150
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Influence of polymorphisms in VEGF, TNF-α, and GSTP1 genes on retinopathy of prematurity risk: a Meta-analysis

, &
Pages 1248-1257 | Received 18 Dec 2019, Accepted 16 Mar 2020, Published online: 07 Apr 2020

References

  • Morken TS, Dammann O, Skranes J, et al. Retinopathy of prematurity, visual and neurodevelopmental outcome, and imaging of the central nervous system. Semin Perinatol. 2019;43(6):381–389.
  • Higgins RD. Oxygen saturation and retinopathy of prematurity. Clin Perinatol. 2019;46(3):593–599.
  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–1264.
  • Le YZ. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vision Res. 2017;139:108–114.
  • Shibata M, Nakaizumi A, Puro DG. Electrotonic transmission in the retinal vasculature: inhibitory role of the diabetes/VEGF/aPKC pathway. Physiol Rep. 2019;7(9):e14095.
  • Ozaki H, Seo MS, Ozaki K, et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol. 2000;156(2):697–707.
  • Håkansson G, Gesslein B, Gustafsson L, et al. Hypoxia-inducible factor and vascular endothelial growth factor in the neuroretina and retinal blood vessels after retinal ischemia. J Ocul Biol Dis Inform. 2010;3(1):20–29.
  • Jiang J, Xu K, Wang L, et al. Pharmacology study of a chimeric decoy receptor trap fusion protein on retina neovascularization by dual blockage of VEGF and FGF-2. Eur J Pharm Sci. 2018;121:251–259.
  • Chen CF, Liou SW, Wu HH, et al. Regulatory SNPs alter the gene expression of diabetic retinopathy associated secretary factors. Int J Med Sci. 2016;13(9):717–723.
  • Kamal A, Abu Eleinen K, Siam I. Association of vascular endothelial growth factor -634G/C and receptor for advanced glycation end products G82S gene polymorphisms with diabetic retinopathy. Int J Ophthalmol. 2016;9(8):1106–1111.
  • Rohrer B, Frazer-Abel A, Leonard A, et al. Association of age-related macular degeneration with complement activation products, smoking, and single nucleotide polymorphisms in South Carolinians of European and African descent. Mol Vis. 2019;25:79–92.
  • Capitão M, Soares R. Angiogenesis and inflammation crosstalk in diabetic retinopathy. J Cell Biochem. 2016;117(11):2443–2453.
  • Gardiner TA, Gibson DS, de Gooyer TE, et al. Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol. 2005;166(2):637–644.
  • Hellgren G, Löfqvist C, Hansen-Pupp I, et al. Increased postnatal concentrations of pro-inflammatory cytokines are associated with reduced IGF-I levels and retinopathy of prematurity. Growth Horm IGF Res. 2018;39:19–24.
  • Lee WH, Joshi P, Wen R. Glutathione S-transferase pi isoform (GSTP1) expression in murine retina increases with developmental maturity. Adv Exp Med Biol. 2014;801:23–30.
  • Stone WL, Shah D, Hollinger SM. Retinopathy of prematurity: an oxidative stress neonatal disease. Front Biosci. 2016;21(1):165–177.
  • Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
  • Wells GA, Shea B, Connell DO, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-Analyses, Ottawa Hospital Research Institute; 2009 [Accessed 2019 Nov 13]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
  • Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–748.
  • DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188.
  • Dunai G, Vásárhelyi B, Szabó M, et al. Published genetic variants in retinopathy of prematurity: random forest analysis suggests a negligible contribution to risk and severity. Curr Eye Res. 2008;33(5–6):501–505.
  • Kusuda T, Hikino S, Ohga S, et al. Genetic variation of vascular endothelial growth factor pathway does not correlate with the severity of retinopathy of prematurity. J Perinatol. 2011;31(4):246–250.
  • Cooke RW, Drury JA, Mountford R, et al. Genetic polymorphisms and retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2004;45(6):1712–1715.
  • Vannay A, Dunai G, Bányász I, et al. Association of genetic polymorphisms of vascular endothelial growth factor and risk for proliferative retinopathy of prematurity. Pediatr Res. 2005;57(3):396–398.
  • Bányász I, Bokodi G, Vannay A, et al. Genetic polymorphisms of vascular endothelial growth factor and angiopoietin 2 in retinopathy of prematurity. Curr Eye Res. 2006;31(7–8):685–690.
  • Shastry BS, Qu X. Lack of association of the VEGF gene promoter (−634 G–>C and −460 C–>T) polymorphism and the risk of advanced retinopathy of prematurity. Graefe's Arch Clin Exp Ophthalmol. 2007;245(5):741–743.
  • Kwinta P, Bik-Multanowski M, Mitkowska Z, et al. The clinical role of vascular endothelial growth factor (VEGF) system in the pathogenesis of retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2008;246(10):1467–1475.
  • Shastry BS. Lack of association of VEGF (−2578 C–>A) and ANG 2 (−35 G–>C) gene polymorphisms with the progression of retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2009;247(6):859–860.
  • Yagi M, Yamamori M, Morioka I, et al. VEGF 936C > T is predictive of threshold retinopathy of prematurity in Japanese infants with a 30-week gestational age or less. Res Rep Neonatol. 2011;1:5–11.
  • Gismondi D, Ndoja L, Qu X, et al. Lack of association of VEGF gene 3’- UTR polymorphisms (C702T, C936T and G1612A) and the risk of developing advanced retinopathy of prematurity (ROP). Graefes Arch Clin Exp Ophthalmol. 2013;251(1):413–415.
  • Kaya M, Çokakli M, Berk AT, et al. Associations of VEGF/VEGF-receptor and HGF/c-Met promoter polymorphisms with progression/regression of retinopathy of prematurity. Curr Eye Res. 2013;38(1):137–142.
  • Türe M, Yildiz M, Karkucak M, et al. Investigation of TNF-alpha gene (G308A) and GSTP1 gene (Ile105Val) polymorphisms in Turkish patients with retinopathy of prematurity. Turk J Med Sci. 2015;45(1):164–169.
  • Kalmeh ZA, Azarpira N, Mosallaei M, et al. Genetic polymorphisms of vascular endothelial growth factor and risk for retinopathy of prematurity in South of Iran. Mol Biol Rep. 2013;40(7):4613–4618.
  • Ali AA, Hussien NF, Samy RM, et al. Polymorphisms of vascular endothelial growth factor and retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 2015;52(4):245–253.
  • Poggi C, Giusti B, Gozzini E, et al. Genetic contributions to the development of complications in preterm newborns. PLoS One. 2015;10(7):e0131741.
  • Lei XJ, Zhao YX, Qiao T. Influence of polymorphisms in VEGF, ACE, TNF and GST genes on the susceptibility to retinopathy of prematurity among Chinese infants. Int J Ophthalmol. 2018;11(9):1451–1457.
  • Gilbert C, Foster A. Childhood blindness in the context of VISION 2020–the right to sight. Bull World Health Organ. 2001;79(3):227–232.
  • Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435–439.
  • Mintz-Hittner HA, Kennedy KA, Chuang AZ. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med. 2011;364(7):603–615.
  • Geloneck MM, Chuang AZ, Clark WL, et al. Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol. 2014;132(11):1327–1333.
  • Tan QQ, Christiansen SP, Wang J. Development of refractive error in children treated for retinopathy of prematurity with anti-vascular endothelial growth factor (anti-VEGF) agents: a meta-analysis and systematic review. PLoS One. 2019;14(12):e0225643.
  • Yang X, Deng Y, Gu H, et al. Polymorphisms in the vascular endothelial growth factor gene and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes. Mol Vis. 2011;17:3088–3096.
  • Paine SK, Basu A, Mondal LK, et al. Association of vascular endothelial growth factor, transforming growth factor beta, and interferon gamma gene polymorphisms with proliferative diabetic retinopathy in patients with type 2 diabetes. Mol Vis. 2012;18:2749–2757.
  • Yuan Y, Wen Z, Guan Y, et al. The relationships between type 2 diabetic retinopathy and VEGF-634G/C and VEGF-460C/T polymorphisms in Han Chinese subjects. J Diabetes Complications. 2014;28(6):785–790.
  • Liu P, Wu D, Zhou W, et al. Association of VEGF gene polymorphisms with advanced retinopathy of prematurity: a meta-analysis. Mol Biol Rep. 2012;39(12):10731–10737.
  • Shukla S, Malik MA, Chandra P, et al. Association between VEGF polymorphisms (−460 T/C and +936 C/T) and retinopathy of prematurity risk: a meta-analysis. Saudi J Ophthalmol. 2016;30(3):157–162.
  • Ilg RC, Davies MH, Powers MR. Altered retinal neovascularization in TNF receptor-deficient mice. Curr Eye Res. 2005;30(11):1003–1013.
  • Silveira RC, Fortes Filho JB, Procianoy RS. Assessment of the contribution of cytokine plasma levels to detect retinopathy of prematurity in very low birth weight infants. Invest Ophthalmol Vis Sci. 2011;52(3):1297–1301.
  • Yoshioka K, Yoshida T, Takakura Y, et al. Relationship between polymorphisms 804C/A and 252A/G of lymphotoxin-alpha gene and −308G/A of tumor necrosis factor alpha gene and diabetic retinopathy in Japanese patients with type 2 diabetes mellitus. Metabolism. 2006;55(10):1406–1410.
  • Sikka R, Raina P, Matharoo K, et al. TNF-α (g.−308 G > A) and ADIPOQ (g. + 45 T > G) gene polymorphisms in type 2 diabetes and microvascular complications in the region of Punjab (North-West India). Curr Eye Res. 2014;39(10):1042–1051.
  • Sesti LF, Crispim D, Canani LH, et al. The −308G > a polymorphism of the TNF gene is associated with proliferative diabetic retinopathy in Caucasian Brazilians with type 2 diabetes. Invest Ophthalmol Vis Sci. 2015;56(2):1184–1190.
  • Bhosale P, Larson AJ, Frederick JM, et al. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem. 2004;279(47):49447–49454.
  • Kano T, Sakai M, Muramatsu M. Structure and expression of a human class pi glutathione S-transferase messenger RNA. Cancer Res. 1987;47(21):5626–5630.
  • Matthias C, Bockmühl U, Jahnke V, et al. The glutathione S-transferase GSTP1 polymorphism: effects on susceptibility to oral/pharyngeal and laryngeal carcinomas. Pharmacogenetics. 1998;8(1):1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.