724
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Sirtuin 1 is a potential therapeutic candidate gene for fetal growth restriction via insulin-like 4

, , , ORCID Icon & ORCID Icon
Article: 2253486 | Received 16 Jun 2023, Accepted 25 Aug 2023, Published online: 03 Sep 2023

References

  • Hamilton WJ, Boyd JD. Development of the human placenta in the first three months of gestation. J Anat. 1960;94(Pt 3):297–328.
  • Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663):20140066. doi: 10.1098/rstb.2014.0066.
  • Zeitlin J, El Ayoubi M, Jarreau PH, et al. Impact of fetal growth restriction on mortality and morbidity in a very preterm birth cohort. J Pediatr. 2010;157(5):733–739e1. doi: 10.1016/j.jpeds.2010.05.002.
  • Tokoro S, Koshida S, Tsuji S, et al. Insufficient antenatal identification of fetal growth restriction leading to intrauterine fetal death: a regional population-based study in Japan. J Matern Fetal Neonatal Med. 2023;36(1):2167075.
  • Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016;10:67–83. doi: 10.4137/CMPed.S40070.
  • Damodaram M, Story L, Kulinskaya E, et al. Early adverse perinatal complications in preterm growth-restricted fetuses. Aust N Z J Obstet Gynaecol. 2011;51(3):204–209. doi: 10.1111/j.1479-828X.2011.01299.x.
  • Murray E, Fernandes M, Fazel M, et al. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG. 2015;122(8):1062–1072. doi: 10.1111/1471-0528.13435.
  • Sarvari SI, Rodriguez-Lopez M, Nunez-Garcia M, et al. Persistence of cardiac remodeling in preadolescents with fetal growth restriction. Circ Cardiovasc Imaging. 2017;10(1):e005270. doi: 10.1161/CIRCIMAGING.116.005270.
  • Zohdi V, Lim K, Pearson JT, et al. Developmental programming of cardiovascular disease following intrauterine growth restriction: findings utilising a rat model of maternal protein restriction. Nutrients. 2014;7(1):119–152. doi: 10.3390/nu7010119.
  • Barut F, Barut A, Gun BD, et al. Intrauterine growth restriction and placental angiogenesis. Diagn Pathol. 2010;5(1):24. doi: 10.1186/1746-1596-5-24.
  • Kim J, Zhao K, Jiang P, et al. Transcriptome landscape of the human placenta. BMC Genomics. 2012;13(1):115. doi: 10.1186/1471-2164-13-115.
  • Koman A, Cazaubon S, Couraud PO, et al. Molecular characterization and in vitro biological activity of placentin, a new member of the insulin gene family. J Biol Chem. 1996;271(34):20238–20241. doi: 10.1074/jbc.271.34.20238.
  • Laurent A, Rouillac C, Delezoide AL, et al. Insulin-like 4 (INSL4) gene expression in human embryonic and trophoblastic tissues. Mol Reprod Dev. 1998;51(2):123–129. doi: 10.1002/(SICI)1098-2795(199810)51:2<123::AID-MRD1>3.0.CO;2-S.
  • Bieche I, Laurent A, Laurendeau I, et al. Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol Reprod. 2003;68(4):1422–1429. doi: 10.1095/biolreprod.102.010322.
  • Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–171. doi: 10.1016/j.freeradbiomed.2012.10.525.
  • Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011–2015. doi: 10.1126/science.1094637.
  • Xu C, Wang L, Fozouni P, et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol. 2020;22(10):1170–1179. doi: 10.1038/s41556-020-00579-5.
  • Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100(19):10794–10799. doi: 10.1073/pnas.1934713100.
  • Arul Nambi Rajan K, Khater M, Soncin F, et al. Sirtuin1 is required for proper trophoblast differentiation and placental development in mice. Placenta. 2018;62:1–8. doi: 10.1016/j.placenta.2017.12.002.
  • Lappas M, Mitton A, Lim R, et al. SIRT1 is a novel regulator of key pathways of human labor. Biol Reprod. 2011;84(1):167–178. doi: 10.1095/biolreprod.110.086983.
  • Tsuchida N, Kojima J, Fukuda A, et al. Transcriptomic features of trophoblast lineage cells derived from human induced pluripotent stem cells treated with BMP 4. Placenta. 2020;89:20–32. doi: 10.1016/j.placenta.2019.10.006.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
  • Yoshie M, Kashima H, Bessho T, et al. Expression of stathmin, a microtubule regulatory protein, is associated with the migration and differentiation of cultured early trophoblasts. Hum Reprod. 2008;23(12):2766–2774. doi: 10.1093/humrep/den317.
  • Yoshie M, Kaneyama K, Kusama K, et al. Possible role of the exchange protein directly activated by cyclic AMP (epac) in the cyclic AMP-dependent functional differentiation and syncytialization of human placental BeWo cells. Hum Reprod. 2010;25(9):2229–2238. doi: 10.1093/humrep/deq190.
  • Jiang Y, Chen D, Gong Q, et al. Elucidation of SIRT-1/PGC-1α-associated mitochondrial dysfunction and autophagy in nonalcoholic fatty liver disease. Lipids Health Dis. 2021;20(1):40. doi: 10.1186/s12944-021-01461-5.
  • Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594(4):807–823. doi: 10.1113/JP271402.
  • Ornoy A. Prenatal origin of obesity and their complications: gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod Toxicol. 2011;32(2):205–212. doi: 10.1016/j.reprotox.2011.05.002.
  • Longo S, Borghesi A, Tzialla C, et al. IUGR and infections. Early Hum Dev. 2014;90(Suppl 1):S42–S44. doi: 10.1016/S0378-3782(14)70014-3.
  • Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci. 2007;113(1):1–13. doi: 10.1042/CS20060339.
  • Sultana Z, Maiti K, Dedman L, et al. Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction? Am J Obstet Gynecol. 2018;218(2S):S762–S773. doi: 10.1016/j.ajog.2017.11.567.
  • Mishra JS, Zhao H, Hattis S, et al. Elevated glucose and insulin levels decrease DHA transfer across human trophoblasts via SIRT1-dependent mechanism. Nutrients. 2020;12(5):1271. doi: 10.3390/nu12051271.
  • Wang Y, Zhang Y, Wu Y, et al. SIRT1 regulates trophoblast senescence in premature placental aging in preeclampsia. Placenta. 2022;122:56–65. doi: 10.1016/j.placenta.2022.04.001.
  • Xiong L, Ye X, Chen Z, et al. Advanced maternal age-associated SIRT1 deficiency compromises trophoblast epithelial-mesenchymal transition through an increase in vimentin acetylation. Aging Cell. 2021;20(10):e13491. doi: 10.1111/acel.13491.
  • Paules C, Dantas AP, Miranda J, et al. Premature placental aging in term small-for-gestational-age and growth-restricted fetuses. Ultrasound Obstet Gynecol. 2019;53(5):615–622. doi: 10.1002/uog.20103.
  • Buler M, Andersson U, Hakkola J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. FASEB J. 2016;30(12):3942–3960. doi: 10.1096/fj.201600410RR.
  • Poulose N, Raju R. Sirtuin regulation in aging and injury. Biochim Biophys Acta. 2015;1852(11):2442–2455. doi: 10.1016/j.bbadis.2015.08.017.
  • Bai B, Man AW, Yang K, et al. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget. 2016;7(26):39065–39081. doi: 10.18632/oncotarget.9687.
  • Presneau N, Duhamel LA, Ye H, et al. Post-translational regulation contributes to the loss of LKB1 expression through SIRT1 deacetylase in osteosarcomas. Br J Cancer. 2017;117(3):398–408. doi: 10.1038/bjc.2017.174.
  • Lazo-de-la-Vega-Monroy ML, Mata-Tapia KA, Garcia-Santillan JA, et al. Association of placental nutrient sensing pathways with birth weight. Reproduction. 2020;160(3):455–468. doi: 10.1530/REP-20-0186.
  • Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563–575. doi: 10.1038/nrc2676.
  • Yang R, Li SW, Chen Z, et al. Role of INSL4 signaling in sustaining the growth and viability of LKB1-Inactivated lung cancer. J Natl Cancer Inst. 2019;111(7):664–674. doi: 10.1093/jnci/djy166.