1,045
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Serum PCSK9 levels in infants with deviant birth weight: a biomarker of the lipoprotein metabolism

, ORCID Icon, , , , , , , , , , & show all
Article: 2188108 | Received 04 May 2022, Accepted 02 Mar 2023, Published online: 11 Mar 2023

References

  • Araki S, Suga S, Miyake F, et al. Circulating PCSK9 levels correlate with the serum LDL cholesterol level in newborn infants. Early Hum Dev. 2014;90(10):607–611.
  • Paquette M, Baass A. Genetic regulation of PCSK9 (proprotein convertase subtilisin/kexin type 9) plasma levels: another piece of the puzzle. Circ Genom Precis Med. 2018;11(5):e002165.
  • Menendez-Castro C, Rascher W, Hartner A. Intrauterine growth restriction - impact on cardiovascular diseases later in life. Mol Cell Pediatr. 2018;5(1):4.
  • Clayton PE, Cianfarani S, Czernichow P, et al. Management of the child born small for gestational age through to adulthood: a consensus statement of the international societies of pediatric endocrinology and the growth hormone research society. J Clin Endocrinol Metab. 2007;92(3):804–810.
  • Skilton MR, Viikari JS, Juonala M, et al. Fetal growth and preterm birth influence cardiovascular risk factors and arterial health in young adults: the cardiovascular risk in young finns study. Arterioscler Thromb Vasc Biol. 2011;31(12):2975–2981.
  • Pecks U, Brieger M, Schiessl B, et al. Maternal and fetal cord blood lipids in intrauterine growth restriction. J Perinat Med. 2012;40(3):287–296.
  • Chiavaroli V, Derraik JG, Hofman PL, et al. Born large for gestational age: bigger is not always better. J Pediatr. 2016;170:307–311.
  • Skilton MR, Siitonen N, Wurtz P, et al. High birth weight is associated with obesity and increased carotid wall thickness in young adults: the cardiovascular risk in young finns study. Arterioscler Thromb Vasc Biol. 2014;34(5):1064–1068.
  • Hanson MA, Gluckman PD. Developmental origins of health and disease–global public health implications. Best Pract Res Clin Obstet Gynaecol. 2015;29(1):24–31.
  • Barker DJ. In utero programming of chronic disease. Clin Sci (Lond). 1998;95(2):115–128.
  • Grilo LF, Tocantins C, Diniz MS, et al. Metabolic disease programming: from mitochondria to epigenetics, glucocorticoid signalling and Beyond. Eur J Clin Invest. 2021;51(10):e13625.
  • Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928–933.
  • Xie W, Liu J, Wang W, et al. Association between plasma PCSK9 levels and 10-year progression of carotid atherosclerosis beyond LDL-C: a cohort study. Int J Cardiol. 2016;215:293–298.
  • Nozue T, Hattori H, Ogawa K, et al. Correlation between serum levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) and atherogenic lipoproteins in patients with coronary artery disease. Lipids Health Dis. 2016;15(1):165.
  • Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366(12):1108–1118.
  • Pecks U, Rath W, Maass N, et al. Fetal gender and gestational age differentially affect PCSK9 levels in intrauterine growth restriction. Lipids Health Dis. 2016;15(1):193.
  • Fenton TR, Kim JH. A systematic review and meta-analysis to revise the fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.
  • Peticca P, Raymond A, Gruslin A, et al. Human serum PCSK9 is elevated at parturition in comparison to nonpregnant subjects while serum PCSK9 from umbilical cord blood is lower compared to maternal blood. ISRN Endocrinol. 2013;2013:341632.
  • Erol SA, Tanacan A, Firat Oguz E, et al. A comparison of the maternal levels of serum proprotein convertase subtilisin/kexin type 9 in pregnant women with the complication of fetal open neural tube defects. Congenit Anom (Kyoto). 2021;61(5):169–176.
  • Herrera E. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development–a review. Placenta. 2002;23(Suppl A): s9–19.
  • Kotowski IK, Pertsemlidis A, Luke A, et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet. 2006;78(3):410–422.
  • Lakoski SG, Lagace TA, Cohen JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009;94(7):2537–2543.
  • Ruchat SM, Hivert MF, Bouchard L. Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutr Rev. 2013;71(Suppl 1):S88–S94.
  • Singhal A, Lucas A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet. 2004;363(9421):1642–1645.
  • Sunil B, Foster C, Wilson DP, et al. Novel therapeutic targets and agents for pediatric dyslipidemia. Ther Adv Endocrinol Metab. 2021;12:20420188211058323.
  • Dube E, Ethier-Chiasson M, Lafond J. Modulation of cholesterol transport by insulin-treated gestational diabetes mellitus in human full-term placenta. Biol Reprod. 2013;88(1):16.
  • Baass A, Dubuc G, Tremblay M, et al. Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin Chem. 2009;55(9):1637–1645.
  • Evans D, Beil FU. The E670G SNP in the PCSK9 gene is associated with polygenic hypercholesterolemia in men but not in women. BMC Med Genet. 2006;7:66.