B, Brateng D, Desai M, Thach C T, Easterling T R. The relationship between hemodynamics and inflammatory activation in women at risk for preeclampsia. Obstet Gynecol 2001; 98: 1109–1116
  • Wolf M, Kettyle E, Sandler L, Ecker J L, Roberts J, Thadhani R. Obesity and preeclampsia: the potential role of inflammation. Obstet Gynecol 2001; 98: 757–762
  • Chaiworapongsa T, Yoshimatsu J, Espinoza J, Kim Y M, Berman S, Edwin S, Yoon B H, Romero R. Evidence of in vivo generation of thrombin in patients with small-for-gestational-age fetuses and pre-eclampsia. J Matern Fetal Neonatal Med 2002; 11: 362–367
  • Chaiworapongsa T, Gervasi M T, Refuerzo J, Espinoza J, Yoshimatsu J, Berman S, Romero R. Maternal lymphocyte subpopulations (CD45RA+ and CD45RO+) in preeclampsia. Am J Obstet Gynecol 2002; 187: 889–893
  • Saito S, Sakai M. Th1/Th2 balance in preeclampsia. J Reprod Immunol 2003; 59: 161–173
  • Freeman D J, McManus F, Brown E A, Cherry L, Norrie J, Ramsay J E, Clark P, Walker I D, Sattar N, Greer I A. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension 2004; 44: 708–714
  • Todros T, Bontempo S, Piccoli E, Ietta F, Romagnoli R, Biolcati M, Castellucci M, Paulesu L. Increased levels of macrophage migration inhibitory factor (MIF) in preeclampsia. Eur J Obstet Gynecol Reprod Biol 2005; 123: 162–166
  • Redman C W, Sargent I L. Latest advances in understanding preeclampsia. Science 2005; 308: 1592–1594
  • Luppi P, Deloia J A. Monocytes of preeclamptic women spontaneously synthesize pro-inflammatory cytokines. Clin Immunol 2006; 118: 268–275
  • Borzychowski A M, Sargent I L, Redman C W. Inflammation and pre-eclampsia. Semin Fetal Neonatal Med 2006; 11: 309–316
  • Elovitz M A. Anti-inflammatory interventions in pregnancy: now and the future. Semin Fetal Neonatal Med 2006; 11: 327–332
  • Sargent I L, Germain S J, Sacks G P, Kumar S, Redman C W. Trophoblast deportation and the maternal inflammatory response in pre-eclampsia. J Reprod Immunol 2003; 59: 153–160
  • Redman C W, Sargent I L. Pre-eclampsia, the placenta and the maternal systemic inflammatory response – a review. Placenta 2003; 24(Suppl A)S21–S27
  • Selvaggi L, Lucivero G, Iannone A, dell'Osso A, Loverro G, Antonaci S, Bonomo L, Bettocchi S. Analysis of mononuclear cell subsets in pregnancies with intrauterine growth retardation. Evidence of chronic B-lymphocyte activation. J Perinat Med 1983; 11: 213–217
  • Johnston T A, Greer I A, Dawes J, Calder A A. Neutrophil activation in small for gestational age pregnancies. Br J Obstet Gynaecol 1991; 98: 105–106
  • Bozzola M, Chirico G, Chiara A, Gasparoni A, Schimpff R M. Serum growth-promoting activity in human newborns. Relationship of thymidine activity with birth weight and the length of gestation. Acta Paediatr Scand 1985; 74: 534–538
  • Girardi G, Yarilin D, Thurman J M, Holers V M, Salmon J E. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 2006; 203: 2165–2175
  • Sabatier F, Bretelle F, D'Ercole C, Boubli L, Sampol J, gnat-George F. Neutrophil activation in preeclampsia and isolated intrauterine growth restriction. Am J Obstet Gynecol 2000; 183: 1558–1563
  • Cadroy Y, Grandjean H, Pichon J, Desprats R, Berrebi A, Fournie A, Boneu B. Evaluation of six markers of haemostatic system in normal pregnancy and pregnancy complicated by hypertension or pre-eclampsia. Br J Obstet Gynaecol 1993; 100: 416–420
  • de Boer K, ten Cate J W, Sturk A, Borm J J, Treffers P E. Enhanced thrombin generation in normal and hypertensive pregnancy. Am J Obstet Gynecol 1989; 160: 95–100
  • Tanjung M T, Siddik H D, Hariman H, Koh S C. Coagulation and fibrinolysis in preeclampsia and neonates. Clin Appl Thromb Hemost 2005; 11: 467–473
  • Bonnar J, Redman C W, Denson K W. The role of coagulation and fibrinolysis in preeclampsia. Perspect Nephrol Hypertens 1976; 5: 85–93
  • Schjetlein R, Haugen G, Wisloff F. Markers of intravascular coagulation and fibrinolysis in preeclampsia: association with intrauterine growth retardation. Acta Obstet Gynecol Scand 1997; 76: 541–546
  • Burton G J, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig 2004; 11: 342–352
  • De Wolf F, Carreras L O, Moerman P, Vermylen J, Van A A, Renaer M. Decidual vasculopathy and extensive placental infarction in a patient with repeated thromboembolic accidents, recurrent fetal loss, and a lupus anticoagulant. Am J Obstet Gynecol 1982; 142: 829–834
  • Brosens I, Renaer M. On the pathogenesis of placental infarcts in pre-eclampsia. J Obstet Gynaecol Br Commonw 1972; 79: 794–799
  • Rogers B B, Bloom S L, Leveno K J. Atherosis revisited: current concepts on the pathophysiology of implantation site disorders. Obstet Gynecol Surv 1999; 54: 189–195
  • Lala P K, Chakraborty C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta 2003; 24: 575–587
  • Brosens I, Dixon H G, Robertson W B. Fetal growth retardation and the arteries of the placental bed. Br J Obstet Gynaecol 1977; 84: 656–663
  • Sheppard B L, Bonnar J. An ultrastructural study of utero-placental spiral arteries in hypertensive and normotensive pregnancy and fetal growth retardation. Br J Obstet Gynaecol 1981; 88: 695–705
  • Gerretsen G, Huisjes H J, Elema J D. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol 1981; 88: 876–881
  • Hustin J, Foidart J M, Lambotte R. Maternal vascular lesions in pre-eclampsia and intrauterine growth retardation: light microscopy and immunofluorescence. Placenta 1983; 4: 489–498
  • Woods D L. Relative placental size in growth-retarded infants. Am J Obstet Gynecol 1986; 154: 1170
  • Lyall F, Simpson H, Bulmer J N, Barber A, Robson S C. Transforming growth factor-beta expression in human placenta and placental bed in third trimester normal pregnancy, preeclampsia, and fetal growth restriction. Am J Pathol 2001; 159: 1827–1838
  • Egbor M, Ansari T, Morris N, Green C J, Sibbons P D. Pre-eclampsia and fetal growth restriction: how morphometrically different is the placenta. Placenta 2006; 27: 727–734
  • Egbor M, Ansari T, Morris N, Green C J, Sibbons P D. Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG 2006; 113: 580–589
  • Levine R J, Lam C, Qian C, Yu K F, Maynard S E, Sachs B P, Sibai B M, Epstein F H, Romero R, Thadhani R, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355: 992–1005
  • Malamitsi-Puchner A, Boutsikou T, Economou E, Makrakis E, Iliodromiti Z, Kouskouni E, Hassiakos D. The role of the anti-angiogenic factor endostatin in intrauterine growth restriction. J Soc Gynecol Investig 2005; 12: 195–197
  • Ahmed A, Perkins J. Angiogenesis and intrauterine growth restriction. Baillieres Best Pract Res Clin Obstet Gynaecol 2000; 14: 981–998
  • Boutsikou T, Malamitsi-Puchner A, Economou E, Boutsikou M, Puchner K P, Hassiakos D. Soluble vascular endothelial growth factor receptor-1 in intrauterine growth restricted fetuses and neonates. Early Hum Dev 2006; 82: 235–239
  • Cetin I, Foidart J M, Miozzo M, Raun T, Jansson T, Tsatsaris V, Reik W, Cross J, Hauguel-de-Mouzon S, Illsley N, et al. Fetal growth restriction: a workshop report. Placenta 2004; 25: 753–757
  • Maynard S E, Min J Y, Merchan J, Lim K H, Li J, Mondal S, Libermann T A, Morgan J P, Sellke F W, Stillman I E, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–658
  • Wolf M, Hubel C A, Lam C, Sampson M, Ecker J L, Ness R B, Rajakumar A, Daftary A, Shakir A S, Seely E W, et al. Preeclampsia and future cardiovascular disease: potential role of altered angiogenesis and insulin resistance. J Clin Endocrinol Metab 2004; 89: 6239–6243
  • Bdolah Y, Sukhatme V P, Karumanchi S A. Angiogenic imbalance in the pathophysiology of preeclampsia: newer insights. Semin Nephrol 2004; 24: 548–556
  • Karumanchi S A, Bdolah Y. Hypoxia and sFlt-1 in preeclampsia: the “chicken-and-egg” question. Endocrinology 2004; 145: 4835–4837
  • Davison J M, Homuth V, Jeyabalan A, Conrad K P, Karumanchi S A, Quaggin S, Dechend R, Luft F C. New aspects in the pathophysiology of preeclampsia. J Am Soc Nephrol 2004; 15: 2440–2448
  • Thadhani R, Ecker J L, Mutter W P, Wolf M, Smirnakis K V, Sukhatme V P, Levine R J, Karumanchi S A. Insulin resistance and alterations in angiogenesis: additive insults that may lead to preeclampsia. Hypertension 2004; 43: 988–992
  • Levine R J, Maynard S E, Qian C, Lim K H, England L J, Yu K F, Schisterman E F, Thadhani R, Sachs B P, Epstein F H, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672–683
  • Thadhani R, Mutter W P, Wolf M, Levine R J, Taylor R N, Sukhatme V P, Ecker J, Karumanchi S A. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J Clin Endocrinol Metab 2004; 89: 770–775
  • Bdolah Y, Karumanchi S A, Sachs B P. Recent advances in understanding of preeclampsia. Croat Med J 2005; 46: 728–736
  • Lam C, Lim K H, Karumanchi S A. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension 2005; 46: 1077–1085
  • Nadar S K, Karalis I, Al Y E, Blann A D, Lip G Y. Plasma markers of angiogenesis in pregnancy induced hypertension. Thromb Haemost 2005; 94: 1071–1076
  • Maynard S E, Venkatesha S, Thadhani R, Karumanchi S A. Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr Res 2005; 57: 1R–7R
  • Rajakumar A, Michael H M, Rajakumar P A, Shibata E, Hubel C A, Karumanchi S A, Thadhani R, Wolf M, Harger G, Markovic N. Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta 2005; 26: 563–573
  • Levine R J, Thadhani R, Qian C, Lam C, Lim K H, Yu K F, Blink A L, Sachs B P, Epstein F H, Sibai B M, et al. Urinary placental growth factor and risk of preeclampsia. JAMA 2005; 293: 77–85
  • Levine R J, Karumanchi S A. Circulating angiogenic factors in preeclampsia. Clin Obstet Gynecol 2005; 48: 372–386
  • Aggarwal P K, Jain V, Sakhuja V, Karumanchi S A, Jha V. Low urinary placental growth factor is a marker of pre-eclampsia. Kidney Int 2006; 69: 621–624
  • Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim Y M, Bdolah Y, Lim K H, Yuan H T, Libermann T A, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12: 642–649
  • Levine R J, Qian C, Maynard S E, Yu K F, Epstein F H, Karumanchi S A. Serum sFlt1 concentration during preeclampsia and mid trimester blood pressure in healthy nulliparous women. Am J Obstet Gynecol 2006; 194: 1034–1041
  • Tjoa M L, Levine R J, Karumanchi S A. Angiogenic factors and preeclampsia. Front Biosci 2007; 12: 2395–2402
  • Mayhew T M, Wijesekara J, Baker P N, Ong S S. Morphometric evidence that villous development and fetoplacental angiogenesis are compromised by intrauterine growth restriction but not by pre-eclampsia. Placenta 2004; 25: 829–833
  • Rutland C S, Mukhopadhyay M, Underwood S, Clyde N, Mayhew T M, Mitchell C A. Induction of intrauterine growth restriction by reducing placental vascular growth with the angioinhibin TNP-470. Biol Reprod 2005; 73: 1164–1173
  • Maulik D, Frances E J, Ragolia L. Fetal growth restriction: pathogenic mechanisms. Clin Obstet Gynecol 2006; 49: 219–227
  • Wathen K A, Tuutti E, Stenman U H, Alfthan H, Halmesmaki E, Finne P, Ylikorkala O, Vuorela P. Maternal serum-soluble vascular endothelial growth factor receptor-1 in early pregnancy ending in preeclampsia or intrauterine growth retardation. J Clin Endocrinol Metab 2006; 91: 180–184
  • Bujold E, Romero R, Chaiworapongsa T, Kim Y M, Kim G J, Kim M R, Espinoza J, Goncalves L F, Edwin S, Mazor M. Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin. J Matern Fetal Neonatal Med 2005; 18: 9–16
  • Chaiworapongsa T, Romero R, Kim Y M, Kim G J, Kim M R, Espinoza J, Bujold E, Goncalves L, Gomez R, Edwin S, et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med 2005; 17: 3–18
  • Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res 2004; 95: 884–891
  • Chaiworapongsa T, Romero R, Espinoza J, Bujold E, Mee K Y, Goncalves L F, Gomez R, Edwin S. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young investigator award. Am J Obstet Gynecol 2004; 190: 1541–1547
  • Koga K, Osuga Y, Yoshino O, Hirota Y, Ruimeng X, Hirata T, Takeda S, Yano T, Tsutsumi O, Taketani Y. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab 2003; 88: 2348–2351
  • Padavala S, Pope N, Baker P, Crocker I. An imbalance between vascular endothelial growth factor and its soluble receptor in placental villous explants of intrauterine growth-restricted pregnancies. J Soc Gynecol Investig 2006; 13: 40–47
  • Regnault T R, Orbus R J, de V B, Davidsen M L, Galan H L, Wilkening R B, Anthony R V. Placental expression of VEGF, PlGF and their receptors in a model of placental insufficiency-intrauterine growth restriction (PI-IUGR). Placenta 2002; 23: 132–144
  • Stepan H, Kramer T, Faber R. Maternal plasma concentrations of soluble endoglin in pregnancies with intrauterine growth restriction. J Clin Endocrinol Metab 2007; 92: 2831–2834
  • Lopez-Novoa J M. Soluble endoglin is an accurate predictor and a pathogenic molecule in pre-eclampsia. Nephrol Dial Transplant 2007; 22: 712–714
  • Luft F C. Soluble endoglin (sEng) joins the soluble fms-like tyrosine kinase (sFlt) receptor as a pre-eclampsia molecule. Nephrol Dial Transplant 2006; 21: 3052–3054
  • Villar J, Carroli G, Wojdyla D, Abalos E, Giordano D, Ba'aqeel H, Farnot U, Bergsjo P, Bakketeig L, Lumbiganon P, et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions. Am J Obstet Gynecol 2006; 194: 921–931
  • von Dadelszen P, Magee L A. Could an infectious trigger explain the differential maternal response to the shared placental pathology of preeclampsia and normotensive intrauterine growth restriction. Acta Obstet Gynecol Scand 2002; 81: 642–648
  • Mittendorf R, Lain K Y, Williams M A, Walker C K. Preeclampsia. A nested, case-control study of risk factors and their interactions. J Reprod Med 1996; 41: 491–496
  • Banhidy F, Acs N, Puho E H, Czeizel A E. Pregnancy complications and birth outcomes of pregnant women with urinary tract infections and related drug treatments. Scand J Infect Dis 2007; 39: 390–397
  • Lee C J, Hsieh T T, Chiu T H, Chen K C, Lo L M, Hung T H. Risk factors for pre-eclampsia in an Asian population. Int J Gynaecol Obstet 2000; 70: 327–333
  • Schieve L A, Handler A, Hershow R, Persky V, Davis F. Urinary tract infection during pregnancy: its association with maternal morbidity and perinatal outcome. Am J Public Health 1994; 84: 405–410
  • Hill J A, Devoe L D, Bryans C I, Jr. Frequency of asymptomatic bacteriuria in preeclampsia. Obstet Gynecol 1986; 67: 529–532
  • Savige J A, Gilbert G L, Fairley K F, McDowall D R. Bacteriuria due to Ureaplasma urealyticum and Gardnerella vaginalis in women with preeclampsia. J Infect Dis 1983; 148: 605
  • Gilbert G L, Garland S M, Fairley K F, McDowall D M. Bacteriuria due to ureaplasmas and other fastidious organisms during pregnancy: prevalence and significance. Pediatr Infect Dis 1986; 5: S239–S243
  • Ness R B, Sibai B M. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol 2006; 195: 40–49
  • Chaiworapongsa T, Gervasi M T, Espinoza J, Bujold E, Kim Y M, Blackwell S, Romero R. Preeclampsia and SGA differ by the extent of monocyte, but not neutrophil, metabolic activity and oxidative burst. Am J Obstet Gynecol 2003; 187: S220
  • von Dadelszen P, Watson R W, Noorwali F, Marshall J C, Parodo J, Farine D, Lye S J, Ritchie J W, Rotstein O D. Maternal neutrophil apoptosis in normal pregnancy, preeclampsia, and normotensive intrauterine growth restriction. Am J Obstet Gynecol 1999; 181: 408–414
  • Osterud B. The role of platelets in decrypting monocyte tissue factor. Semin Hematol 2001; 38: 2–5
  • Osterud B. Tissue factor expression by monocytes: regulation and pathophysiological roles. Blood Coagul Fibrinolysis 1998; 9(Suppl 1)S9–S14
  • Osterud B, Bjorklid E. Sources of tissue factor. Semin Thromb Hemost 2006; 32: 11–23
  • Osterud B. Cellular interactions in tissue factor expression by blood monocytes. Blood Coagul Fibrinolysis 1995; 6(Suppl 1)S20–S25
  • Lockwood C J, Krikun G, Rahman M, Caze R, Buchwalder L, Schatz F. The role of decidualization in regulating endometrial hemostasis during the menstrual cycle, gestation, and in pathological states. Semin Thromb Hemost 2007; 33: 111–117
  • Dusse L M, Carvalho M G, Cooper A J, Lwaleed B A. Tissue factor and tissue factor pathway inhibitor: a potential role in pregnancy and obstetric vascular complications. Clin Chim Acta 2006; 372: 43–46
  • Ruf W, Mueller B M. Tissue factor in cancer angiogenesis and metastasis. Curr Opin Hematol 1996; 3: 379–384
  • Wojtukiewicz M Z, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy. Neoplasia 2001; 3: 371–384
  • Nash G F, Walsh D C, Kakkar A K. The role of the coagulation system in tumour angiogenesis. Lancet Oncol 2001; 2: 608–613
  • Brodsky S V. Coagulation, fibrinolysis and angiogenesis: new insights from knockout mice. Exp Nephrol 2002; 10: 299–306
  • Schatz F, Krikun G, Caze R, Rahman M, Lockwood C J. Progestin-regulated expression of tissue factor in decidual cells: implications in endometrial hemostasis, menstruation and angiogenesis. Steroids 2003; 68: 849–860
  • Belting M, Ahamed J, Ruf W. Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 2005; 25: 1545–1550
  • Lockwood C J, Krikun G, Schatz F. The decidua regulates hemostasis in human endometrium. Semin Reprod Endocrinol 1999; 17: 45–51
  • Lockwood C J, Krikun G, Schatz F. Decidual cell-expressed tissue factor maintains hemostasis in human endometrium. Ann N Y Acad Sci 2001; 943: 77–88
  • Lockwood C J, Schatz F. A biological model for the regulation of peri-implantational hemostasis and menstruation. J Soc Gynecol Investig 1996; 3: 159–165
  • Hahn L. On fibrinolysis and coagulation during parturition and menstruation. Acta Obstet Gynecol Scand Suppl 1974; 28: 7–40
  • Holmes V A, Wallace J M. Haemostasis in normal pregnancy: a balancing act. Biochem Soc Trans 2005; 33: 428–432
  • Bellart J, Gilabert R, Miralles R M, Monasterio J, Cabero L. Endothelial cell markers and fibrinopeptide A to D-dimer ratio as a measure of coagulation and fibrinolysis balance in normal pregnancy. Gynecol Obstet Invest 1998; 46: 17–21
  • Uszynski M, Zekanowska E, Uszynski W, Kuczynski J. Tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in amniotic fluid and blood plasma: implications for the mechanism of amniotic fluid embolism. Eur J Obstet Gynecol Reprod Biol 2001; 95: 163–166
  • Broze G J, Jr, Girard T J, Novotny W F. Regulation of coagulation by a multivalent Kunitz-type inhibitor. Biochemistry 1990; 29: 7539–7546
  • Broze G J, Jr, Warren L A, Novotny W F, Higuchi D A, Girard J J, Miletich J P. The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 1988; 71: 335–343
  • Sarig G, Blumenfeld Z, Leiba R, Lanir N, Brenner B. Modulation of systemic hemostatic parameters by enoxaparin during gestation in women with thrombophilia and pregnancy loss. Thromb Haemost 2005; 94: 980–985
  • Tay S P, Cheong S K, Boo N Y. Circulating tissue factor, tissue factor pathway inhibitor and D-dimer in umbilical cord blood of normal term neonates and adult plasma. Blood Coagul Fibrinolysis 2003; 14: 125–129
  • Edstrom C S, Calhoun D A, Christensen R D. Expression of tissue factor pathway inhibitor in human fetal and placental tissues. Early Hum Dev 2000; 59: 77–84
  • Iino M, Foster D C, Kisiel W. Quantification and characterization of human endothelial cell-derived tissue factor pathway inhibitor-2. Arterioscler Thromb Vasc Biol 1998; 18: 40–46
  • Sprecher C A, Kisiel W, Mathewes S, Foster D C. Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor. Proc Natl Acad Sci USA 1994; 91: 3353–3357
  • Udagawa K, Miyagi Y, Hirahara F, Miyagi E, Nagashima Y, Minaguchi H, Misugi K, Yasumitsu H, Miyazaki K. Specific expression of PP5/TFPI2 mRNA by syncytiotrophoblasts in human placenta as revealed by in situ hybridization. Placenta 1998; 19: 217–223
  • Udagawa K, Yasumitsu H, Esaki M, Sawada H, Nagashima Y, Aoki I, Jin M, Miyagi E, Nakazawa T, Hirahara F, et al. Subcellular localization of PP5/TFPI-2 in human placenta: a possible role of PP5/TFPI-2 as an anti-coagulant on the surface of syncytiotrophoblasts. Placenta 2002; 23: 145–153
  • Kamei S, Kazama Y, Kuijper J L, Foster D C, Kisiel W. Genomic structure and promoter activity of the human tissue factor pathway inhibitor-2 gene. Biochim Biophys Acta 2001; 1517: 430–435
  • Hube F, Reverdiau P, Iochmann S, Trassard S, Thibault G, Gruel Y. Demonstration of a tissue factor pathway inhibitor 2 messenger RNA synthesis by pure villous cytotrophoblast cells isolated from term human placentas. Biol Reprod 2003; 68: 1888–1894
  • Butzow R, Virtanen I, Seppala M, Narvanen O, Stenman U H, Ristimaki A, Bohn H. Monoclonal antibodies reacting with placental protein 5: use in radioimmunoassay, Western blot analysis, and immunohistochemistry. J Lab Clin Med 1988; 111: 249–256
  • Kisiel W, Sprecher C A, Foster D C. Evidence that a second human tissue factor pathway inhibitor (TFPI-2) and human placental protein 5 are equivalent. Blood 1994; 84: 4384–4385
  • Chand H S, Foster D C, Kisiel W. Structure, function and biology of tissue factor pathway inhibitor-2. Thromb Haemost 2005; 94: 1122–1130
  • Seppala M, Wahlstrom T, Bohn H. Circulating levels and tissue localization of placental protein five (PP5) in pregnancy and trophoblastic disease: absence of PP5 expression in the malignant trophoblast. Int J Cancer 1979; 24: 6–10
  • Than G N, Bohn H, Szabo D G. Advances in pregnancy- related protein research. 1993; 1–333
  • Obiekwe B C, Chard T. Placental protein 5: circulating levels in twin pregnancy and some observations on the analysis of biochemical data from multiple pregnancy. Eur J Obstet Gynecol Reprod Biol 1981; 12: 135–141
  • Obiekwe B C, Sooby J, Salem H T, Chard T. Placental protein 5: disappearance from the circulation after delivery. Eur J Obstet Gynecol Reprod Biol 1982; 13: 1–5
  • Abdel Gader A M, Al-Mishari A A, Awadalla S A, Buyuomi N M, Khashoggi T, Al-Hakeem M. Total and free tissue factor pathway inhibitor in pregnancy hypertension. Int J Gynaecol Obstet 2006; 95: 248–253
  • Bellart J, Gilabert R, Angles A, Piera V, Miralles R M, Monasterio J, Cabero L. Tissue factor levels and high ratio of fibrinopeptide A:D-dimer as a measure of endothelial procoagulant disorder in pre-eclampsia. Br J Obstet Gynaecol 1999; 106: 594–597
  • Schjetlein R, Abdelnoor M, Haugen G, Husby H, Sandset P M, Wisloff F. Hemostatic variables as independent predictors for fetal growth retardation in preeclampsia. Acta Obstet Gynecol Scand 1999; 78: 191–197
  • Alexander G R, Himes J H, Kaufman R B, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol 1996; 87: 163–168
  • Redline R W, Heller D, Keating S, Kingdom J. Placental diagnostic criteria and clinical correlation–a workshop report. Placenta 2005; 2(Suppl A)S114–S117
  • Grisaru-Granovsky S, Halevy T, Eidelman A, Elstein D, Samueloff A. Hypertensive disorders of pregnancy and the small for gestational age neonate: not a simple relationship. Am J Obstet Gynecol 2007; 196: 335
  • Bretelle F, Sabatier F, Blann A, D'Ercole C, Boutiere B, Mutin M, Boubli L, Sampol J, gnat-George F. Maternal endothelial soluble cell adhesion molecules with isolated small for gestational age fetuses: comparison with pre-eclampsia. BJOG 2001; 108: 1277–1282
  • Chaiworapongsa T, Romero R, Yoshimatsu J, Espinoza J, Kim Y M, Park K, Kalache K, Edwin S, Bujold E, Gomez R. Soluble adhesion molecule profile in normal pregnancy and pre-eclampsia. J Matern Fetal Neonatal Med 2002; 12: 19–27
  • Coata G, Pennacchi L, Bini V, Liotta L, Di Renzo G C. Soluble adhesion molecules: marker of pre-eclampsia and intrauterine growth restriction. J Matern Fetal Neonatal Med 2002; 12: 28–34
  • Krauss T, Kuhn W, Lakoma C, Augustin H G. Circulating endothelial cell adhesion molecules as diagnostic markers for the early identification of pregnant women at risk for development of preeclampsia. Am J Obstet Gynecol 1997; 177: 443–449
  • Sacks G P, Studena K, Sargent K, Redman C W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179: 80–86
  • Richani K, Soto E, Romero R, Espinoza J, Chaiworapongsa T, Nien J K, Edwin S, Kim Y M, Hong J S, Goncalves L, et al. Preeclampsia and SGA differ in the maternal plasma complement split products profile. J Soc Gynecol Investig 2005; 12: 148A
  • VanWijk M J, Boer K, Berckmans R J, Meijers J C, van der Post J A, Sturk A, Vanbavel E, Nieuwland R. Enhanced coagulation activation in preeclampsia: the role of APC resistance, microparticles and other plasma constituents. Thromb Haemost 2002; 88: 415–420
  • Mellembakken J R, Aukrust P, Olafsen M K, Ueland T, Hestdal K, Videm V. Activation of leukocytes during the uteroplacental passage in preeclampsia. Hypertension 2002; 39: 155–160
  • Schiessl B. Inflammatory response in preeclampsia. Mol Aspects Med 2007; 28: 210–219
  • Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol Aspects Med 2007; 28: 192–209
  • Holthe M R, Lyberg T, Staff A C, Berge L N. Leukocyte-platelet interaction in pregnancies complicated with preeclampsia. Platelets 2005; 16: 91–97
  • Sakai M, Tsuda H, Tanebe K, Sasaki Y, Saito S. Interleukin-12 secretion by peripheral blood mononuclear cells is decreased in normal pregnant subjects and increased in preeclamptic patients. Am J Reprod Immunol 2002; 47: 91–97
  • Daniel Y, Kupferminc M J, Baram A, Jaffa A J, Fait G, Wolman I, Lessing J B. Plasma interleukin-12 is elevated in patients with preeclampsia. Am J Reprod Immunol 1998; 39: 376–380
  • Haeger M, Unander M, Norder-Hansson B, Tylman M, Bengtsson A. Complement, neutrophil, and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 1992; 79: 19–26
  • Bailey K, Herrod H G, Younger R, Shaver D. Functional aspects of T-lymphocyte subsets in pregnancy. Obstet Gynecol 1985; 66: 211–215
  • Butenas S, Bouchard B A, Brummel-Ziedins K E, Parhami-Seren B, Mann K G. Tissue factor activity in whole blood. Blood 2005; 105: 2764–2770
  • Butenas S, Mann K G. Blood coagulation. Biochemistry (Mosc.) 2002; 67: 3–12
  • Rivers R P, Hathaway W E, Weston W L. The endotoxin-induced coagulant activity of human monocytes. Br J Haematol 1975; 30: 311–316
  • Bach R R, Moldow C F. Mechanism of tissue factor activation on HL-60 cells. Blood 1997; 89: 3270–3276
  • Egorina E M, Sovershaev M A, Bjorkoy G, Gruber F X, Olsen J O, Parhami-Seren B, Mann K G, Osterud B. Intracellular and surface distribution of monocyte tissue factor: application to intersubject variability. Arterioscler Thromb Vasc Biol 2005; 25: 1493–1498
  • Satta N, Toti F, Feugeas O, Bohbot A, chary-Prigent J, Eschwege V, Hedman H, Freyssinet J M. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 1994; 153: 3245–3255
  • Sabatier F, Roux V, Anfosso F, Camoin L, Sampol J, gnat-George F. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 2002; 99: 3962–3970
  • Shet A S, Aras O, Gupta K, Hass M J, Rausch D J, Saba N, Koopmeiners L, Key N S, Hebbel R P. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003; 102: 2678–2683
  • Eilertsen K E, Osterud B. The role of blood cells and their microparticles in blood coagulation. Biochem Soc Trans 2005; 33: 418–422
  • Baroni M, Pizzirani C, Pinotti M, Ferrari D, Adinolfi E, Calzavarini S, Caruso P, Bernardi F, Di V F. Stimulation of P2 (P2X7) receptors in human dendritic cells induces the release of tissue factor-bearing microparticles. FASEB J 2007; 21: 1926–1933
  • Poitevin S, Cochery-Nouvellon E, Dupont A, Nguyen P. Monocyte IL-10 produced in response to lipopolysaccharide modulates thrombin generation by inhibiting tissue factor expression and release of active tissue factor-bound microparticles. Thromb Haemost 2007; 97: 598–607
  • Ikeda K, Nagasawa K, Horiuchi T, Tsuru T, Nishizaka H, Niho Y. C5a induces tissue factor activity on endothelial cells. Thromb Haemost 1997; 77: 394–398
  • Sitrin R G, Kaltreider H B, Ansfield M J, Webster R O. Procoagulant activity of rabbit alveolar macrophages. Am Rev Respir Dis 1983; 128: 282–287
  • Ritis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P, Rafail S, Kartalis G, Sideras P, Lambris J D. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 2006; 177: 4794–4802
  • Redecha P, Tilley R, Tencati M, Salmon J E, Kirchhofer D, Mackman N, Girardi G. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 2007; 110: 2423–2431
  • Germain S J, Sacks G P, Sooranna S R, Sargent I L, Redman C W. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol 2007; 178: 5949–5956
  • Redman C W, Sargent I L. Microparticles and immunomodulation in pregnancy and pre-eclampsia. J Reprod Immunol 2007; 76: 61–67
  • Rusterholz C, Holzgreve W, Hahn S. Oxidative stress alters the integrity of cell-free mRNA fragments associated with placenta-derived syncytiotrophoblast microparticles. Fetal Diagn Ther 2007; 22: 313–317
  • Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak M Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20: 1487–1495
  • Gupta A K, Holzgreve W, Huppertz B, Malek A, Schneider H, Hahn S. Detection of fetal DNA and RNA in placenta-derived syncytiotrophoblast microparticles generated in vitro. Clin Chem 2004; 50: 2187–2190
  • Diamant M, Tushuizen M E, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease. Eur J Clin Invest 2004; 34: 392–401
  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2: 569–579
  • Goswami D, Tannetta D S, Magee L A, Fuchisawa A, Redman C W, Sargent I L, von D P. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta 2006; 27: 56–61
  • Balasubramanian V, Grabowski E, Bini A, Nemerson Y. Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: real-time fluorescence images of thrombus formation and propagation under defined flow conditions. Blood 2002; 100: 2787–2792
  • Balasubramanian V, Vele O, Nemerson Y. Local shear conditions and platelet aggregates regulate the incorporation and activity of circulating tissue factor in ex-vivo thrombi. Thromb Haemost 2002; 88: 822–826
  • Chou J, Mackman N, Merrill-Skoloff G, Pedersen B, Furie B C, Furie B. Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood 2004; 104: 3190–3197
  • Kobayashi M, Wada H, Wakita Y, Shimura M, Nakase T, Hiyoyama K, Nagaya S, Minami N, Nakano T, Shiku H. Decreased plasma tissue factor pathway inhibitor levels in patients with thrombotic thrombocytopenic purpura. Thromb Haemost 1995; 73: 10–14
  • Shimura M, Wada H, Wakita Y, Nakase T, Hiyoyama K, Nagaya S, Mori Y, Shiku H. Plasma tissue factor and tissue factor pathway inhibitor levels in patients with disseminated intravascular coagulation. Am J Hematol 1997; 55: 169–174
  • Aharon A, Lanir N, Drugan A, Brenner B. Placental TFPI is decreased in gestational vascular complications and can be restored by maternal enoxaparin treatment. J Thromb Haemost 2005; 3: 2355–2357
  • Ogawa M, Yanoma S, Nagashima Y, Okamoto N, Ishikawa H, Haruki A, Miyagi E, Takahashi T, Hirahara F, Miyagi Y. Paradoxical discrepancy between the serum level and the placental intensity of PP5/TFPI-2 in preeclampsia and/or intrauterine growth restriction: possible interaction and correlation with glypican-3 hold the key. Placenta 2007; 28: 224–232
  • Shimura M, Wada H, Wakita Y, Nakase T, Hiyoyama K, Nagaya S, Mori Y, Shiku H. Plasma tissue factor and tissue factor pathway inhibitor levels in patients with disseminated intravascular coagulation. Am J Hematol 1996; 52: 165–170
  • Jones G R, Davey M W, Sinosich M, Grudzinskas J G. Specific interaction between placental protein 5 and heparin. Clin Chim Acta 1981; 110: 65–70
  • Li Y, Rodriquez M, Spencer F A, Becker R C. Comparative effects of unfractionated heparin and low molecular weight heparin on vascular endothelial cell tissue factor pathway inhibitor release: a model for assessing intrinsic thromboresistance. J Thromb Thrombolysis 2002; 14: 123–129
  • Menabawey M, Silman R, Rice A, Chard T. Dramatic increase of placental protein 5 levels following injection of small doses of heparin. Br J Obstet Gynaecol 1985; 92: 207–210
  • Hansen J B, Svensson B, Olsen R, Ezban M, Osterud B, Paulssen R H. Heparin induces synthesis and secretion of tissue factor pathway inhibitor from endothelial cells in vitro. Thromb Haemost 2000; 83: 937–943
  • Meisser A, Bischof P, Bohn H. Placental protein 5 (PP5) inhibits thrombin-induced coagulation of fibrinogen. Arch Gynecol 1985; 236: 197–201
  • Nisbet A D, Brenner R D, Horne C H, Bohn H. Placental protein 5 (PP5) in pregnancy and malignant disease: the influence of heparin binding. Clin Chim Acta 1982; 119: 21–29
  • Jeske W, Fareed J. Pharmacodynamic considerations in the selection of dosage of tinzaparin for various indications: experimental studies in primates. Semin Thromb Hemost 2004; 30(Suppl 1)41–47
  • Kemme M J, Burggraaf J, Schoemaker R C, Kluft C, Cohen A F. Quantification of heparin-induced TFPI release: a maximum release at low heparin dose. Br J Clin Pharmacol 2002; 54: 627–634
  • Kaiser B, Hoppensteadt D A, Fareed J. Tissue factor pathway inhibitor: an update of potential implications in the treatment of cardiovascular disorders. Expert Opin Investig Drugs 2001; 10: 1925–1935
  • Sandset P M, Bendz B, Hansen J B. Physiological function of tissue factor pathway inhibitor and interaction with heparins. Haemostasis 2000; 30(Suppl 2)48–56
  • Kaiser B, Glusa E, Hoppensteadt D A, Breddin H K, Amiral J, Fareed J. A supersulfated low-molecular-weight heparin (IK-SSH) increases plasma levels of free and total tissue factor pathway inhibitor after intravenous and subcutaneous administration in humans. Blood Coagul Fibrinolysis 1998; 9: 517–523
  • Hansen J B, Sandset P M, Huseby K R, Huseby N E, Bendz B, Ostergaard P, Nordoy A. Differential effect of unfractionated heparin and low molecular weight heparin on intravascular tissue factor pathway inhibitor: evidence for a difference in antithrombotic action. Br J Haematol 1998; 101: 638–646
  • Jeske W, Hoppensteadt D, Klauser R, Kammereit A, Eckenberger P, Haas S, Wyld P, Fareed J. Effect of repeated Aprosulate and Enoxaparin administration on tissue factor pathway inhibitor antigen levels. Blood Coagul Fibrinolysis 1995; 6: 119–124
  • Jesty J, Wun T C, Lorenz A. Kinetics of the inhibition of factor Xa and the tissue factor-factor VIIa complex by the tissue factor pathway inhibitor in the presence and absence of heparin. Biochemistry 1994; 33: 12686–12694
  • Huang Z F, Wun T C, Broze G J, Jr. Kinetics of factor Xa inhibition by tissue factor pathway inhibitor. J Biol Chem 1993; 268: 26950–26955
  • Wun T C. Lipoprotein-associated coagulation inhibitor (LACI) is a cofactor for heparin: synergistic anticoagulant action between LACI and sulfated polysaccharides. Blood 1992; 79: 430–438
  • Lindahl A K, Abildgaard U, Larsen M L, Aamodt L M, Nordfang O, Beck T C. Extrinsic pathway inhibitor (EPI) and the post-heparin anticoagulant effect in tissue thromboplastin induced coagulation. Thromb Res Suppl 1991; 14: 39–48
  • Ostergaard P, Nordfang O, Petersen L C, Valentin S, Kristensen H. Is tissue factor pathway inhibitor involved in the antithrombotic effect of heparins? Biochemical considerations. Haemostasis 1993; 23(Suppl 1)107–111
  • Wesselschmidt R, Likert K, Huang Z, MacPhail L, Broze G, Jr. Structural requirements for tissue factor pathway inhibitor interactions with factor Xa and heparin. Blood Coagul Fibrinolysis 1993; 4: 661–669
  • Broze G J, Jr. Tissue factor pathway inhibitor and the revised theory of coagulation. Annu Rev Med 1995; 46: 103–112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.