118
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Mobility of screw dislocations absorbed in <110> symmetric tilt grain boundaries in Al

&
Pages 343-363 | Received 21 Aug 2023, Accepted 29 Dec 2023, Published online: 16 Jan 2024

References

  • N.J. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst. 174 (1953), pp. 25–28.
  • E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64 (1951), pp. 747–753. doi:10.1088/0370-1301/64/9/303.
  • R.C. Pond and D.A. Smith, On the absorption of dislocations by grain boundaries. Philos. Mag. 36 (1977), pp. 353–366. doi:10.1080/14786437708244939.
  • T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42 (1994), pp. 2437–2443. doi:10.1016/0956-7151(94)90322-0.
  • R.J. Kurtz, R.G. Hoagland, and J.P. Hirth, Effect of extrinsic grain-boundary defects on grain-boundary sliding resistance. Philos. Mag. A 79 (1999), pp. 665–681. doi:10.1080/01418619908210324.
  • Z. Pan and T.J. Rupert, Damage nucleation from repeated dislocation absorption at a grain boundary. Comput. Mater. Sci. 93 (2014), pp. 206–209. doi:10.1016/j.commatsci.2014.07.008.
  • L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304 (2004), pp. 422–426. doi:10.1126/science.1092905.
  • B.J. Pestman, J.T.M. De Hosson, V. Vitek, and F.W. Schapink, Interaction between lattice dislocations and grain boundaries in f.c.c. and ordered compounds: A computer simulation. Philos. Mag. A 64 (1991), pp. 951–969. doi:10.1080/01418619108213958.
  • M.P. Dewald and W.A. Curtin, Multiscale modelling of dislocation/grain boundary interactions. II. screw dislocations impinging on tilt boundaries in Al. Philos. Mag. 87 (2007), pp. 4615–4641. doi:10.1080/14786430701297590.
  • M. de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, and M. Nomura, Modeling of dislocation–grain boundary interactions in FCC metals. J. Nucl. Mater. 323 (2003), pp. 281–289. doi:10.1016/j.jnucmat.2003.08.008.
  • M. Chassagne, M. Legros, and D. Rodney, Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni. Acta Mater. 59 (2011), pp. 1456–1463. doi:10.1016/j.actamat.2010.11.007.
  • Z.-H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter, The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scr. Mater. 54 (2006), pp. 1163–1168. doi:10.1016/j.scriptamat.2005.11.072.
  • Z. Chen, Z. Jin, and H. Gao, Repulsive force between screw dislocation and coherent twin boundary in aluminum and copper. Phys. Rev. B 75 (2007), p. 212104. doi:10.1103/PhysRevB.75.212104.
  • J.A. Gorman, D.S. Wood, and T. Vreeland, Mobility of dislocations in aluminum. J. Appl. Phys. 40 (1969), pp. 833–841. doi:10.1063/1.1657472.
  • J.D. Eshelby, Supersonic dislocations and dislocations in dispersive media. Proc. Phys. Soc. Sect. B 69 (1956), pp. 1013–1019. doi:10.1088/0370-1301/69/10/307.
  • D.L. Olmsted, L.G. Hector Jr, W.A. Curtin, and R.J. Clifton, Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model. Simul. Mater. Sci. Eng. 13 (2005), pp. 371–388. doi:10.1088/0965-0393/13/3/007.
  • J. Cho, J.-F. Molinari, and G. Anciaux, Mobility law of dislocations with several character angles and temperatures in FCC aluminum. Int. J. Plast. 90 (2017), pp. 66–75. doi:10.1016/j.ijplas.2016.12.004.
  • K. Dang, D. Bamney, L. Capolungo, and D.E. Spearot, Mobility of dislocations in aluminum: The role of non-Schmid stress state. Acta Mater. 185 (2020), pp. 420–432. doi:10.1016/j.actamat.2019.12.021.
  • B. Devincre, L.P. Kubin, C. Lemarchand, and R. Madec, Mesoscopic simulations of plastic deformation. Mater. Sci. Eng. A 309–310 (2001), pp. 211–219. doi:10.1016/S0921-5093(00)01725-1.
  • D. Bamney, L. Capolungo, and D.E. Spearot, Role of equilibrium and non-equilibrium grain boundary stress fields on dislocation transmission. J. Mater. Res. 36 (2021), pp. 2687–2704. doi:10.1557/s43578-021-00129-1.
  • D. Bamney, R. Reyes, L. Capolungo, and D.E. Spearot, Disclination-dislocation based model for grain boundary stress field evolution due to slip transmission history and influence on subsequent dislocation transmission. J. Mech. Phys. Solids 165 (2022), p. 104920. doi:10.1016/j.jmps.2022.104920.
  • X. Guo, C. Sun, C. Wang, J. Jiang, and M.W. Fu, Study of dislocation-twin boundary interaction mechanisms in plastic deformation of TWIP steel by discrete dislocation dynamics and dislocation density-based modeling. Int. J. Plast. 145 (2021), p. 103076. doi:10.1016/j.ijplas.2021.103076.
  • D. Wei, M. Zaiser, Z. Feng, G. Kang, H. Fan, and X. Zhang, Effects of twin boundary orientation on plasticity of bicrystalline copper micropillars: A discrete dislocation dynamics simulation study. Acta Mater. 176 (2019), pp. 289–296. doi:10.1016/j.actamat.2019.07.007.
  • W. Cai, V.V. Bulatov, J. Chang, J. Li, and S. Yip, Dislocation core effects on mobility, in Dislocations in Solids, 12Vol. 12, F.R.N. Nabarro and J.P. Hirth, eds. Elsevier, North-Holland, 2004. pp. 1–80.
  • Y. Shen and D.E. Spearot, Mobility of dislocations in FeNiCrCoCu high entropy alloys. Model. Simul. Mater. Sci. Eng. 29 (2021), p. 085017. doi:10.1088/1361-651X/ac336a.
  • K. Dang, D. Bamney, K. Bootsita, L. Capolungo, and D.E. Spearot, Mobility of dislocations in aluminum: faceting and asymmetry during nanoscale dislocation shear loop expansion. Acta Mater. 168 (2019), pp. 426–435. doi:10.1016/j.actamat.2019.02.034.
  • A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, and R. Shan, LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271 (2022), pp. 108171. doi:10.1016/j.cpc.2021.108171.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18 (2010), p. 015012. doi:10.1088/0965-0393/18/1/015012.
  • R.R. Zope and Y. Mishin, Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 68 (2003), p. 024102. doi:10.1103/PhysRevB.68.024102.
  • K. Dang, L. Capolungo, and D.E. Spearot, Nanoscale dislocation shear loops at static equilibrium and finite temperature. Model. Simul. Mater. Sci. Eng. 25 (2017), p. 085014. doi:10.1088/1361-651X/aa9390.
  • W. Cai, V.V. Bulatov, J. Chang, J. Li, and S. Yip, Periodic image effects in dislocation modelling. Philos. Mag. 83 (2003), pp. 539–567. doi:10.1080/0141861021000051109.
  • M.A. Tschopp, S.P. Coleman, and D.L. McDowell, Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integrating Mater. Manuf. Innov. 4 (2015), pp. 176–189. doi:10.1186/s40192-015-0040-1.
  • M.J. Mills, M.S. Daw, G.J. Thomas, and F. Cosandey, High-resolution transmission electron microscopy of grain boundaries in aluminum and correlation with atomistic calculations. Ultramicroscopy 40 (1992), pp. 247–257. doi:10.1016/0304-3991(92)90121-Y.
  • M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation twinning in nanocrystalline aluminum. Science 300 (2003), pp. 1275–1277. doi:10.1126/science.1083727.
  • J.D. Rittner and D.N. Seidman, <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Phys. Rev. B 54 (1996), pp. 6999–7015. doi:10.1103/PhysRevB.54.6999.
  • L. Priester, “Dislocation–interface” interaction — stress accommodation processes at interfaces. Mater. Sci. Eng. A 309–310 (2001), pp. 430–439. doi:10.1016/S0921-5093(00)01696-8.
  • V. Bulatov and W. Cai, Computer Simulations of Dislocations, Oxford University Press, Incorporated, Oxford, United Kingdom, 2006.
  • W.-R. Jian, S. Xu, and I.J. Beyerlein, On the significance of model design in atomistic calculations of the Peierls stress in Nb. Comput. Mater. Sci. 188 (2021), p. 110150. doi:10.1016/j.commatsci.2020.110150.
  • W. Shinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B 69 (2004), p. 134103. doi:10.1103/PhysRevB.69.134103.
  • L. Hale. Atomman: Atomistic Manipulation Toolkit; software available at https://www.ctcms.nist.gov/potentials/atomman/.
  • C. Hartley and Y. Mishin, Characterization and visualization of the lattice misfit associated with dislocation cores. Acta Mater. 53 (2005), pp. 1313–1321. doi:10.1016/j.actamat.2004.11.027.
  • E. Oren, E. Yahel, and G. Makov, Dislocation kinematics: a molecular dynamics study in Cu. Model. Simul. Mater. Sci. Eng. 25 (2017), p. 025002. doi:10.1088/1361-651X/aa52a7.
  • J. Chang, W. Cai, V.V. Bulatov, and S. Yip, Molecular dynamics simulations of motion of edge and screw dislocations in a metal. Comput. Mater. Sci. 23 (2002), pp. 111–115. doi:10.1016/S0927-0256(01)00221-X.
  • I. Shin and E.A. Carter, Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum. Phys. Rev. B 88 (2013), p. 064106. doi:10.1103/PhysRevB.88.064106.
  • D.L. Olmsted, K.Y. Hardikar, and R. Phillips, Lattice resistance and Peierls stress in finite size atomistic dislocation simulations. Model. Simul. Mater. Sci. Eng. 9 (2001), pp. 215–247. doi:10.1088/0965-0393/9/3/308.
  • V.V. Bulatov, O. Richmond, and M.V. Glazov, An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum. Acta Mater. 47 (1999), pp. 3507–3514. doi:10.1016/S1359-6454(99)00154-8.
  • K. Dang and D. Spearot, Pressure dependence of the Peierls stress in aluminum. JOM 70 (2018), pp. 1094–1099. doi:10.1007/s11837-018-2819-y.
  • F. Ercolessi and J.B. Adams, Interatomic potentials from first-principles calculations: The force-matching method. Europhys. Lett. 26 (1994), pp. 583–588. doi:10.1209/0295-5075/26/8/005.
  • M. Dewald and W.A. Curtin, Multiscale modeling of dislocation/grain-boundary interactions: III. 60° dislocations impinging on Σ3, Σ9 and Σ11 tilt boundaries in Al. Model. Simul. Mater. Sci. Eng. 19 (2011), p. 055002. doi:10.1088/0965-0393/19/5/055002.
  • Z.-H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn, Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 56 (2008), pp. 1126–1135. doi:10.1016/j.actamat.2007.11.020.
  • Z.X. Wu, Y.W. Zhang, and D.J. Srolovitz, Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals. Acta Mater. 57 (2009), pp. 4508–4518. doi:10.1016/j.actamat.2009.06.015.
  • I.J. Beyerlein, X. Zhang, and A. Misra, Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44 (2014), pp. 329–363. doi:10.1146/annurev-matsci-070813-113304.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, 5th ed., Butterworth Heinemann, Elsevier, Oxford, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.