419
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Association of hyaluronan and proteoglycan link protein 1 gene with the need of home oxygen therapy in premature Japanese infants with bronchopulmonary dysplasia

, , , , , , , , , , & ORCID Icon show all
Article: 2332914 | Received 28 Dec 2023, Accepted 13 Mar 2024, Published online: 24 Mar 2024

References

  • Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front Med. 2015;2:1. doi: 10.3389/fmed.2015.00090.
  • Hirata K, Nishihara M, Shiraishi J, et al. Perinatal factors associated with long-term respiratory sequelae in ­extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2015;100(4):F314–6. doi: 10.1136/archdischild-2014-306931.
  • Voynow JA. "New" bronchopulmonary dysplasia and chronic lung disease. Paediatr Respir Rev. 2017;24:17–18. doi: 10.1016/j.prrv.2017.06.006.
  • Jobe AH. The new bronchopulmonary dysplasia. Curr Opin Pediatr. 2011;23(2):167–172. doi: 10.1097/MOP.0b013e3283423e6b.
  • Hennelly M, Greenberg RG, Aleem S. An update on the prevention and management of bronchopulmonary dysplasia. Pediatric Health Med Ther. 2021;12:405–419. doi: 10.2147/PHMT.S287693.
  • Hwang JS, Rehan VK. Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment. Lung. 2018;196(2):129–138. doi: 10.1007/s00408-018-0084-z.
  • Savani RC. Modulators of inflammation in bronchopulmonary dysplasia. Semin Perinatol. 2018;42(7):459–470. doi: 10.1053/j.semperi.2018.09.009.
  • Gilfillan M, Bhandari V. Pulmonary phenotypes of bronchopulmonary dysplasia in the preterm infant. Semin Perinatol. 2023;47(6):151810. doi: 10.1016/j.semperi.2023.151810.
  • Ito M, Kato S, Saito M, et al. Bronchopulmonary dysplasia in extremely premature infants: a scoping review for identifying risk factors. Biomedicines. 2023;11(2):553. doi: 10.3390/biomedicines11020553.
  • Misra S, Hascall VC, Markwald RR, et al. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol. 2015;6:201. doi: 10.3389/fimmu.2015.00201.
  • Markasz L, Savani RC, Jonzon A, et al. CD44 and RHAMM expression patterns in the human developing lung. Pediatr Res. 2021;89(1):134–142. doi: 10.1038/s41390-020-0873-y.
  • Markasz L, Savani RC, Sedin G, et al. The receptor for hyaluronan-mediated motility (RHAMM) expression in neonatal bronchiolar epithelium correlates negatively with lung air content. Early Hum Dev. 2018;127:58–68. doi: 10.1016/j.earlhumdev.2018.10.002.
  • Oegema TRJr., Laidlaw J, Hascall VC, et al. The effect of proteoglycans on the formation of fibrils from collagen solutions. Arch Biochem Biophys. 1975;170(2):698–709. doi: 10.1016/0003-9861(75)90167-8.
  • Hardingham TE, Muir H. The specific interaction of hyaluronic acid with cartillage proteoglycans. Biochim Biophys Acta. 1972;279(2):401–405. doi: 10.1016/0304-4165(72)90160-2.
  • Kwok JC, Carulli D, Fawcett JW. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem. 2010;114(5):1447–1459. doi: 10.1111/j.1471-4159.2010.06878.x.
  • Rauch U, Hirakawa S, Oohashi T, et al. Cartilage link protein interacts with neurocan, which shows hyaluronan binding characteristics different from CD44 and TSG-6. Matrix Biol. 2004;22(8):629–639. doi: 10.1016/j.matbio.2003.11.007.
  • Watanabe H, Yamada Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nat Genet. 1999;21(2):225–229. doi: 10.1038/6016.
  • Czipri M, Otto JM, Cs-Szabo G, et al. Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency. J Biol Chem. 2003;278(40):39214–39223. doi: 10.1074/jbc.M303329200.
  • Evanko SP, Gooden MD, Kang I, et al. A role for HAPLN1 during phenotypic modulation of human lung fibroblasts in vitro. J Histochem Cytochem. 2020;68(11):797–811. doi: 10.1369/0022155420966663.
  • Piao Y, Yun SY, Fu Z, et al. Recombinant human HAPLN1 mitigates pulmonary emphysema by increasing TGF-beta receptor I and sirtuins levels in human alveolar epithelial cells. Mol Cells. 2023;46(9):558–572. doi: 10.14348/molcells.2023.0097.
  • Jones CC, Bradford Y, Amos CI, et al. Cross-cancer pleiotropic associations with lung cancer risk in African Americans. Cancer Epidemiol Biomarkers Prev. 2019;28(4):715–723. doi: 10.1158/1055-9965.EPI-18-0935.
  • Urano T, Narusawa K, Shiraki M, et al. Single-nucleotide polymorphism in the hyaluronan and proteoglycan link protein 1 (HAPLN1) gene is associated with spinal osteophyte formation and disc degeneration in Japanese women. Eur Spine J. 2011;20(4):572–577. doi: 10.1007/s00586-010-1598-0.
  • Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018;197:300–308. doi: 10.1016/j.jpeds.2018.01.043.
  • Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–265. doi: 10.1093/bioinformatics/bth457.
  • Villamor-Martinez E, Alvarez-Fuente M, Ghazi AMT, et al. Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: a systematic review, meta-analysis, and metaregression. JAMA Netw Open. 2019;2(11):e1914611. doi: 10.1001/jamanetworkopen.2019.14611.
  • Liu PC, Hung YL, Shen CM, et al. Histological chorioamnionitis and its impact on respiratory outcome in very-low-birth-weight preterm infants. Pediatr Neonatol. 2021;62(3):258–264. doi: 10.1016/j.pedneo.2020.11.009.
  • Northway WHJr., Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357–368. doi: 10.1056/NEJM196702162760701.
  • Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999;46(6):641–643. doi: 10.1203/00006450-199912000-00007.
  • Lecarpentier Y, Gourrier E, Gobert V, et al. Bronchopulmonary dysplasia: crosstalk between PPARgamma, WNT/beta-catenin and TGF-beta pathways; the potential therapeutic role of PPARgamma agonists. Front Pediatr. 2019;7:176. doi: 10.3389/fped.2019.00176.
  • Becchetti E, Evangelisti R, Stabellini G, et al. Developmental heterogeneity of mesenchymal glycosaminoglycans (GAG) distribution in chick embryo lung anlagen. Am J Anat. 1988;181(1):33–42. doi: 10.1002/aja.1001810105.
  • Smits NC, Shworak NW, Dekhuijzen PN, et al. Heparan sulfates in the lung: structure, diversity, and role in pulmonary emphysema. Anat Rec. 2010;293(6):955–967. doi: 10.1002/ar.20895.
  • Caniggia I, Tanswell K, Post M. Temporal and spatial differences in glycosaminoglycan synthesis by fetal lung fibroblasts. Exp Cell Res. 1992;202(2):252–258. doi: 10.1016/0014-4827(92)90072-g.
  • Underhill CB, Nguyen HA, Shizari M, et al. CD44 positive macrophages take up hyaluronan during lung development. Dev Biol. 1993;155(2):324–336. doi: 10.1006/dbio.1993.1032.