627
Views
0
CrossRef citations to date
0
Altmetric
Review

Navigating the prime editing strategy to treat cardiovascular genetic disorders in transforming heart health

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 75-89 | Received 18 Oct 2023, Accepted 06 Mar 2024, Published online: 17 Mar 2024

References

  • Sherkow JS, Zettler PJ, Greely HT. Is it ‘gene therapy’? J Law Biosci. 2018;5(3):786–793. doi: 10.1093/jlb/lsy020
  • Anguela XM, High KA Entering the modern era of gene therapy. Annu Rev Med. 2019;70:273–288. 1 doi: 10.1146/annurev-med-012017-043332
  • Tamura R, Toda M. Historic overview of genetic engineering technologies for human gene therapy. Neurol Med Chir (Tokyo). 2020;60(10):483–491. doi: 10.2176/nmc.ra.2020-0049
  • Sun N, Zhao H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioengineering. 2013;110(7):1811–1821. doi: 10.1002/bit.24890
  • Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–646. doi: 10.1038/nrg2842
  • Schenkwein D, Afzal S, Nousiainen A, et al. Efficient nuclease-directed integration of lentivirus vectors into the human ribosomal DNA locus. Mol Ther. 2020;28(8):1858–1875. doi: 10.1016/j.ymthe.2020.05.019
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (1979). 2012;337(6096):816–821. doi: 10.1126/science.1225829
  • Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–607. doi: 10.1038/nature09886
  • Marraffini LA, Sontheimer EJ CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Sci (1979). 2008;322(5909):1843–1845. doi: 10.1126/science.1165771
  • Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (1979). 2007;315(5819):1709–1712. doi: 10.1126/science.1138140
  • Zhang F, Wen Y, Guo X CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–R46. doi: 10.1093/hmg/ddu125
  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnol. 2014;32(4):347–355. doi: 10.1038/nbt.2842
  • Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490–507. doi: 10.1038/s41580-019-0131-5
  • Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–cas nucleases, base editors, transposases and prime editors. Nature Biotechnol. 2020;38(7):824–844. doi: 10.1038/s41587-020-0561-9
  • Wu X, Kriz AJ, Sharp PA Target specificity of the CRISPR-Cas9 system. Quant Biol. 2014;2:59–70. 2 doi: 10.1007/s40484-014-0030-x
  • van Overbeek M, Capurso D, Carter MM, et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell. 2016;63(4):633–646. doi: 10.1016/j.molcel.2016.06.037
  • Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211. 1 doi: 10.1146/annurev.biochem.052308.093131
  • Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14(12):8096–8106. doi: 10.1128/MCB.14.12.8096
  • Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Nat Acad Sci. 1994;91(13):6064–6068. doi: 10.1073/pnas.91.13.6064
  • Dong Y, Peng T, Wu W, et al. Efficient introduction of an isogenic homozygous mutation to induced pluripotent stem cells from a hereditary hearing loss family using CRISPR/Cas9 and single-stranded donor oligonucleotides. J Int Med Res. 2019;47(4):1717–1730. doi: 10.1177/0300060519829990
  • Sakuno T, Hiraoka Y. Rec8 Cohesin: a structural platform for shaping the meiotic chromosomes. Genes (Basel). 2022;13(2):200. doi: 10.3390/genes13020200
  • Komor AC, Badran AH, Liu DR. CRISPR-Based technologies for the manipulation of eukaryotic genomes. Cell. 2017;168(1):20–36. doi: 10.1016/j.cell.2016.10.044
  • Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–471. doi: 10.1038/nature24644
  • Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–424. doi: 10.1038/nature17946
  • Sakuma T, Nakade S, Sakane Y, et al. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. 2016;11(1):118–133. doi: 10.1038/nprot.2015.140
  • Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnol. 2018;36(8):765–771. doi: 10.1038/nbt.4192
  • Alanis-Lobato G, Zohren J, McCarthy A, et al. Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos. Proc Natl Acad Sci, USA. 2021;118(22). doi: 10.1073/pnas.2004832117
  • Tao J, Wang Q, Mendez-Dorantes C, et al. Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Nat Commun. 2022;13(1):3685. doi: 10.1038/s41467-022-31322-3
  • Ihry RJ, Worringer KA, Salick MR, et al. P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nature Med. 2018;24(7):939–946. doi: 10.1038/s41591-018-0050-6
  • Haapaniemi E, Botla S, Persson J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nature Med. 2018;24(7):927–930. doi: 10.1038/s41591-018-0049-z
  • Enache OM, Rendo V, Abdusamad M, et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nature Genet. 2020;52(7):662–668. doi: 10.1038/s41588-020-0623-4
  • Song Y, Liu Z, Zhang Y, et al. Large-fragment deletions induced by Cas9 cleavage while not in the BEs system. Mol Ther Nucleic Acids. 2020;21:523–526. doi: 10.1016/j.omtn.2020.06.019
  • Ferrari S, Jacob A, Beretta S, et al. Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. Nature Biotechnol. 2020;38(11):1298–1308. doi: 10.1038/s41587-020-0551-y
  • Yang L, Briggs AW, Chew WL, et al. Engineering and optimising deaminase fusions for genome editing. Nat Commun. 2016;7(1):13330. doi: 10.1038/ncomms13330
  • Cho SI, Lee S, Mok YG, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell. 2022;185(10):1764–1776. doi: 10.1016/j.cell.2022.03.039
  • Mok BY, de Moraes MH, Zeng J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583(7817):631–637. doi: 10.1038/s41586-020-2477-4
  • Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Sci (1979). 2016;353(6305):aaf8729. doi: 10.1126/science.aaf8729
  • Kapplinger JD, Landstrom AP, Salisbury BA, et al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia- associated mutations from background genetic noise. J Am Coll Cardiol. 2011;57(23):2317–2327. doi: 10.1016/j.jacc.2010.12.036
  • Van Der Zwaag PA, Jongbloed JDH, Van Den Berg MP, et al. A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat. 2009;30(9):1278–1283. doi: 10.1002/humu.21064
  • Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–1541. doi: 10.1161/CIRCULATIONAHA.108.840827
  • Towbin JA, McKenna WJ, Abrams DJ, et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019;16(11):e301–e372. doi: 10.1016/j.hrthm.2019.05.007
  • Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the heart rhythm society (HRS) and the European heart rhythm association (EHRA). Heart Rhythm. 2011;8(8):1308–1339. doi: 10.1016/j.hrthm.2011.05.020
  • Kumar S, Baldinger SH, Gandjbakhch E, et al. Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J Am Coll Cardiol. 2016;68(21):2299–2307. doi: 10.1016/j.jacc.2016.08.058
  • Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol. 2018;15(4):241–252. doi: 10.1038/nrcardio.2017.190
  • Herman DS, Lam L, Taylor MRG, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–628. doi: 10.1056/NEJMoa1110186
  • Walsh R, Thomson KL, Ware JS, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192–203. doi: 10.1038/gim.2016.90
  • Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–547. doi: 10.1038/nrcardio.2013.105
  • Ingles J, Burns C, Bagnall RD, et al. Nonfamilial hypertrophic cardiomyopathy: prevalence, natural history, and clinical implications. Circulation. 2017;10(2):e001620. doi: 10.1161/CIRCGENETICS.116.001620
  • Ingles J, Goldstein J, Thaxton C, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019;12(2):e002460. doi: 10.1161/CIRCGEN.119.002460
  • Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60(8):705–715. doi: 10.1016/j.jacc.2012.02.068
  • Sedaghat-Hamedani F, Haas J, Zhu F, et al. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J. 2017;38(46):3449–3460. doi: 10.1093/eurheartj/ehx545
  • Zhang J, Han X, Lu Q, et al. Left ventricular non-compaction cardiomyopathy associated with the PRKAG2 mutation. BMC Med Genomics. 2022;15(1):1–8. doi: 10.1186/s12920-021-01143-2
  • Lin Y, Huang J, Zhu Z, et al. Overlap phenotypes of the left ventricular noncompaction and hypertrophic cardiomyopathy with complex arrhythmias and heart failure induced by the novel truncated DSC2 mutation. Orphanet J Rare Diseases. 2021;16(1):1–33. doi: 10.1186/s13023-021-02112-9
  • Bezzina CR, Barc J, Mizusawa Y, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 2013;45(9):1044–1049. doi: 10.1038/ng.2712
  • Hosseini SM, Kim R, Udupa S, et al. Reappraisal of reported genes for sudden arrhythmic death. Circulation. 2018;138(12):1195–1205. doi: 10.1161/CIRCULATIONAHA.118.035070
  • Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7(1):33–46. doi: 10.1016/j.hrthm.2009.09.069
  • Gray B, Bagnall RD, Lam L, et al. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2016;13(8):1652–1660. doi: 10.1016/j.hrthm.2016.05.004
  • Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10(12):1932–1963. doi: 10.1016/j.hrthm.2013.05.014
  • Sturm AC, Knowles JW, Gidding SS, et al. Clinical genetic testing for familial hypercholesterolemia: JACC scientific expert panel. J Am Coll Cardiol. 2018;72(6):662–680. doi: 10.1016/j.jacc.2018.05.044
  • Khera AV, Won HH, Peloso GM, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67(22):2578–2589. doi: 10.1016/j.jacc.2016.03.520
  • Renard M, Francis C, Ghosh R, et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2018;72(6):605–615. doi: 10.1016/j.jacc.2018.04.089
  • Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–157. doi: 10.1038/s41586-019-1711-4
  • Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023;24(3):161–177. doi: 10.1038/s41576-022-00541-1
  • Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 2022;185(2):250–265. doi: 10.1016/j.cell.2021.12.021
  • Hansen S, McClements ME, Corydon TJ, et al. Future perspectives of prime editing for the treatment of inherited retinal diseases. Cells. 2023;12(3):440. doi: 10.3390/cells12030440
  • Gao P, Lyu Q, Ghanam AR, et al. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Bio. 2021;22(1):1–21. doi: 10.1186/s13059-021-02304-3
  • Doman JL, Pandey S, Neugebauer ME, et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell. 2023;186(18):3983–4002. doi: 10.1016/j.cell.2023.07.039
  • Nelson JW, Randolph PB, Shen SP, et al. Engineered pegRnas improve prime editing efficiency. Nature Biotechnol. 2022;40(3):402–410. doi: 10.1038/s41587-021-01039-7
  • Zhao Z, Shang P, Mohanraju P, et al. Prime editing: advances and therapeutic applications. Trends Biotechnol. 2023;41(8):1000–1012. doi: 10.1016/j.tibtech.2023.03.004
  • Happi Mbakam C, Rousseau J, Lu Y, et al. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Mol Ther Nucleic Acids. 2022;30:272–285. doi: 10.1016/j.omtn.2022.09.022
  • Xu Z, Ma D, Su H, et al. Explore the dominant factor in prime editing via a view of DNA processing. Synth Syst Biotechnol. 2023;8(3):371–377. doi: 10.1016/j.synbio.2023.05.007
  • Liu N, Zhou L, Lin G, et al. HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing. Mol Ther Nucleic Acids. 2022;29:36–46. doi: 10.1016/j.omtn.2022.05.036
  • Zhang G, Liu Y, Huang S, et al. Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat Commun. 2022;13(1):1856. doi: 10.1038/s41467-022-29507-x
  • Li X, Wang X, Sun W, et al. Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. J Mol Cell Biol. 2022;14(4):mjac022. doi: 10.1093/jmcb/mjac022
  • Li X, Zhou L, Gao BQ, et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat Commun. 2022;13(1):1669. doi: 10.1038/s41467-022-29339-9
  • Schene IF, Joore IP, Oka R, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun. 2020;11(1):5352. doi: 10.1038/s41467-020-19136-7
  • Choi J, Chen W, Suiter CC, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022;40(2):218–226. doi: 10.1038/s41587-021-01025-z
  • Anzalone AV, Gao XD, Podracky CJ, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnol. 2022;40(5):731–740. doi: 10.1038/s41587-021-01133-w
  • Zhuang Y, Liu J, Wu H, et al. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat Chem Biol. 2022;18(1):29–37. doi: 10.1038/s41589-021-00889-1
  • Jiang T, Zhang X-O, Weng Z, et al. Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnology. 2022;40(2):227–234. doi: 10.1038/s41587-021-01026-y
  • Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120(6):923–940. doi: 10.1161/CIRCRESAHA.116.309140
  • Liu N, Olson EN. CRISPR modeling and correction of cardiovascular disease. Circ Res. 2022;130(12):1827–1850. doi: 10.1161/CIRCRESAHA.122.320496
  • Kyriakopoulou E, Monnikhof T, van Rooij E. Gene editing innovations and their applications in cardiomyopathy research. Dis Model Mech. 2023;16(5). doi: 10.1242/dmm.050088
  • Ma S, Jiang W, Liu X, et al. Efficient correction of a hypertrophic cardiomyopathy mutation by ABEmax-NG. Circ Res. 2021;129(10):895–908. doi: 10.1161/CIRCRESAHA.120.318674
  • Chemello F, Chai AC, Li H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 2021;7(18):eabg4910. doi: 10.1126/sciadv.abg4910
  • Lee RG, Mazzola, AM. Efficacy and Safety of an Investigational Single-Course CRISPR Base-Editing Therapy Targeting PCSK9 in Nonhuman Primate and Mouse Models. Circulation. 202317;147(3):242–253. doi: 10.1161/CIRCULATIONAHA.122.062132
  • Musunuru K, Chadwick AC, Mizoguchi T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593(7859):429–434. doi: 10.1038/s41586-021-03534-y
  • Zuo Y, Zhang C, Zhou Y, et al. Liver-specific in vivo base editing of Angptl3 via AAV delivery efficiently lowers blood lipid levels in mice. Cell Biosci. 2023;13(1):109. doi: 10.1186/s13578-023-01036-0
  • Chai AC, Cui M, Chemello F, et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med. 2023;29(2):401–411. doi: 10.1038/s41591-022-02176-5
  • Reichart D, Newby GA, Wakimoto H, et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nature Med. 2023;29(2):412–421. doi: 10.1038/s41591-022-02190-7
  • Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Sci (1979). 2018;361(6408):1259–1262. doi: 10.1126/science.aas9129
  • Wu WY, Mohanraju P, Liao C, et al. The miniature CRISPR-Cas12m effector binds DNA to block transcription. Molecular Cell. 2022;82(23):4487–4502. e7. doi: 10.1016/j.molcel.2022.11.003
  • Nishiyama T, Zhang Y, Cui M, et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci, Trans Med. 2022;14(672):eade1633. doi: 10.1126/scitranslmed.ade1633
  • Sürün D, Schneider A, Mircetic J, et al. Efficient generation and correction of mutations in human iPS cells utilizing mRnas of CRISPR base editors and prime editors. Genes (Basel). 2020;11(5):511. doi: 10.3390/genes11050511
  • Godbout K, Tremblay JP. Prime editing for human gene therapy: where are we Now? Cells. 2023;12(4):536. doi: 10.3390/cells12040536
  • Li H, Busquets O, Verma Y, et al. Highly efficient generation of isogenic pluripotent stem cell models using prime editing. Elife. 2022;11:e79208. doi: 10.7554/eLife.79208
  • Davis JR, Banskota S, Levy JM, et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat Biotechnol. 2023;42:1–12.
  • Dave J, Raad N, Mittal N, et al. Gene editing reverses arrhythmia susceptibility in humanized PLN-R14del mice: modelling a European cardiomyopathy with global impact. Cardiovasc Res. 2022;118(15):3140–3150. doi: 10.1093/cvr/cvac021
  • Zhou M, Tang S, Duan N, et al. Targeted-deletion of a tiny sequence via prime editing to restore SMN expression. Int J Mol Sci. 2022;23(14):7941. doi: 10.3390/ijms23147941
  • Happi Mbakam C, Rousseau J, Tremblay G, et al. Prime editing permits the introduction of specific mutations in the gene responsible for Duchenne muscular dystrophy. Int J Mol Sci. 2022;23(11):6160. doi: 10.3390/ijms23116160
  • Nishiga M, Qi LS, Wu JC. Therapeutic genome editing in cardiovascular diseases. Adv Drug Deliv Rev. 2021;168:147–157.
  • Li Z-H, Wang J, Xu J-P, et al. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res. 2023;10(1):12. doi: 10.1186/s40779-023-00447-x
  • Zhi S, Chen Y, Wu G, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther. 2022;30(1):283–294. doi: 10.1016/j.ymthe.2021.07.011
  • Hernandez-Benitez R, Martinez-Martinez ML, Lajara J, et al. At the heart of genome editing and cardiovascular diseases. Circ Res. 2018;123(2):221–223. doi: 10.1161/CIRCRESAHA.118.312676
  • Lázár E, Sadek HA, Bergmann O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur Heart J. 2017;38(30):2333–2342. doi: 10.1093/eurheartj/ehx343
  • Young A, Bradley LA, Wolf MJ. In vivo methods to monitor cardiomyocyte proliferation. J Cardiovasc Dev Dis. 2022;9(3):73. doi: 10.3390/jcdd9030073
  • Hakim CH, Kumar SRP, Pérez-López DO, et al. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nat Commun. 2021;12(1):6769. doi: 10.1038/s41467-021-26830-7
  • Marino ND, Pinilla-Redondo R, Csörgő B, et al. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat Methods. 2020;17(5):471–479. doi: 10.1038/s41592-020-0771-6
  • Wei CT, Popp NA, Peleg O, et al. A chemically controlled Cas9 switch enables temporal modulation of diverse effectors. Nat Chem Biol. 2023;19(8):1–11.
  • Wang Q, Liu J, Janssen JM, et al. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res. 2021;49(20):11986–12001. doi: 10.1093/nar/gkab938
  • Rutanen J, Rissanen TT, Markkanen JE, et al. Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation. 2004;109(8):1029–1035. doi: 10.1161/01.CIR.0000115519.03688.A2
  • Leikas AJ, Hassinen I, Hedman A, et al. Long-term safety and efficacy of intramyocardial adenovirus-mediated VEGF-DΔNΔC gene therapy eight-year follow-up of phase I KAT301 study. Genet Ther. 2022;29(5):289–293. doi: 10.1038/s41434-021-00295-1
  • Dong W, Kantor B. Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: current state and perspectives. Viruses. 2021;13(7):1288. doi: 10.3390/v13071288
  • Wang J, Yu L, Zhou A, et al. Non-viral gene delivery systems for treatment of myocardial infarction: targeting strategies and cardiac cell modulation. Pharmaceutics. 2021;13(9):1520. doi: 10.3390/pharmaceutics13091520
  • Dirkx N, Weuring WJ, De Vriendt E, et al. Increased prime edit rates in KCNQ2 and SCN1A via single nicking all-in-one plasmids. BMC Biol. 2023;21(1):156. doi: 10.1186/s12915-023-01646-7
  • Hughes TS, Langer SJ, Virtanen SI, et al. Immunogenicity of intrathecal plasmid gene delivery: cytokine release and effects on transgene expression. J Gene Med. 2009;11(9):782–790. doi: 10.1002/jgm.1364
  • Navarro RS, de Paiva Narciso N, Gilchrist A, et al. Abstract 11376: catheter-injectable hydrogel for the delivery of a minicircle encoding SDF-la as therapy for myocardial infarction. Circulation. 2022;146(Suppl_1):A11376. doi: 10.1161/circ.146.suppl_1.11376
  • Qiu M, Glass Z, Xu Q. Nonviral nanoparticles for CRISPR-based genome editing: is it just a simple adaption of what have been developed for nucleic acid delivery? Biomacromolecules. 2019;20(9):3333–3339. doi: 10.1021/acs.biomac.9b00783
  • Rousseau B. Engineering virus-like particles for the delivery of genome editing enzymes. 2022.
  • Yuan Q, Gao X. Multiplex base-and prime-editing with drive-and-process CRISPR arrays. Nat Commun. 2022;13(1):2771. doi: 10.1038/s41467-022-30514-1
  • Koblan LW, Erdos MR, Wilson C, et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature. 2021;589(7843):608–614. doi: 10.1038/s41586-020-03086-7
  • Xu L, Zhang C, Li H, et al. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun. 2021;12(1):3719. doi: 10.1038/s41467-021-23996-y
  • McClements ME, MacLaren RE. Focus: genome editing: adeno-associated virus (AAV) dual vector strategies for gene therapy encoding large transgenes. Yale J Biol Med. 2017;90(4):611.
  • Zhou J, Ren Z, Xu J, et al. Gene editing therapy ready for cardiovascular diseases: opportunities, challenges, and perspectives. Medical Review. 2021;1(1):6–9. doi: 10.1515/mr-2021-0010
  • Ylä-Herttuala S, Baker AH. Cardiovascular gene therapy: past, present, and future. Mol Ther. 2017;25(5):1095–1106. doi: 10.1016/j.ymthe.2017.03.027
  • Kok CY, MacLean LM, Ho JC, et al. Potential applications for targeted gene therapy to protect against Anthracycline Cardiotoxicity: JACC: cardiooncology primer. JACC Cardio Oncology. 2021;3(5):650–662. doi: 10.1016/j.jaccao.2021.09.008
  • Skopenkova VV, Egorova TV, Bardina MV. Muscle-specific promoters for gene therapy. Acta Naturae. 2021;13(1):47. doi: 10.32607/actanaturae.11063
  • Korpela H, Järveläinen N, Siimes S, et al. Gene therapy for ischaemic heart disease and heart failure. J Intern Med. 2021;290(3):567–582. doi: 10.1111/joim.13308
  • Zhuo C, Zhang J, Lee JH, et al. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduction Target Therapy. 2021;6(1):238. doi: 10.1038/s41392-021-00645-w
  • Crudele JM, Chamberlain JS. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun. 2018;9(1):3497. doi: 10.1038/s41467-018-05843-9
  • Moore OM, Ho KS, Copeland JS, et al. Genome editing and cardiac arrhythmias. Cells. 2023;12(10):1363. doi: 10.3390/cells12101363
  • Lebek S, Chemello F, Caravia XM, et al. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Sci (1979). 2023;379(6625):179–185. doi: 10.1126/science.ade1105
  • Bharucha N, Arias A, Karakikes I. The potential of CRISPR-Cas9 prime editing for cardiovascular disease research and therapy. Curr Opin Cardiol. 2022;379(5):413–418. doi: 10.1097/HCO.0000000000000985