285
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Identification of potential lncRNAs and co-expressed mRNAs in gestational diabetes mellitus by RNA sequencing

, &
Pages 5125-5139 | Received 15 Apr 2020, Accepted 10 Jan 2021, Published online: 22 Feb 2021

References

  • Barke TL, Money KM, Du L, et al. Sex modifies placental gene expression in response to metabolic and inflammatory stress. Placenta. 2019;78:1–9.
  • Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340–346.
  • Sobngwi E, Boudou P, Mauvais-Jarvis F, et al. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet. 2003;361(9372):1861–1865.
  • Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol. 2011;204(6):479–487.
  • El Hajj N, Schneider E, Lehnen H, et al. Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction. 2014;148(6):R111–R120.
  • Holmes V, Young I, Patterson C, et al. Optimal glycaemic control, pre-eclampsia and gestational hypertension in women with type 1 diabetes in the Diabetes and Pre-Eclampsia Intervention Trial. Diabetes Care. 2011;34:1683–1688.
  • Bowes SB, Hennessy TR, Umpleby AM, et al. Measurement of glucose metabolism and insulin secretion during normal pregnancy and pregnancy complicated by gestational diabetes. Diabetologia. 1996;39(8):976–983.
  • Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with type 2 diabetes. Diabetes Med. 2004;21(2):103–113.
  • Solomon CG. A prospective study of pregravid determinants of gestational diabetes mellitus. JAMA. 1997;278(13):1078.
  • Ramly B, Afiqah-Aleng N. Protein–protein interaction network analysis reveals several diseases highly associated with polycystic ovarian syndrome. Int J Mol Sci. 2019;20:2959.
  • Saeedi Borujeni MJ, Esfandiary E, Baradaran A, et al. Molecular aspects of pancreatic β-cell dysfunction: oxidative stress, microRNA, and long noncoding RNA. J Cell Physiol. 2019;234(6):8411–8425.
  • Zhang Y, Wu H, Wang F, et al. Long non-coding RNA MALAT1 expression in patients with gestational diabetes mellitus. Int J Gynecol Obstet. 2018;140(2):164–169.
  • Wang LX, Wan C, Dong ZB, et al. Integrative analysis of long noncoding RNA (lncRNA), microRNA (miRNA) and mRNA expression and construction of a competing endogenous RNA (ceRNA) network in metastatic melanoma. Med Sci Monit. 2019;25:2896–2907.
  • Tinahones FJ, Coín Aragüez L, Murri M, et al. Caspase induction and BCL2 inhibition in human adipose tissue: a potential relationship with insulin signaling alteration. Diabetes Care. 2013;36(3):513–521.
  • Liadis N, Salmena L, Kwan E, et al. Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models. Diabetes. 2007;56(9):2302–2311.
  • Yang P, Li X, Xu C, et al. Maternal hyperglycemia activates an ASK1–FoxO3a–caspase 8 pathway that leads to embryonic neural tube defects. Sci Signal. 2013;6(290):ra74.
  • Xie L, Yao Z, Zhang Y, et al. Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis. Cell Death Dis. 2018;9(7):772.
  • Shergalis A, Bankhead A, Luesakul U, et al. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018;70(3):412–445.
  • Cebria-Costa JP, Pascual-Reguant L, Gonzalez-Perez A, et al. LOXL2-mediated H3K4 oxidation reduces chromatin accessibility in triple-negative breast cancer cells. Oncogene. 2020;39(1):79–121.
  • Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168(2):554–561.
  • Al-Daghri NM, Clerici M, Al-Attas O, et al. A nonsense polymorphism (R392X) in TLR5 protects from obesity but predisposes to diabetes. J Immunol. 2013;190(7):3716–3720.
  • Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328(5975):228–231.
  • Burcelin R, Serino M, Chabo C, et al. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol. 2011;48(4):257–273.
  • Tai N, Wong FS, Wen L. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. J Autoimmun. 2016;71:26–34.
  • Kee J-Y, Ito A, Hojo S, et al. CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer. 2014;14:949.
  • Ilona H, Katerina K, Lucie H, et al. First trimester screening of circulating C19MC microRNAs can predict subsequent onset of gestational hypertension. PLoS One. 2014;9(12):e113735.
  • Gonzalez TL, Sun T, Koeppel AF, et al. Sex differences in the late first trimester human placenta transcriptome. Biol Sex Differ. 2018;9(1):4.
  • Tang M, Luo M, Lu W, et al. Serum growth differentiation factor 15 is associated with glucose metabolism in the third trimester in Chinese pregnant women. Diabetes Res Clin Pract. 2019;156:107823.
  • Chavez AO, Molina-Carrion M, Abdul-Ghani MA, et al. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 2009;32(8):1542–1546.
  • Shin MY, Kim JM, Kang YE, et al. Association between growth differentiation factor 15 (GDF15) and cardiovascular risk in patients with newly diagnosed type 2 diabetes mellitus. J Korean Med Sci. 2016;31(9):1413.
  • Nies VJM, Sancar G, Liu W, et al. Fibroblast growth factor signaling in metabolic regulation. Front Endocrinol. 2015;6:193.
  • Wang X, Chrysovergis K, Kosak J, et al. hNAG-1 increases lifespan by regulating energy metabolism and insulin/IGF-1/mTOR signaling. Aging. 2014;6(8):690–704.
  • Wang X, Chrysovergis K, Kosak J, et al. Lower NLRP3 inflammasome activity in NAG-1 transgenic mice is linked to a resistance to obesity and increased insulin sensitivity. Obesity. 2014;22(5):1256–1263.
  • Ho JE, Mahajan A, Chen M-H, et al. Clinical and genetic correlates of growth differentiation factor 15 in the community. Clin Chem. 2012;58(11):1582–1591.
  • Chrysovergis K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes. 2014;38(12):1555–1564.
  • Hur KY. Is GDF15 a novel biomarker to predict the development of prediabetes or diabetes? Diabetes Metab J. 2014;38(6):437.
  • Sugulle M, Dechend R, Herse F, et al. Circulating and placental growth-differentiation factor 15 in preeclampsia and in pregnancy complicated by diabetes mellitus. Hypertension. 2009;54(1):106–112.
  • Siena ADD, Placa JR, Araujo LF, et al. Whole transcriptome analysis reveals correlation of long noncoding RNA ZEB1-AS1 with invasive profile in melanoma. Sci Rep. 2019;9(1):11350.
  • Cebrià-Costa JP, Pascual-Reguant L, Gonzalez-Perez A, et al. LOXL2-mediated H3K4 oxidation reduces chromatin accessibility in triple-negative breast cancer cells. Oncogene. 2020;39:79–121.
  • Enquobahrie DA, Qiu C, Muhie SY, et al. Maternal peripheral blood gene expression in early pregnancy and preeclampsia. Int J Mol Epidemiol Genet. 2011;2(1):78–94.
  • Yamato E, Tashiro F, Miyazaki JI. Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β cell line MIN6. PLoS One. 2013;8(4):e61211.
  • Tros F, Meirhaeghe A, Hadjadj S, et al. Hypomethylation of the promoter of the catalytic subunit of protein phosphatase 2A in response to hyperglycemia. Physiol Rep. 2014;2(7):e12076.
  • Hayashi T, Yamashita T, Okada H, et al. Sporadic PCDH18 somatic mutations in EpCAM-positive hepatocellular carcinoma. Cancer Cell Int. 2017;17:94.
  • Xu C, Wang P, Liu Y, et al. Integrative genomics in combination with RNA interference identifies prognostic and functionally relevant gene targets for oral squamous cell carcinoma. PLoS Genet. 2013;9(1):e1003169.
  • Zhao Jiang Z-M. Lowly expressed EGFR-AS1 promotes the progression of preeclampsia by inhibiting the EGFR-JAK/STAT signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22(19):6190–6197.
  • Rizzo R, Melchiorri L, Stignani M, et al. HLA-G expression is a fundamental prerequisite to pregnancy. Hum Immunol. 2007;68(4):244–250.
  • Carosella ED, Moreau P, LeMaoult JL, et al. HLA-G: from biology to clinical benefits. Trends Immunol. 2008;29:125–132.
  • Oztekin O. New insights into the pathophysiology of gestational diabetes mellitus: possible role of human leukocyte antigen-G. Med Hypotheses. 2007;69(3):526–530.
  • Yie SM, Li L-h, Li Y-m, et al. HLA-G protein concentrations in maternal serum and placental tissue are decreased in preeclampsia. Am J Obstet Gynecol. 2004;191(2):525–529.
  • Bugawan TL, Klitz W, Alejandrino M, et al. The association of specific HLA class I and II alleles with type 1 diabetes among Filipinos. Tissue Antigens. 2002;59(6):452–469.
  • Anna S, Muscelli E, Stignani M, et al. Soluble human leukocyte antigen-G expression and glucose tolerance in subjects with different degrees of adiposity. J Clin Endocrinol Metab. 2010;95:3342–3346.
  • Pabla S, Conroy JM, Nesline MK, et al. Proliferative potential and resistance to immune checkpoint blockade in lung cancer patients. J Immunother Cancer. 2019;7(1):27.
  • Chen W, Lin C, Gong L, et al. Comprehensive analysis of the mRNA-lncRNA co-expression profile and ceRNA networks patterns in chronic hepatitis B. Curr Genomics. 2019;20(4):231–245.
  • Kimura T, Niki I. Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking. Prog Biophys Mol Biol. 2011;107(2):219–223.
  • Kimura T, Niki I. Rab27a, actin and beta-cell endocytosis. Endocr J. 2011;58(1):1–6.
  • Krischer J, Gilbert A, Gorden P, et al. Endocytosis is inhibited in hepatocytes from diabetic rats. Diabetes. 1993;42(9):1303–1309.
  • Ruchat S-M, Houde A-A, Voisin G, et al. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Can J Diabetes. 2013;8:935–943.
  • del Rosario MC, Ossowski V, Knowler WC, et al. Potential epigenetic dysregulation of genes associated with MODY and type 2 diabetes in humans exposed to a diabetic intrauterine environment: an analysis of genome-wide DNA methylation. Metabolism. 2014;63(5):654–660.
  • Quilter CR, Cooper WN, Cliffe KM, et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014;28(11):4868–4879.
  • Finer S, Mathews C, Lowe R, et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet. 2015;11;3021–3029.
  • Schneider J. DNA methylation profiles in placenta and its association with gestational diabetes mellitus. Exp Clin Endocrinol Diabetes. 2015;123:282–288.
  • Wang Y, Yu H, Liu F, et al. Analysis of key genes and their functions in placental tissue of patients with gestational diabetes mellitus. Reprod Biol Endocrinol. 2019;17(1):104.
  • Evangelista AF, Collares CV, Xavier DJ, et al. Integrative analysis of the transcriptome profiles observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflammation. BMC Med Genomics. 2014;7(1):28.
  • Xie B-G, Jin S, Zhu W-J. Expression of toll-like receptor 4 in maternal monocytes of patients with gestational diabetes mellitus. Exp Ther Med. 2014;7(1):236–240.
  • Kuzmicki M, Telejko B, Wawrusiewicz-Kurylonek N, et al. The expression of genes involved in NF-κB activation in peripheral blood mononuclear cells of patients with gestational diabetes. Eur J Endocrinol. 2013;168(3):419–427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.