1,355
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Clinical chorioamnionitis at term is characterized by changes in the plasma concentration of CHCHD2/MNRR1, a mitochondrial protein

, , , , , , , , , , , , , , & show all
Article: 2222333 | Received 11 Mar 2023, Accepted 02 Jun 2023, Published online: 22 Jun 2023

References

  • Rouse DJ, Landon M, Leveno KJ, et al. The maternal-fetal medicine units cesarean registry: chorioamnionitis at term and its duration-relationship to outcomes. Am J Obstet Gynecol. 2004;191(1):211–216. doi: 10.1016/j.ajog.2004.03.003.
  • Alexander JM, McIntire DM, Leveno KJ. Chorioamnionitis and the prognosis for term infants. Obstet Gynecol. 1999;94(2):274–278. doi: 10.1097/00006250-199908000-00023.
  • Woodd SL, Montoya A, Barreix M, et al. Incidence of maternal peripartum infection: a systematic review and meta-analysis. PLOS Med. 2019;16(12):e1002984. doi: 10.1371/journal.pmed.1002984.
  • Newton ER. Chorioamnionitis and intraamniotic infection. Clin Obstet Gynecol. 1993;36(4):795–808. doi: 10.1097/00003081-199312000-00004.
  • Tita AT, Andrews WW. Diagnosis and management of clinical chorioamnionitis. Clin Perinatol. 2010;37(2):339–354. doi: 10.1016/j.clp.2010.02.003.
  • Malloy MH. Chorioamnionitis: epidemiology of newborn management and outcome United States 2008. J Perinatol. 2014;34(8):611–615. doi: 10.1038/jp.2014.81.
  • Balki I, Baghirzada L, Walker A, et al. Incidence, morbidity, and associated factors for sepsis in women hospitalized for delivery: a nationwide retrospective observational population-based study in Canada. Can J Anaesth. 2022;69(3):298–310. doi: 10.1007/s12630-021-02158-0.
  • Black LP, Hinson L, Duff P. Limited course of antibiotic treatment for chorioamnionitis. Obstet Gynecol. 2012;119(6):1102–1105. doi: 10.1097/AOG.0b013e31824b2e29.
  • Wu YW, Escobar GJ, Grether JK, et al. Chorioamnionitis and cerebral palsy in term and near-term infants. Jama. 2003; Nov 26290(20):2677–2684. doi: 10.1001/jama.290.20.2677.
  • DeNoble AE, Heine RP, Dotters-Katz SK. Chorioamnionitis and infectious complications after vaginal delivery. Am J Perinatol. 2019;36(14):1437–1441. doi: 10.1055/s-0039-1692718.
  • Zackler A, Flood P, Dajao R, et al. Suspected chorioamnionitis and myometrial contractility: mechanisms for increased risk of cesarean delivery and postpartum hemorrhage. Reprod Sci. 2019;26(2):178–183. doi: 10.1177/1933719118778819.
  • Yoder PR, Gibbs RS, Blanco JD, et al. A prospective, controlled study of maternal and perinatal outcome after intra-amniotic infection at term. Am J Obstet Gynecol. 1983;145(6):695–701. doi: 10.1016/0002-9378(83)90575-6.
  • Yancey MK, Duff P, Kubilis P, et al. Risk factors for neonatal sepsis. Obstet Gynecol. 1996;87(2):188–194. doi: 10.1016/0029-7844(95)00402-5.
  • Ladfors L, Tessin I, Mattsson LA, et al. Risk factors for neonatal sepsis in offspring of women with prelabor rupture of the membranes at 34–42 weeks. J Perinat Med. 1998;26(2):94–101. doi: 10.1515/jpme.1998.26.2.94.
  • Rao S, Pavlova Z, Incerpi MH, et al. Meconium-stained amniotic fluid and neonatal morbidity in near-term and term deliveries with acute histologic chorioamnionitis and/or funisitis. J Perinatol. 2001;21(8):537–540. doi: 10.1038/sj.jp.7210564.
  • Beck C, Gallagher K, Taylor LA, et al. Chorioamnionitis and risk for maternal and neonatal sepsis: a systematic review and meta-analysis. Obstet Gynecol. 2021;137(6):1007–1022. doi: 10.1097/AOG.0000000000004377.
  • Tsamantioti E, Lisonkova S, Muraca G, et al. Chorioamnionitis and risk of long-term neurodevelopmental disorders in offspring: a population-based cohort study. Am J Obstet Gynecol. 2022;227(2):287.e1–287.e17. doi: 10.1016/j.ajog.2022.03.028.
  • Dell’Ovo V, Rosenzweig J, Burd I, et al. An animal model for chorioamnionitis at term. Am J Obstet Gynecol. 2015;213(3):387.e1-10–387.10. doi: 10.1016/j.ajog.2015.05.007.
  • Gibbs RS, Blanco JD, St Clair PJ, et al. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J Infect Dis. 1982;145(1):1–8. doi: 10.1093/infdis/145.1.1.
  • Gibbs RS, Duff P. Progress in pathogenesis and management of clinical intraamniotic infection. Am J Obstet Gynecol. 1991;164(5 Pt 1):1317–1326. doi: 10.1016/0002-9378(91)90707-x.
  • Willi MJ, Winkler M, Fischer DC, et al. Chorioamnionitis: elevated interleukin-6 and interleukin-8 concentrations in the lower uterine segment. J Perinat Med. 2002;30(4):292–296.
  • Romero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term IV: the maternal plasma cytokine profile. J Perinat Med. 2016;44(1):77–98.
  • Romero R, Miranda J, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med. 2015;43(1):19–36.
  • Romero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term II: the intra-amniotic inflammatory response. J Perinat Med. 2016;44(1):5–22.
  • Gibbs RS, Dinsmoor MJ, Newton ER, et al. A randomized trial of intrapartum versus immediate postpartum treatment of women with intra-amniotic infection. Obstet Gynecol. 1988;72(6):823–828. doi: 10.1097/00006250-198812000-00001.
  • MacVicar J. Chorioamnionitis. Clin Obstet Gynecol. 1970;13(2):272–290. doi: 10.1097/00003081-197006000-00005.
  • Gilstrap LC, Cox SM. Acute chorioamnionitis. Obstet Gynecol Clin North Am. 1989;16(2):373–379. doi: 10.1016/S0889-8545(21)00165-0.
  • Lee SE, Romero R, Kim CJ, et al. Funisitis in term pregnancy is associated with microbial invasion of the amniotic cavity and intra-amniotic inflammation. J Matern Fetal Neonatal Med. 2006;19(11):693–697. doi: 10.1080/14767050600927353.
  • Redline RW. Inflammatory response in acute chorioamnionitis. Semin Fetal Neonatal Med. 2012;17(1):20–25. doi: 10.1016/j.siny.2011.08.003.
  • Chaiyasit N, Romero R, Chaemsaithong P, et al. Clinical chorioamnionitis at term VIII: a rapid MMP-8 test for the identification of intra-amniotic inflammation. J Perinat Med. 2017;45(5):539–550.
  • Aras S, Pak O, Sommer N, et al. Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res. 2013;41(4):2255–2266. doi: 10.1093/nar/gks1454.
  • Aras S, Arrabi H, Purandare N, et al. Abl2 kinase phosphorylates bi-organellar regulator MNRR1 in mitochondria, stimulating respiration. Biochim Biophys Acta Mol Cell Res. 2017;1864(2):440–448. doi: 10.1016/j.bbamcr.2016.11.029.
  • Aras S, Bai M, Lee I, et al. MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion. 2015;20:43–51. doi: 10.1016/j.mito.2014.10.003.
  • Grossman LI, Purandare N, Arshad R, et al. MNRR1, a biorganellar regulator of mitochondria. Oxid Med Cell Longev. 2017;2017:6739236. doi: 10.1155/2017/6739236.
  • Lionaki E, Gkikas I, Tavernarakis N. Differential protein distribution between the nucleus and mitochondria: implications in aging. Front Genet. 2016;7:162. doi: 10.3389/fgene.2016.00162.
  • Lee I, Hüttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta. 2014;1842(9):1579–1586. doi: 10.1016/j.bbadis.2014.05.031.
  • Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–223. doi: 10.1016/S0140-6736(02)09459-X.
  • Takasu O, Gaut JP, Watanabe E, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187(5):509–517. doi: 10.1164/rccm.201211-1983OC.
  • Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004;4(5–6):729–741. doi: 10.1016/j.mito.2004.07.023.
  • Zou R, Tao J, Qiu J, et al. DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction. J Adv Res. 2022;41:39–48. doi: 10.1016/j.jare.2022.01.014.
  • Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17(1):219–237. doi: 10.1016/s0749-0704(05)70161-5.
  • Purandare N, Kunji Y, Xi Y, et al. Lipopolysaccharide induces placental mitochondrial dysfunction in murine and human systems by reducing MNRR1 levels via a TLR4-independent pathway. iScience. 2022;25(11):105342. doi: 10.1016/j.isci.2022.105342.
  • Alexander GR, Himes JH, Kaufman RB, et al. A United States national reference for fetal growth. Obstet Gynecol. 1996;87(2):163–168. doi: 10.1016/0029-7844(95)00386-X.
  • ACOG Practice Bulletin Number 49, December 2003 Dystocia and augmentation of labor. Obstetrics and Gynecology. 2003;102(6):1445–1454.
  • Romero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term III: how well do clinical criteria perform in the identification of proven intra-amniotic infection? J Perinat Med. 2016;44(1):23–32.
  • Romero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term VI: acute chorioamnionitis and funisitis according to the presence or absence of microorganisms and inflammation in the amniotic cavity. J Perinat Med. 2016;44(1):33–51.
  • Romero R, Pacora P, Kusanovic JP, et al. Clinical chorioamnionitis at term X: microbiology, clinical signs, placental pathology, and neonatal bacteremia - implications for clinical care. J Perinat Med. 2021;49(3):275–298. doi: 10.1515/jpm-2020-0297.
  • Romero R, Kim YM, Pacora P, et al. The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J Perinat Med. 2018;46(6):613–630. doi: 10.1515/jpm-2018-0055.
  • Jung E, Romero R, Yeo L, et al. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med. 2020;25(4):101146. doi: 10.1016/j.siny.2020.101146.
  • Redline RW, Heller D, Keating S, et al. Placental diagnostic criteria and clinical correlation–a workshop report. Placenta. 2005;26 Suppl A(Suppl A):S114–7. doi: 10.1016/j.placenta.2005.02.009.
  • Pacora P, Chaiworapongsa T, Maymon E, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med. 2002;11(1):18–25.
  • Longen S, Bien M, Bihlmaier K, et al. Systematic analysis of the twin cx(9)c protein family. J Mol Biol. 2009;393(2):356–368. doi: 10.1016/j.jmb.2009.08.041.
  • Cavallaro G. Genome-wide analysis of eukaryotic twin CX9C proteins. Mol Biosyst. 2010;6(12):2459–2470. doi: 10.1039/c0mb00058b.
  • Modjtahedi N, Tokatlidis K, Dessen P, et al. Mitochondrial proteins containing coiled-coil-helix-coiled-coil-helix (CHCH) domains in health and disease. Trends Biochem Sci. 2016;41(3):245–260. doi: 10.1016/j.tibs.2015.12.004.
  • Liu Y, Clegg HV, Leslie PL, et al. CHCHD2 inhibits apoptosis by interacting with Bcl-x L to regulate Bax activation. Cell Death Differ. 2015;22(6):1035–1046. doi: 10.1038/cdd.2014.194.
  • Funayama M, Ohe K, Amo T, et al. CHCHD2 mutations in autosomal dominant late-onset parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol. 2015;14(3):274–282. doi: 10.1016/S1474-4422(14)70266-2.
  • Feyeux M, Bourgois-Rocha F, Redfern A, et al. Early transcriptional changes linked to naturally occurring Huntington’s disease mutations in neural derivatives of human embryonic stem cells. Hum Mol Genet. 2012;21(17):3883–3895. doi: 10.1093/hmg/dds216.
  • Wei Y, Vellanki RN, Coyaud É, et al. CHCHD2 is coamplified with EGFR in NSCLC and regulates mitochondrial function and cell migration. Mol Cancer Res. 2015;13(7):1119–1129. doi: 10.1158/1541-7786.MCR-14-0165-T.
  • Song R, Yang B, Gao X, et al. Cyclic adenosine monophosphate response element-binding protein transcriptionally regulates CHCHD2 associated with the molecular pathogenesis of hepatocellular carcinoma. Mol Med Rep. 2015;11(6):4053–4062. doi: 10.3892/mmr.2015.3256.
  • Li Y, Xiu W, Xu J, et al. Increased CHCHD2 expression promotes liver fibrosis in nonalcoholic steatohepatitis via notch/osteopontin signaling. JCI Insight. 2022;7(23):e162402. doi: 10.1172/jci.insight.162402.
  • Mittal P, Romero R, Tarca AL, et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med. 2010;38(6):617–643.
  • Nhan-Chang CL, Romero R, Tarca AL, et al. Characterization of the transcriptome of chorioamniotic membranes at the site of rupture in spontaneous labor at term. Am J Obstet Gynecol. 2010;202(5):462.e1-41–462.41. doi: 10.1016/j.ajog.2010.02.045.
  • Hassan SS, Romero R, Haddad R, et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol. 2006;195(3):778–786. doi: 10.1016/j.ajog.2006.06.021.
  • Norwitz ER, Robinson JN, Challis JR. The control of labor. N Engl J Med. 1999;341(9):660–666. doi: 10.1056/NEJM199908263410906.
  • Romero R, Espinoza J, Kusanovic JP, et al. The preterm parturition syndrome. BJOG. 2006;113(Suppl 3):17–42. doi: 10.1111/j.1471-0528.2006.01120.x.
  • Smith R. Parturition. N Engl J Med. 2007;356(3):271–283. doi: 10.1056/NEJMra061360.
  • Romero R, Espinoza J, Gonçalves LF, et al. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317–326. doi: 10.1016/j.siny.2006.05.001.
  • Haddad R, Tromp G, Kuivaniemi H, et al. Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am J Obstet Gynecol. 2006;195(2):394.e1–394.e24. doi: 10.1016/j.ajog.2005.08.057.
  • Romero R, Gotsch F, Pineles B, et al. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007;65(12 Pt 2):S194–S202. doi: 10.1301/nr.2007.dec.S194-S202.
  • Norman JE, Bollapragada S, Yuan M, et al. Inflammatory pathways in the mechanism of parturition. BMC Pregnancy Childbirth. 2007;7(Suppl 1):S7. doi: 10.1186/1471-2393-7-S1-S7.
  • Romero R, Nores J, Mazor M, et al. Microbial invasion of the amniotic cavity during term labor. Prevalence and clinical significance. J Reprod Med. 1993;38(7):543–548.
  • Bollapragada S, Youssef R, Jordan F, et al. Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. Am J Obstet Gynecol. 2009;200(1):104.e1–104.e11. doi: 10.1016/j.ajog.2008.08.032.
  • Hassan SS, Romero R, Tarca AL, et al. The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: identification of novel molecular functions involved in this process. J Matern Fetal Neonatal Med. 2009;22(12):1183–1193.
  • Mackler AM, Iezza G, Akin MR, et al. Macrophage trafficking in the uterus and cervix precedes parturition in the mouse. Biol Reprod. 1999;61(4):879–883. doi: 10.1095/biolreprod61.4.879.
  • Thomson AJ, Telfer JF, Young A, et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod. 1999;14(1):229–236. doi: 10.1093/humrep/14.1.229.
  • Young A, Thomson AJ, Ledingham M, et al. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002;66(2):445–449. doi: 10.1095/biolreprod66.2.445.
  • Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41–45. doi: 10.1093/molehr/gag001.
  • Yellon SM, Mackler AM, Kirby MA. The role of leukocyte traffic and activation in parturition. J Soc Gynecol Investig. 2003;10(6):323–338. doi: 10.1016/S1071-55760300116-3.
  • Shynlova O, Tsui P, Dorogin A, et al. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J Immunol. 2008;181(2):1470–1479. doi: 10.4049/jimmunol.181.2.1470.
  • Shynlova O, Lee YH, Srikhajon K, et al. Physiologic uterine inflammation and labor onset: integration of endocrine and mechanical signals. Reprod Sci. 2013;20(2):154–167. doi: 10.1177/1933719112446084.
  • Shynlova O, Tsui P, Jaffer S, et al. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol. 2009;144 (Suppl 1):S2–S10. doi: 10.1016/j.ejogrb.2009.02.044.
  • Lombardi A, Makieva S, Rinaldi SF, et al. Expression of matrix metalloproteinases in the mouse uterus and human myometrium during pregnancy, labor, and preterm labor. Reprod Sci. 2018;25(6):938–949. doi: 10.1177/1933719117732158.
  • Ulrich CC, Arinze V, Wandscheer CB, et al. Matrix metalloproteinases 2 and 9 are elevated in human preterm laboring uterine myometrium and exacerbate uterine contractility†. Biol Reprod. 2019;100(6):1597–1604. doi: 10.1093/biolre/ioz054.
  • Leimert KB, Messer A, Gray T, et al. Maternal and fetal intrauterine tissue crosstalk promotes proinflammatory amplification and uterine transition†. Biol Reprod. 2019;100(3):783–797. doi: 10.1093/biolre/ioy232.
  • Leimert KB, Verstraeten BSE, Messer A, et al. Cooperative effects of sequential PGF2α and IL-1β on IL-6 and COX-2 expression in human myometrial cells†. Biol Reprod. 2019;100(5):1370–1385. doi: 10.1093/biolre/ioz029.
  • Wendremaire M, Hadi T, Pezze M, et al. Macrophage-induced reactive oxygen species promote myometrial contraction and labor-associated mechanisms†. Biol Reprod. 2020;102(6):1326–1339. doi: 10.1093/biolre/ioaa032.
  • Liggins G. Cervical ripening as an inflammatory reaction. In: Ellwood DA, Anderson AB, editors. The cervix in pregnancy and labour: clinical and biochemical investigations. Churchill Livingstone; 1981. p. 1–9.
  • Bokström H, Brännström M, Alexandersson M, et al. Leukocyte subpopulations in the human uterine cervical stroma at early and term pregnancy. Hum Reprod. 1997;12(3):586–590. doi: 10.1093/humrep/12.3.586.
  • Kelly RW. Inflammatory mediators and cervical ripening. J Reprod Immunol. 2002;57(1–2):217–224. doi: 10.1016/s0165-0378(02)00007-4.
  • Sakamoto Y, Moran P, Bulmer JN, et al. Macrophages and not granulocytes are involved in cervical ripening. J Reprod Immunol. 2005;66(2):161–173. doi: 10.1016/j.jri.2005.04.005.
  • Yellon SM, Ebner CA, Sugimoto Y. Parturition and recruitment of macrophages in cervix of mice lacking the prostaglandin F receptor. Biol Reprod. 2008;78(3):438–444. doi: 10.1095/biolreprod.107.063404.
  • Timmons BC, Fairhurst AM, Mahendroo MS. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J Immunol. 2009;182(5):2700–2707. doi: 10.4049/jimmunol.0803138.
  • Yellon SM, Oshiro BT, Chhaya TY, et al. Remodeling of the cervix and parturition in mice lacking the progesterone receptor B isoform. Biol Reprod. 2011;85(3):498–502. doi: 10.1095/biolreprod.111.091983.
  • Clyde LA, Lechuga TJ, Ebner CA, et al. Transection of the pelvic or vagus nerve forestalls ripening of the cervix and delays birth in rats. Biol Reprod. 2011;84(3):587–594. doi: 10.1095/biolreprod.110.086207.
  • Payne KJ, Clyde LA, Weldon AJ, et al. Residency and activation of myeloid cells during remodeling of the prepartum murine cervix. Biol Reprod. 2012; Nov87(5):106.
  • Myers DA. The recruitment and activation of leukocytes into the immune cervix: further support that cervical remodeling involves an immune and inflammatory mechanism. Biol Reprod. 2012;87(5):107.
  • Vince GS, Starkey PM, Jackson MC, et al. Flow cytometric characterisation of cell populations in human pregnancy decidua and isolation of decidual macrophages. J Immunol Methods. 1990;132(2):181–189. doi: 10.1016/0022-1759(90)90028-t.
  • Fidel PL Jr., Romero R, Ramirez M, et al. Interleukin-1 receptor antagonist (IL-1ra) production by human amnion, chorion, and decidua. Am J Reprod Immunol. 1994;32(1):1–7. doi: 10.1111/j.1600-0897.1994.tb00872.x.
  • Keelan JA, Marvin KW, Sato TA, et al. Cytokine abundance in placental tissues: evidence of inflammatory activation in gestational membranes with term and preterm parturition. Am J Obstet Gynecol. 1999;181(6):1530–1536. doi: 10.1016/s0002-9378(99)70400-x.
  • Keski-Nisula L, Aalto ML, Katila ML, et al. Intrauterine inflammation at term: a histopathologic study. Hum Pathol. 2000;31(7):841–846. doi: 10.1053/hupa.2000.8449.
  • Gomez-Lopez N, Estrada-Gutierrez G, Jimenez-Zamudio L, et al. Fetal membranes exhibit selective leukocyte chemotaxic activity during human labor. J Reprod Immunol. 2009;80(1–2):122–131. doi: 10.1016/j.jri.2009.01.002.
  • Gomez-Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetal-maternal interface during pregnancy. J Leukoc Biol. 2010;88(4):625–633. doi: 10.1189/jlb.1209796.
  • Hamilton S, Oomomian Y, Stephen G, et al. Macrophages infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor. Biol Reprod. 2012;86(2):39.
  • Gomez-Lopez N, Vega-Sanchez R, Castillo-Castrejon M, et al. Evidence for a role for the adaptive immune response in human term parturition. Am J Reprod Immunol. 2013;69(3):212–230. doi: 10.1111/aji.12074.
  • Hamilton SA, Tower CL, Jones RL. Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour. PLOS One. 2013;8(2):e56946. doi: 10.1371/journal.pone.0056946.
  • Castillo-Castrejon M, Meraz-Cruz N, Gomez-Lopez N, et al. Choriodecidual cells from term human pregnancies show distinctive functional properties related to the induction of labor. Am J Reprod Immunol. 2014;71(1):86–93. doi: 10.1111/aji.12179.
  • Lonergan M, Aponso D, Marvin KW, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), TRAIL receptors, and the soluble receptor osteoprotegerin in human gestational membranes and amniotic fluid during pregnancy and labor at term and preterm. J Clin Endocrinol Metab. 2003;88(8):3835–3844. doi: 10.1210/jc.2002-021905.
  • Esplin MS, Peltier MR, Hamblin S, et al. Monocyte chemotactic protein-1 expression is increased in human gestational tissues during term and preterm labor. Placenta. 2005;26(8–9):661–671. doi: 10.1016/j.placenta.2004.09.012.
  • Gomez-Lopez N, Vadillo-Perez L, Hernandez-Carbajal A, et al. Specific inflammatory microenvironments in the zones of the fetal membranes at term delivery. Am J Obstet Gynecol. 2011;205(3):235.e15–235.e24. doi: 10.1016/j.ajog.2011.04.019.
  • Gomez-Lopez N, Vadillo-Perez L, Nessim S, et al. Choriodecidua and amnion exhibit selective leukocyte chemotaxis during term human labor. Am J Obstet Gynecol. 2011;204(4):364.e9–16. doi: 10.1016/j.ajog.2010.11.010.
  • Lozovyy V, Richardson L, Saade G, et al. Progesterone receptor membrane components: key regulators of fetal membrane integrity. Biol Reprod. 2021;104(2):445–456. doi: 10.1093/biolre/ioaa192.
  • Romero R, Mazor M, Brandt F, et al. Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992;27(3–4):117–123. doi: 10.1111/j.1600-0897.1992.tb00737.x.
  • Romero R, Mazor M, Sepulveda W, et al. Tumor necrosis factor in preterm and term labor. Am J Obstet Gynecol. 1992;166(5):1576–1587. doi: 10.1016/0002-9378(92)91636-o.
  • Hayashi M, Zhu K, Sagesaka T, et al. Amniotic fluid levels of tumor necrosis factor-alpha and soluble tumor necrosis factor receptor 1 before and after the onset of labor in normal pregnancies. Horm Metab Res. 2008;40(4):251–256. doi: 10.1055/s-2007-1004572.
  • Saito S, Kasahara T, Kato Y, et al. Elevation of amniotic fluid interleukin 6 (IL-6), IL-8 and granulocyte colony stimulating factor (G-CSF) in term and preterm parturition. Cytokine. 1993;5(1):81–88. doi: 10.1016/1043-4666(93)90027-3.
  • Romero R, Avila C, Santhanam U, et al. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest. 1990;85(5):1392–1400. doi: 10.1172/JCI114583.
  • Bosco M, Romero R, Gallo DM, et al. Evidence for the participation of CHCHD2/MNRR1, a mitochondrial protein, in spontaneous labor at term and in preterm labor with intra-amniotic infection. J Matern Fetal Neonatal Med. 2023;36(1):2183088. doi: 10.1080/14767058.2023.2183088.
  • Neal JL, Lamp JM, Lowe NK, et al. Differences in inflammatory markers between nulliparous women admitted to hospitals in preactive vs active labor. Am J Obstet Gynecol. 2015;212(1):68.e1–68.e8. doi: 10.1016/j.ajog.2014.07.050.
  • Unal ER, Cierny JT, Roedner C, et al. Maternal inflammation in spontaneous term labor. Am J Obstet Gynecol. 2011;204(3):223.e1–223.e5. doi: 10.1016/j.ajog.2011.01.002.
  • Cierny JT, Unal ER, Flood P, et al. Maternal inflammatory markers and term labor performance. Am J Obstet Gynecol. 2014;210(5):447.e1–447.e6. doi: 10.1016/j.ajog.2013.11.038.
  • Gomez-Lopez N, Romero R, Galaz J, et al. Transcriptome changes in maternal peripheral blood during term parturition mimic perturbations preceding spontaneous preterm birth†. Biol Reprod. 2022;106(1):185–199. doi: 10.1093/biolre/ioab197.
  • Lee SE, Romero R, Jung H, et al. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2007;197(3):294.e1–6. doi: 10.1016/j.ajog.2007.07.006.
  • Gotsch F, Romero R, Kusanovic JP, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50(3):652–683. doi: 10.1097/GRF.0b013e31811ebef6.
  • Romero R, Kadar N, Vaisbuch E, et al. Maternal death following cardiopulmonary collapse after delivery: amniotic fluid embolism or septic shock due to intrauterine infection? Am J Reprod Immunol. 2010;64(2):113–125. doi: 10.1111/j.1600-0897.2010.00823.x.
  • Agrawal V, Hirsch E. Intrauterine infection and preterm labor. Semin Fetal Neonatal Med. 2012;17(1):12–19. doi: 10.1016/j.siny.2011.09.001.
  • Kacerovsky M, Andrys C, Drahosova M, et al. Soluble toll-like receptor 1 family members in the amniotic fluid of women with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med. 2012;25(9):1699–1704.
  • Elovitz MA, Wang Z, Chien EK, et al. A new model for inflammation-induced preterm birth: the role of platelet-activating factor and toll-like receptor-4. Am J Pathol. 2003;163(5):2103–2111. doi: 10.1016/S0002-9440(10)63567-5.
  • Wang H, Hirsch E. Bacterially-induced preterm labor and regulation of prostaglandin-metabolizing enzyme expression in mice: the role of toll-like receptor 4. Biol Reprod. 2003;69(6):1957–1963. doi: 10.1095/biolreprod.103.019620.
  • Kim YM, Romero R, Chaiworapongsa T, et al. Toll-like receptor-2 and -4 in the chorioamniotic membranes in spontaneous labor at term and in preterm parturition that are associated with chorioamnionitis. Am J Obstet Gynecol. 2004;191(4):1346–1355. doi: 10.1016/j.ajog.2004.07.009.
  • Mor G, Romero R, Aldo PB, et al. Is the trophoblast an immune regulator? The role of toll-like receptors during pregnancy. Crit Rev Immunol. 2005;25(5):375–388. doi: 10.1615/critrevimmunol.v25.i5.30.
  • Koga K, Cardenas I, Aldo P, et al. Activation of TLR3 in the trophoblast is associated with preterm delivery. Am J Reprod Immunol. 2009;61(3):196–212. doi: 10.1111/j.1600-0897.2008.00682.x.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5):373–384. doi: 10.1038/ni.1863.
  • Ilievski V, Hirsch E. Synergy between viral and bacterial toll-like receptors leads to amplification of inflammatory responses and preterm labor in the mouse. Biol Reprod. 2010;83(5):767–773. doi: 10.1095/biolreprod.110.085464.
  • Pawelczyk E, Nowicki BJ, Izban MG, et al. Spontaneous preterm labor is associated with an increase in the proinflammatory signal transducer TLR4 receptor on maternal blood monocytes. BMC Pregnancy Childbirth. 2010;10:66. doi: 10.1186/1471-2393-10-66.
  • Li L, Kang J, Lei W. Role of toll-like receptor 4 in inflammation-induced preterm delivery. Mol Hum Reprod. 2010;16(4):267–272. doi: 10.1093/molehr/gap106.
  • Thaxton JE, Nevers TA, Sharma S. TLR-mediated preterm birth in response to pathogenic agents. Infect Dis Obstet Gynecol. 2010;2010:1–8. doi: 10.1155/2010/378472.
  • Breen K, Brown A, Burd I, et al. TLR-4-dependent and -independent mechanisms of fetal brain injury in the setting of preterm birth. Reprod Sci. 2012;19(8):839–850. doi: 10.1177/1933719112438439.
  • Kacerovsky M, Andrys C, Hornychova H, et al. Amniotic fluid soluble toll-like receptor 4 in pregnancies complicated by preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med. 2012;25(7):1148–1155.
  • Andrys C, Kacerovsky M, Drahosova M, et al. Amniotic fluid soluble toll-like receptor 2 in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2013;26(5):520–527.
  • Abrahams VM, Potter JA, Bhat G, et al. Bacterial modulation of human fetal membrane toll-like receptor expression. Am J Reprod Immunol. 2013;69(1):33–40. doi: 10.1111/aji.12016.
  • Koga K, Izumi G, Mor G, et al. Toll-like receptors at the maternal-fetal interface in normal pregnancy and pregnancy complications. Am J Reprod Immunol. 2014;72(2):192–205. doi: 10.1111/aji.12258.
  • Challis JR, Lye SJ, Gibb W, et al. Understanding preterm labor. Ann N Y Acad Sci. 2001;943:225–234. doi: 10.1111/j.1749-6632.2001.tb03804.x.
  • Fortunato SJ, Menon R, Lombardi SJ. Role of tumor necrosis factor-alpha in the premature rupture of membranes and preterm labor pathways. Am J Obstet Gynecol. 2002;187(5):1159–1162. doi: 10.1067/mob.2002.127457.
  • Oner C, Schatz F, Kizilay G, et al. Progestin-inflammatory cytokine interactions affect matrix metalloproteinase-1 and -3 expression in term decidual cells: implications for treatment of chorioamnionitis-induced preterm delivery. J Clin Endocrinol Metab. 2008;93(1):252–259. doi: 10.1210/jc.2007-1538.
  • Yoon BH, Romero R, Moon JB, et al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001;185(5):1130–1136. doi: 10.1067/mob.2001.117680.
  • Combs CA, Gravett M, Garite TJ, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014;210(2):125.e1–125.e15. doi: 10.1016/j.ajog.2013.11.032.
  • Romero R, Brody DT, Oyarzun E, et al. Infection and labor. III. Interleukin-1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989;160(5 Pt 1):1117–1123. doi: 10.1016/0002-9378(89)90172-5.
  • Romero R, Manogue KR, Mitchell MD, et al. Infection and labor. IV. Cachectin-tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor. Am J Obstet Gynecol. 1989;161(2):336–341. doi: 10.1016/0002-9378(89)90515-2.
  • Casey ML, Cox SM, Beutler B, et al. Cachectin/tumor necrosis factor-alpha formation in human decidua. Potential role of cytokines in infection-induced preterm labor. J Clin Invest. 1989;83(2):430–436. doi: 10.1172/JCI113901.
  • Romero R, Parvizi ST, Oyarzun E, et al. Amniotic fluid interleukin-1 in spontaneous labor at term. J Reprod Med. 1990;35(3):235–238.
  • Hillier SL, Witkin SS, Krohn MA, et al. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol. 1993;81(6):941–948.
  • Arntzen KJ, Kjøllesdal AM, Halgunset J, et al. TNF, IL-1, IL-6, IL-8 and soluble TNF receptors in relation to chorioamnionitis and premature labor. J Perinat Med. 1998;26(1):17–26. doi: 10.1515/jpme.1998.26.1.17.
  • Hsu CD, Meaddough E, Aversa K, et al. Elevated amniotic fluid levels of leukemia inhibitory factor, interleukin 6, and interleukin 8 in intra-amniotic infection. Am J Obstet Gynecol. 1998;179(5):1267–1270. doi: 10.1016/s0002-9378(98)70144-9.
  • Athayde N, Romero R, Maymon E, et al. Interleukin 16 in pregnancy, parturition, rupture of fetal membranes, and microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2000;182(1 Pt 1):135–141. doi: 10.1016/s0002-9378(00)70502-3.
  • Pacora P, Romero R, Maymon E, et al. Participation of the novel cytokine interleukin 18 in the host response to intra-amniotic infection. Am J Obstet Gynecol. 2000;183(5):1138–1143. doi: 10.1067/mob.2000.108881.
  • Jacobsson B, Mattsby-Baltzer I, Hagberg H. Interleukin-6 and interleukin-8 in cervical and amniotic fluid: relationship to microbial invasion of the chorioamniotic membranes. BJOG. 2005;112(6):719–724. doi: 10.1111/j.1471-0528.2005.00536.x.
  • Gotsch F, Romero R, Kusanovic JP, et al. The anti-inflammatory limb of the immune response in preterm labor, intra-amniotic infection/inflammation, and spontaneous parturition at term: a role for interleukin-10. J Matern Fetal Neonatal Med. 2008;21(8):529–547.
  • Kacerovsky M, Celec P, Vlkova B, et al. Amniotic fluid protein profiles of intraamniotic inflammatory response to ureaplasma spp. and other bacteria. PLOS One. 2013;8(3):e60399. doi: 10.1371/journal.pone.0060399.
  • Marconi C, de Andrade Ramos BR, Peraçoli JC, et al. Amniotic fluid interleukin-1 beta and interleukin-6, but not interleukin-8 correlate with microbial invasion of the amniotic cavity in preterm labor. Am J Reprod Immunol. 2011;65(6):549–556. doi: 10.1111/j.1600-0897.2010.00940.x.
  • Cobo T, Jacobsson B, Kacerovsky M, et al. Systemic and local inflammatory response in women with preterm prelabor rupture of membranes. PLOS One. 2014;9(1):e85277. doi: 10.1371/journal.pone.0085277.
  • Romero R, Ceska M, Avila C, et al. Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition. Am J Obstet Gynecol. 1991;165(4 Pt 1):813–820. doi: 10.1016/0002-9378(91)90422-n.
  • Cherouny PH, Pankuch GA, Romero R, et al. Neutrophil attractant/activating peptide-1/interleukin-8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. Am J Obstet Gynecol. 1993;169(5):1299–1303. doi: 10.1016/0002-9378(93)90297-v.
  • Dudley DJ, Trautman MS, Mitchell MD. Inflammatory mediators regulate interleukin-8 production by cultured gestational tissues: evidence for a cytokine network at the chorio-decidual interface. J Clin Endocrinol Metab. 1993;76(2):404–410. doi: 10.1210/jcem.76.2.8432783.
  • Dudley DJ, Spencer S, Edwin S, et al. Regulation of human decidual cell macrophage inflammatory protein-1 alpha (MIP-1 alpha) production by inflammatory cytokines. Am J Reprod Immunol. 1995;34(4):231–235. doi: 10.1111/j.1600-0897.1995.tb00946.x.
  • Cohen J, Ghezzi F, Romero R, et al. GRO alpha in the fetomaternal and amniotic fluid compartments during pregnancy and parturition. Am J Reprod Immunol. 1996;35(1):23–29. doi: 10.1111/j.1600-0897.1996.tb00004.x.
  • Dudley DJ, Hunter C, Mitchell MD, et al. Elevations of amniotic fluid macrophage inflammatory protein-1 alpha concentrations in women during term and preterm labor. Obstet Gynecol. 1996;87(1):94–98. doi: 10.1016/0029-7844(95)00366-5.
  • Ghezzi F, Gomez R, Romero R, et al. Elevated interleukin-8 concentrations in amniotic fluid of mothers whose neonates subsequently develop bronchopulmonary dysplasia. Eur J Obstet Gynecol Reprod Biol. 1998;78(1):5–10. doi: 10.1016/s0301-2115(97)00236-4.
  • Hsu CD, Meaddough E, Aversa K, et al. The role of amniotic fluid L-selectin, GRO-alpha, and interleukin-8 in the pathogenesis of intraamniotic infection. Am J Obstet Gynecol. 1998; Mar178(3):428–432. doi: 10.1016/s0002-9378(98)70414-4.
  • Athayde N, Romero R, Maymon E, et al. A role for the novel cytokine RANTES in pregnancy and parturition. Am J Obstet Gynecol. 1999;181(4):989–994. doi: 10.1016/s0002-9378(99)70337-6.
  • Jacobsson B, Holst RM, Wennerholm UB, et al. Monocyte chemotactic protein-1 in cervical and amniotic fluid: relationship to microbial invasion of the amniotic cavity, intra-amniotic inflammation, and preterm delivery. Am J Obstet Gynecol. 2003;189(4):1161–1167. doi: 10.1067/s0002-9378(03)00594-5.
  • Chaiworapongsa T, Romero R, Espinoza J, et al. Macrophage migration inhibitory factor in patients with preterm parturition and microbial invasion of the amniotic cavity. J Matern Fetal Neonatal Med. 2005;18(6):405–416.
  • Esplin MS, Romero R, Chaiworapongsa T, et al. Monocyte chemotactic protein-1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intra-amniotic infection. J Matern Fetal Neonatal Med. 2005;17(6):365–373.
  • Hamill N, Romero R, Gotsch F, et al. Exodus-1 (CCL20): evidence for the participation of this chemokine in spontaneous labor at term, preterm labor, and intrauterine infection. J Perinat Med. 2008;36(3):217–227.
  • Cobo T, Kacerovsky M, Palacio M, et al. A prediction model of histological chorioamnionitis and funisitis in preterm prelabor rupture of membranes: analyses of multiple proteins in the amniotic fluid. J Matern Fetal Neonatal Med. 2012;25(10):1995–2001.
  • Kacerovsky M, Musilova I, Jacobsson B, et al. Cervical fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28(2):134–140.
  • Kacerovsky M, Musilova I, Jacobsson B, et al. Vaginal fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor membrane ruptures. J Matern Fetal Neonatal Med. 2015;28(4):392–398.
  • Andersson U, Tracey KJ. HMGB1 in sepsis. Scand J Infect Dis. 2003;35(9):577–584. doi: 10.1080/00365540310016286.
  • Oppenheim JJ, Tewary P, de la Rosa G, et al. Alarmins initiate host defense. Adv Exp Med Biol. 2007;601:185–194. doi: 10.1007/978-0-387-72005-0_19.
  • Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–837. doi: 10.1038/nri2873.
  • Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008;8(4):279–289. doi: 10.1038/nri2215.
  • Klune JR, Dhupar R, Cardinal J, et al. HMGB1: endogenous danger signaling. Mol Med. 2008; Jul-Aug14(7-8):476–484. doi: 10.2119/2008-00034.Klune.
  • Castiglioni A, Canti V, Rovere-Querini P, et al. High-mobility group box 1 (HMGB1) as a master regulator of innate immunity. Cell Tissue Res. 2011;343(1):189–199. doi: 10.1007/s00441-010-1033-1.
  • Bianchi ME. HMGB1 loves company. J Leukoc Biol. 2009;86(3):573–576. doi: 10.1189/jlb.1008585.
  • Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5. doi: 10.1189/jlb.0306164.
  • Romero R, Chaiworapongsa T, Savasan ZA, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med. 2012;25(6):558–567.
  • Murphy E, Ardehali H, Balaban RS, et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American heart association. Circ Res. 2016;118(12):1960–1991. doi: 10.1161/RES.0000000000000104.
  • Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335–343. doi: 10.1038/nature12985.
  • Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–1159. doi: 10.1016/j.cell.2012.02.035.
  • West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389–402. doi: 10.1038/nri2975.
  • Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev. 2008;22(12):1577–1590. doi: 10.1101/gad.1658508.
  • Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci. 2012;125(Pt 4):807–815. doi: 10.1242/jcs.099234.
  • Chen Y, Zhou Z, Min W. Mitochondria, oxidative stress and innate immunity. Front Physiol. 2018;9:1487. doi: 10.3389/fphys.2018.01487.
  • Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–107. doi: 10.1038/nature08780.
  • Deus CM, Tavares H, Beatriz M, et al. Mitochondrial damage-associated molecular patterns content in extracellular vesicles promotes early inflammation in neurodegenerative disorders. Cells. 2022;11(15):2364. doi: 10.3390/cells11152364.
  • Srinivasan S, Guha M, Kashina A, et al. Mitochondrial dysfunction and mitochondrial dynamics – The cancer connection. Biochim Biophys Acta Bioenerg. 2017;1858(8):602–614. doi: 10.1016/j.bbabio.2017.01.004.
  • Wu S, Zhou F, Zhang Z, et al. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. Febs J. 2011;278(6):941–954. doi: 10.1111/j.1742-4658.2011.08010.x.
  • Galluzzi L, Vanpouille-Box C. BAX and BAK at the gates of innate immunity. Trends Cell Biol. 2018;28(5):343–345. doi: 10.1016/j.tcb.2018.02.010.
  • Jang JY, Blum A, Liu J, et al. The role of mitochondria in aging. J Clin Invest. 2018;128(9):3662–3670. doi: 10.1172/JCI120842.
  • Maeda A, Fadeel B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis. 2014;5(7):e1312. doi: 10.1038/cddis.2014.277.
  • Marchi S, Guilbaud E, Tait SWG, et al. Mitochondrial control of inflammation. Nat Rev Immunol. 2022;25:1–15.
  • van Horssen J, van Schaik P, Witte M. Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders? Neurosci Lett. 2019;710:132931. doi: 10.1016/j.neulet.2017.06.050.
  • López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, et al. Mitochondrial dysfunction and the inflammatory response. Mitochondrion. 2013; Mar13(2):106–118. doi: 10.1016/j.mito.2013.01.003.
  • Tran M, Tam D, Bardia A, et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest. 2011;121(10):4003–4014. doi: 10.1172/JCI58662.
  • Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225. doi: 10.1038/nature09663.
  • Liu S, Chong W. Roles of LncRNAs in regulating mitochondrial dysfunction in septic cardiomyopathy. Front Immunol. 2021;12:802085. doi: 10.3389/fimmu.2021.802085.
  • Oliveira TS, Santos AT, Andrade CBV, et al. Sepsis disrupts mitochondrial function and diaphragm morphology. Front Physiol. 2021;12:704044. doi: 10.3389/fphys.2021.704044.
  • Dominguini D, Michels M, Wessler LB, et al. Mitochondrial protective effects caused by the administration of mefenamic acid in sepsis. J Neuroinflammation. 2022;19(1):268. doi: 10.1186/s12974-022-02616-6.
  • Eyenga P, Roussel D, Morel J, et al. Early septic shock induces loss of oxidative phosphorylation yield plasticity in liver mitochondria. J Physiol Biochem. 2014;70(2):285–296. doi: 10.1007/s13105-013-0280-5.
  • Chen XH, Zhao YP, Xue M, et al. TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes. Mol Cell Endocrinol. 2010;328(1—2):63–69. doi: 10.1016/j.mce.2010.07.005.
  • Kim J, Xu M, Xo R, et al. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. OsteoarthrCartil. 2010;18(3):424–432. doi: 10.1016/j.joca.2009.09.008.
  • Samavati L, Lee I, Mathes I, et al. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem. 2008;283(30):21134–21144. doi: 10.1074/jbc.M801954200.
  • Liu J, Zhou G, Chen R, et al. Mitochondrial Sirt3 serves as a biomarker for sepsis diagnosis and mortality prediction. Sci Rep. 2022;12(1):10414. doi: 10.1038/s41598-022-14365-w.
  • Hauser CJ, Otterbein LE. Danger signals from mitochondrial DAMPS in trauma and post-injury sepsis. Eur J Trauma Emerg Surg. 2018;44(3):317–324. doi: 10.1007/s00068-018-0963-2.
  • Kwon WY, Suh GJ, Jung YS, et al. Circulating mitochondrial N-formyl peptides contribute to secondary nosocomial infection in patients with septic shock. Proc Natl Acad Sci USA. 2021; 27118(17):e2018538118. doi: 10.1073/pnas.2018538118.
  • Choi H, Yoo H, Lee JY, et al. Plasma mitochondrial DNA and necroptosis as prognostic indicators in critically ill patients with sepsis. Biomedicines. 2022;10(10):2386. doi: 10.3390/biomedicines10102386.
  • Garrabou G, Morén C, López S, et al. The effects of sepsis on mitochondria. J Infect Dis. 2012;205(3):392–400. doi: 10.1093/infdis/jir764.
  • Timmermans K, Kox M, Scheffer GJ, et al. Plasma nuclear and mitochondrial DNA levels, and markers of inflammation, shock, and organ damage in patients with septic shock. Shock. 2016;45(6):607–612. doi: 10.1097/SHK.0000000000000549.
  • Rai V, Mathews G, Agrawal DK. Translational and clinical significance of DAMPs, PAMPs, and PRRs in trauma-induced inflammation. Arch Clin Biomed Res. 2022;6(5):673–685. doi: 10.26502/acbr.50170279.