1,029
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Mesenchymal stem cell secretome ameliorates over-expression of soluble fms-like tyrosine kinase-1 (sFlt-1) and fetal growth restriction (FGR) in animal SLE model

ORCID Icon, , , , , , , , & show all
Article: 2279931 | Received 03 Jan 2023, Accepted 31 Oct 2023, Published online: 12 Nov 2023

References

  • Carp HJA, Selmi C, Shoenfeld Y. The autoimmune bases of infertility and pregnancy loss. J Autoimmun. 2012;38(2–3):J266–274. doi: 10.1016/j.jaut.2011.11.016.
  • Ogishima D, Matsumoto T, Nakamura Y, et al. Placental pathology in systemic lupus erythematosus with antiphospholipid antibodies. Pathol Int. 2000;50(3):224–229. doi: 10.1046/j.1440-1827.2000.01026.x.
  • Ostensen M, Clowse M. Pathogenesis of pregnancy complications in systemic lupus erythematosus. Curr Opin Rheumatol. 2013;25(5):591–596. doi: 10.1097/BOR.0b013e328363ebf7.
  • Qazi U, Lam C, Karumanchi A, et al. Soluble fms-like tyrosine kinase associated with preeclampsia in pregnancy in systemic lupus erythematosus. J Rheumatol J Rheumatol Sept. 2008;35:631–634.
  • Mayer-Pickel K, Nanda M, Gajic M, et al. Preeclampsia and the antiphospholipid syndrome. Biomedicines. 2023;11(8):11. doi: 10.3390/biomedicines11082298.
  • Ugolini-Lopes MR, Torrezan GT, Gândara APR, et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: association with earlier disease onset and preeclampsia. Autoimmun Rev. 2019;18(4):393–398. doi: 10.1016/j.autrev.2018.11.004.
  • Castellanos Gutierrez AS, Figueras F, Morales-Prieto DM, et al. Placental damage in pregnancies with systemic lupus erythematosus: a narrative review. Front Immunol. 2022;13:941586. doi: 10.3389/fimmu.2022.941586.
  • Li W, Titov AA, Morel L. An update on lupus animal models. Curr Opin Rheumatol. 2017;29(5):434–441. doi: 10.1097/BOR.0000000000000412.
  • Perry D, Sang A, Yin Y, et al. Murine models of systemic lupus erythematosus. J Biomed Biotechnol. 2011;2011:271694. doi: 10.1155/2011/271694.
  • Moore E, Reynolds JA, Davidson A, et al. Promise and complexity of lupus mouse models. Nat Immunol. 2021;22(6):683–686. doi: 10.1038/s41590-021-00914-4.
  • Celhar T, Fairhurst A-M. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheumatology. 2017;56(suppl_1):i88–i99. doi: 10.1093/rheumatology/kew400.
  • Reeves WH, Lee PY, Weinstein JS, et al. Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol. 2009;30(9):455–464. doi: 10.1016/j.it.2009.06.003.
  • Freitas EC, de Oliveira MS, Monticielo OA. Pristane-induced lupus: considerations on this experimental model. Clin Rheumatol. 2017;36(11):2403–2414. doi: 10.1007/s10067-017-3811-6.
  • Gatford KL, Andraweera PH, Roberts CT, et al. Animal models of preeclampsia: causes, consequences, and interventions. Hypertension. 2020;75(6):1363–1381. doi: 10.1161/HYPERTENSIONAHA.119.14598.
  • Ahmed A, Singh J, Khan Y, et al. A new mouse model to explore therapies for preeclampsia. PLOS One. 2010;5(10):e13663. doi: 10.1371/journal.pone.0013663.
  • Szalai G, Romero R, Chaiworapongsa T, et al. Full-Length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice. PLOS One. 2015;10(4):e0119547. doi: 10.1371/journal.pone.0119547.
  • Kim MY, Guerra MM, Kaplowitz E, et al. Complement activation predicts adverse pregnancy outcome in patients with systemic lupus erythematosus and/or antiphospholipid antibodies. Ann Rheum Dis. 2018;77(4):549–555. doi: 10.1136/annrheumdis-2017-212224.
  • Ramma W, Ahmed A. Therapeutic potential of statins and the induction of heme oxygenase-1 in preeclampsia. J Reprod Immunol. 2014;101–102(100):153–160. doi: 10.1016/j.jri.2013.12.120.
  • Hendrix M, Bons J, van Haren A, et al. Role of sFlt-1 and PlGF in the screening of small-for-gestational age neonates during pregnancy: a systematic review. Ann Clin Biochem. 2020;57(1):44–58. doi: 10.1177/0004563219882042.
  • Ding D-C, Chang Y-H, Shyu W-C, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339–347. doi: 10.3727/096368915X686841.
  • Kim N, Cho S-G. Clinical applications of mesenchymal stem cells. Korean J Intern Med. 2013;28(4):387–402. doi: 10.3904/kjim.2013.28.4.387.
  • Eleuteri S, Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Int J Mol Sci. 2019;20(18):4597. doi: 10.3390/ijms20184597.
  • Hou L, Kim JJ, Woo YJ, et al. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ Physiol. 2016;310(4):H455–H465. doi: 10.1152/ajpheart.00726.2015.
  • Bian X, Ma K, Zhang C, et al. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther. 2019;10(1):158. doi: 10.1186/s13287-019-1276-z.
  • Dittmar T, Nagler C, Niggemann B, et al. The dark side of stem cells: triggering cancer progression by cell fusion. Curr Mol Med. 2013;13(5):735–750. doi: 10.2174/1566524011313050005.
  • Xia J, Minamino S, Kuwabara K, et al. Stem cell secretome as a new booster for regenerative medicine. Biosci Trends. 2019;13(4):299–307. doi: 10.5582/bst.2019.01226.
  • Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging Cell-Free alternative for improving wound repair. Int J Mol Sci. 2020;21(19):7038. doi: 10.3390/ijms21197038.
  • Sandonà M, Di Pietro L, Esposito F, et al. Mesenchymal stromal cells and their secretome: new therapeutic perspectives for skeletal muscle regeneration. Front Bioeng Biotechnol. 2021;9:652970. doi: 10.3389/fbioe.2021.652970.
  • Gwam C, Mohammed N, Ma X. Stem cell secretome, regeneration, and clinical translation: a narrative review. Ann Transl Med. 2021;9(1):70–70. doi: 10.21037/atm-20-5030.
  • Li F, Zhang J, Yi K, et al. Delivery of stem cell secretome for therapeutic applications. ACS Appl Bio Mater. 2022;5(5):2009–2030. doi: 10.1021/acsabm.1c01312.
  • Ko MJ, Lim C-Y. General considerations for sample size estimation in animal study. Korean J Anesthesiol. 2021;74(1):23–29. doi: 10.4097/kja.20662.
  • Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303–306. doi: 10.4103/0976-500X.119726.
  • Kilkenny C, Browne W, Cuthill IC, et al. Editorial: animal research: reporting in vivo experiments-The ARRIVE guidelines. J Cereb Blood Flow Metab. 2011;31(4):991–993. doi: 10.1038/jcbfm.2010.220.
  • Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: the arrive guidelines for reporting animal research. Animals. 2014;4(1):35–44. doi: 10.3390/ani4010035.
  • Smith AJ, Clutton RE, Lilley E, et al. PREPARE: guidelines for planning animal research and testing. Lab Anim. 2018;52(2):135–141. doi: 10.1177/0023677217724823.
  • McCowan LM, Figueras F, Anderson NH. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am J Obstet Gynecol. 2018;218(2S):S855–S868. doi: 10.1016/j.ajog.2017.12.004.
  • Kaemmerer D, Peter L, Lupp A, et al. Comparing of IRS and Her2 as immunohistochemical scoring schemes in gastroenteropancreatic neuroendocrine tumors. Int J Clin Exp Pathol. 2012;5:187–194.
  • Konala VBR, Mamidi MK, Bhonde R, et al. The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy. 2016;18(1):13–24. doi: 10.1016/j.jcyt.2015.10.008.
  • Satoh M, Reeves WH. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J Exp Med. 1994;180(6):2341–2346. doi: 10.1084/jem.180.6.2341.
  • Kalim H. Low birth weight and maternal and neonatal deaths are complications of systemic lupus erythematosus in pregnant pristane induced lupus mice. Arch Rheumatol. 2015;30(4):285–291. doi: 10.5606/ArchRheumatol.2015.5505.
  • Polizzi S, Mahajan VB. Intravitreal anti-VEGF injections in pregnancy: case series and review of literature. J Ocul Pharmacol Ther. 2015;31(10):605–610. doi: 10.1089/jop.2015.0056.
  • Bujold E, Romero R, Chaiworapongsa T, et al. Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin. J Matern Neonatal Med. 2005;18(1):9–16. doi: 10.1080/14767050500202493.
  • Eddy AC, Bidwell GL, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ. 2018;9(1):36. doi: 10.1186/s13293-018-0195-5.
  • Sulistyowati S, Bachnas MA, Anggraini N, et al. Recombinant vascular endothelial growth factor 121 injection for the prevention of fetal growth restriction in a preeclampsia mouse model. J Perinat Med. 2017;45:245–251.
  • Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S745–S761. doi: 10.1016/j.ajog.2017.11.577.
  • Dekker GA, Sibai BM. Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol. 1998;179(5):1359–1375. doi: 10.1016/s0002-9378(98)70160-7.
  • Aviram A, Sherman C, Kingdom J, et al. Defining early vs late fetal growth restriction by placental pathology. Acta Obstet Gynecol Scand. 2019;98(3):365–373. doi: 10.1111/aogs.13499.
  • Garcia-Manau P, Mendoza M, Bonacina E, et al. Soluble fms-like tyrosine kinase to placental growth factor ratio in different stages of early-onset fetal growth restriction and small for gestational age. Acta Obstet Gynecol Scand. 2021;100(1):119–128. doi: 10.1111/aogs.13978.
  • Ferreira JR, Teixeira GQ, Santos SG, et al. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 2018;9:2837. doi: 10.3389/fimmu.2018.02837.
  • Baschat AA, Hecher K. Fetal growth restriction due to placental disease. Semin Perinatol. 2004;28(1):67–80. doi: 10.1053/j.semperi.2003.10.014.
  • Cunningham CJ, Redondo-Castro E, Allan SM. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab. 2018;38(8):1276–1292. doi: 10.1177/0271678X18776802.
  • Abheiden CNH, Blomjous BS, Kroese SJ, et al. Low-molecular-weight heparin and aspirin use in relation to pregnancy outcome in women with systemic lupus erythematosus and antiphospholipid syndrome: a cohort study. Hypertens Pregnancy. 2017;36(1):8–15.
  • Polacek M, Bruun JA, Elvenes J, et al. The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: implications for autologous cell transplantation strategies. Cell Transplant. 2011;20(9):1381–1393. doi: 10.3727/096368910X550215.
  • Gallina C, Turinetto V, Giachino C. A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells Int. 2015;2015:765846. doi: 10.1155/2015/765846.
  • Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9):1852–1859. doi: 10.3390/ijms18091852.
  • Rygaard K, Lindenberg S. Stem cells for obstetricians and gynecologists. Acta Obstet Gynecol Scand. 2002;81(5):383–388. doi: 10.1034/j.1600-0412.2002.810502.x.
  • Chen W, Wei Q, Liang Q, et al. Diagnostic capacity of sFlt-1/PlGF ratio in fetal growth restriction: a systematic review and meta-analysis. Placenta. 2022;127:37–42. doi: 10.1016/j.placenta.2022.07.020.
  • Gaccioli F, Sovio U, Gong S, et al. Increased placental sFLT1 (soluble fms-Like tyrosine kinase receptor-1) drives the antiangiogenic profile of maternal serum preceding preeclampsia but not fetal growth restriction. Hypertension. 2023;80(2):325–334. doi: 10.1161/HYPERTENSIONAHA.122.19482.
  • Kim MJ, Kim ZH, Kim SM, et al. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell. 2016;48(5):533–543. doi: 10.1016/j.tice.2016.06.010.
  • Groom KM, David AL. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S829–S840. doi: 10.1016/j.ajog.2017.11.565.