917
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Newborn phosphocalcic metabolism after intravenous iron administration during pregnancy

, , , &
Article: 2320671 | Received 18 Oct 2023, Accepted 14 Feb 2024, Published online: 28 Feb 2024

References

  • World Health Organization. Preconception care to reduce maternal and childhood mortality and morbidity. 6-7 february 2012: meeting report. Geneva: World Health Organization; 2013 (https://iris.who.int/handle/10665/78067).
  • Api O, Breyman C, Çetiner M, et al. Diagnosis and treatment of iron deficiency anemia during pregnancy and the postpartum period: iron deficiency anemia working group consensus report. Turk J Obstet Gynecol. 2015;12(3):1–7. doi: 10.4274/tjod.01700.
  • Auerbach M, Goodnough LT, Picard D, et al. The role of intravenous iron in anemia management and transfusion avoidance. Transfusion. 2008;48(5):988–1000. doi: 10.1111/j.1537-2995.2007.01633.x-i2.
  • Breymann C, Honegger C, Holzgreve W, et al. Diagnosis and treatment of iron-deficiency anaemia during pregnancy and postpartum. Arch Gynecol Obstet. 2010;282(5):577–580. doi: 10.1007/s00404-010-1532-z.
  • Al RA, Unlubilgin E, Kandemir O, et al. Intravenous versus oral iron for treatment of anemia in pregnancy: a randomized trial. Obstet Gynecol. 2005;106(6):1335–1340. doi: 10.1097/01.AOG.0000185260.82466.b4.
  • Bhandal N, Russell R. Intravenous versus oral iron therapy for postpartum anaemia. BJOG. 2006;113(11):1248–1252. doi: 10.1111/j.1471-0528.2006.01062.x.
  • Peebles G, Fenwick S. Intravenous iron administration in a short-stay hospital setting. Nurs Stand. 2008;22(48):35–41. doi: 10.7748/ns2008.08.22.48.35.c6635.
  • Jose A, Mahey R, Sharma JB, et al. Comparison of ferric carboxymaltose and iron sucrose complex for treatment of iron deficiency anemia in pregnancy- randomised controlled trial. BMC Preg Childbirth. 2019;19(1):54. doi: 10.1186/s12884-019-2200-3.
  • Breymann C, Milman N, Mezzacasa A, FER-ASAP investigators., et al. Ferric carboxymaltose vs. oral iron in the treatment of pregnant women with iron deficiency anemia: an international, open-label, randomized controlled trial (FER-ASAP). J Perinat Med. 2017;45(4):443–453. doi: 10.1515/jpm-2016-0050.
  • Aksan A, Schoepfer A, Juillerat P, et al. Iron formulations for the treatment of iron deficiency anemia in patients with inflammatory bowel disease: a cost-effectiveness analysis in Switzerland. Adv Ther. 2021;38(1):660–677. doi: 10.1007/s12325-020-01553-1.
  • Wesström J. Safety of intravenous iron isomaltoside for iron deficiency and iron deficiency anemia in pregnancy. Arch Gynecol Obstet. 2020;301(5):1127–1131. doi: 10.1007/s00404-020-05509-2.
  • Seeho SKM, Morris JM. Intravenous iron use in pregnancy: ironing out the issues and evidence. Aust N Z J Obstet Gynaecol. 2018;58(2):145–147. doi: 10.1111/ajo.12794.
  • Biétry FA, Hug B, Reich O, et al. Iron supplementation in Switzerland – a bi-national, descriptive, observational study. Swiss Med Wkly. 2017;147:w14444. doi: 10.4414/smw.2017.14444.
  • Zoller H, Schaefer B, Glodny B. Iron-induced hypophosphatemia: an emerging complication. Curr Opin Nephrol Hypertens. 2017;26(4):266–275. doi: 10.1097/MNH.0000000000000329.
  • Huang LL, Lee D, Troster SM, et al. A controlled study of the effects of ferric carboxymaltose on bone and haematinic biomarkers in chronic kidney disease and pregnancy. Nephrol Dial Transplant. 2018;33(9):1628–1635. doi: 10.1093/ndt/gfx310.
  • Nelson N, Finnström O, Larsson L. Neonatal reference values for ionized calcium, phosphate and magnesium. Selection of reference population by optimality criteria. Scand J Clin Lab Invest. 1987; 47(2):111–117. doi: 10.1080/00365518709168878.
  • Bradford CV, Cober MP, Miller JL. Refeeding syndrome in the neonatal intensive care unit. J Pediatr Pharmacol Ther. 2021;26(8):771–782. Epub 2021 Nov 10. PMID: 34790066; doi: 10.5863/1551-6776-26.8.771.
  • Mihatsch W, Fewtrell M, Goulet O, ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition., et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: calcium, phosphorus and magnesium. Clin Nutr. 2018; 37(6 Pt B):2360–2365. Epub 2018 Jun 18. doi: 10.1016/j.clnu.2018.06.950.
  • Fenton TR, Lyon AW, Rose MS. Cord blood calcium, phosphate, magnesium, and alkaline phosphatase gestational age-specific reference intervals for preterm infants. BMC Pediatr. 2011;11(1):76. doi: 10.1186/1471-2431-11-76.
  • Bustos Lozano G, Hidalgo Romero Á, Melgar Bonis A, et al. Hipofosforemia precoz en recién nacidos de riesgo. Frecuencia y magnitud. An Pediatr (Engl Ed). 2018;88(4):216–222. doi: 10.1016/j.anpedi.2017.04.010.
  • Moltu SJ, Strømmen K, Blakstad EW, et al. Enhanced feeding in very-low-birth-weight infants may cause electrolyte disturbances and septicemia – a randomized, controlled trial. Clin Nutr. 2013;32(2):207–212. doi: 10.1016/j.clnu.2012.09.004.
  • Kilic O, Demirkol D, Ucsel R, et al. Hypophosphatemia and its clinical implications in critically ill children: a retrospective study. J Crit Care. 2012;27(5):474–479. Epub 2012 May 15. doi: 10.1016/j.jcrc.2012.03.005.
  • Al-Wassia H, Lyon AW, Rose SM, et al. Hypophosphatemia is prevalent among preterm infants less than 1,500 grams. Am J Perinatol. 2019;36(13):1412–1419. Epub 2019 Jan 21. doi: 10.1055/s-0039-1677713.
  • Ross JR, Finch C, Ebeling M, et al. Refeeding syndrome in very-low-birth-weight intrauterine growth-restricted neonates. J Perinatol. 2013; 33(9):717–720. Epub 2013 Mar 28. doi: 10.1038/jp.2013.28.
  • Sung SI, Chang YS, Choi JH, et al. Increased risk of refeeding syndrome-like hypophosphatemia with high initial amino acid intake in small-for-gestational-age, extremely-low-birthweight infants. PLoS One. 2019; 14(8):e0221042. doi: 10.1371/journal.pone.0221042.
  • Marinella MA. The refeeding syndrome and hypophosphatemia. Nutr Rev. 2003;61(9):320–323. doi: 10.1301/nr.2003.sept.320-323.
  • García Martín A, Varsavsky M, Cortés Berdonces M, et al. Phosphate disorders and clinical management of hypophosphatemia and hyperphosphatemia. Endocrinol Diabetes Nutr (Engl Ed). 2020;67(3):205–215. Epub 2019 Sep 26. doi: 10.1016/j.endinu.2019.06.004.
  • Wolf M, Rubin J, Achebe M, et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia: two randomized clinical trials. JAMA. 2020;323(5):432–443. doi: 10.1001/jama.2019.22450.
  • Hardy S, Vandemergel X. Intravenous iron administration and hypophosphatemia in clinical practice. Int J Rheumatol. 2015;2015:468675–468676. doi: 10.1155/2015/468675.
  • Ryan BA, Kovacs CS. Calciotropic and phosphotropic hormones in fetal and neonatal bone development. Semin Fetal Neonatal Med. 2020;25(1):101062. doi: 10.1016/j.siny.2019.101062.
  • Ma Y, Samaraweera M, Cooke-Hubley S, et al. Neither absence nor excess of FGF23 disturbs murine fetal-placental phosphorus homeostasis or prenatal skeletal development and mineralization. Endocrinology. 2014;155(5):1596–1605. doi: 10.1210/en.2013-2061.
  • Malek A. In vitro studies of ferric carboxymaltose on placental permeability using the dual perfusion model of human placenta. Arzneimittelforschung. 2010;60(6a):354–361. doi: 10.1055/s-0031-1296300.
  • Glaspy JA, Lim-Watson MZ, Libre MA, et al. Hypophosphatemia associated with intravenous iron therapies for iron deficiency anemia: a systematic literature review. Ther Clin Risk Manag. 2020;16:245–259. PMID: 32308402; doi: 10.2147/TCRM.S243462.
  • Schaefer B, Tobiasch M, Wagner S, et al. Hypophosphatemia after intravenous iron therapy: comprehensive review of clinical findings and recommendations for management. Bone. 2022; 154:116202. Epub 2021 Sep 15. doi: 10.1016/j.bone.2021.116202.