1,883
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Elucidating the pyrolysis properties of water hyacinth (Eichhornia crassipes) biomass and characterisation of its pyrolysis products

ORCID Icon, , & ORCID Icon
Pages 72-90 | Received 30 Dec 2021, Accepted 23 Dec 2022, Published online: 14 Feb 2023

References

  • Ajithram, A., J. T. W. Jappes, and N. C. Brintha. 2021a. “Investigation on Utilization of Water Hyacinth Aquatic Plants Towards Various Bio Products - Survey.” Materials Today: Proceedings 45: 2040–2045. doi: 10.1016/j.matpr.2020.09.498.
  • Ajithram, A., J. T. W. Jappes, and N. C. Brintha. 2021b. “Water hyacinth (Eichhornia crassipes) Natural Composite Extraction Methods and Properties - A Review.” Materials Today: Proceedings 45: 1626–1632. doi: 10.1016/j.matpr.2020.08.472.
  • Alhumade, H., Jean Constantino Gomes da Silva, Muhammad Sajjad Ahmad, Gülce Çakman, Ağah Yıldız, Selim Ceylan, and Ali Elkamel. 2019. “Investigation of Pyrolysis Kinetics and Thermal Behavior of Invasive Reed Canary (Phalaris arundinacea) for Bioenergy Potential.” Journal of Analytical and Applied Pyrolysis 140: 385–392. doi: 10.1016/J.JAAP.2019.04.018.
  • Alves, J. L. F., J. C. Gomes da Silva, V. F. Da Silva Filho, R. F. Alves, W. V. De Araujo Galdino, and R. F. De Sena. 2019. “Kinetics and Thermodynamics Parameters Evaluation of Pyrolysis of Invasive Aquatic Macrophytes to Determine Their Bioenergy Potentials.” Biomass and Bioenergy 121: 28–40. doi: 10.1016/j.biombioe.2018.12.015.
  • Asadullah, M., M. A. Rahman, M. M. Ali, M. S. Rahman, M. A. Motin, M. B. Sultan, and M. R. Alam. 2007. “Production of Bio-Oil from Fixed Bed Pyrolysis of Bagasse.” Fuel 86 (16): 2514–2520. doi: 10.1016/j.fuel.2007.02.007.
  • ASTM. 2017. “Standard Test Method for Carbon and Hydrogen in the Analysis Sample of Refuse-Derived Fuel.” West Conshohocken, doi: 10.1520/E0777-17A.
  • Baloch, H., N. Sabzoi, M. T. Siddiqui, S. Riaz, A. Jatoi, and D. Dumbre. 2018. “Recent Advances in Production and Upgrading of Bio-Oil from Biomass: A Critical Overview.” Journal of Environmental Chemical Engineering 6 (4): 5101–5118. doi:10.1016/j.jece.2018.07.050.
  • Bar-On, Y. M., R. Phillips, and R. Milo. 2018. “The Biomass Distribution on Earth.” Proceedings of the National Academy of Sciences 115 (25): 6506–6511. doi: 10.1073/pnas.1711842115.
  • Baroni, ÉDG, K. Tannous, Y. J. Rueda-Ordóñez, and L. K. Tinoco-Navarro. 2016. “The Applicability of Isoconversional Models in Estimating the Kinetic Parameters of Biomass Pyrolysis.” Journal of Thermal Analysis and Calorimetry 123 (2): 909–917. doi: 10.1007/s10973-015-4707-9.
  • Bradbury, A. G. W., Y. Sakai, and F. Shafizadeh. 1979. “A Kinetic Model for Pyrolysis of Cellulose.” Journal of Applied Polymer Science 23 (11): 3271–3280. doi: 10.1002/app.1979.070231112.
  • Bridgwater, A. V., and G. V. C. Peacocke. 2000. “Fast Pyrolysis Processes for Biomass.” Renewable and Sustainable Energy Reviews 4 (1): 1–73. doi: 10.1016/S1364-0321(99)00007-6.
  • Cao, B., Jianping Yuan, Ding Jiang, Shuang Wang, Bahram Barati, Yamin Hu, Chuan Yuan, Xun Gong, and Qian Wang. 2021. “Seaweed-Derived Biochar with Multiple Active Sites as a Heterogeneous Catalyst for Converting Macroalgae into Acid-Free Biooil Containing Abundant Ester and Sugar Substances.” Fuel 285: 119164. doi: 10.1016/j.fuel.2020.119164.
  • Chorazy, T., J. Čáslavský, V. Žvaková, J. Raček, and P. Hlavínek. 2020. “Characteristics of Pyrolysis Oil as Renewable Source of Chemical Materials and Alternative Fuel from the Sewage Sludge Treatment.” Waste and Biomass Valorization 11 (8): 4491–4505. doi: 10.1007/s12649-019-00735-5.
  • Dagnino S, J. 2014. “Análisis de varianza.” Revista Chilena de Anestesia 43 (4): 306–310.
  • Das, P., T. Sreelatha, and A. Ganesh. 2004. “Bio oil from Pyrolysis of Cashew Nut Shell-Characterisation and Related Properties.” Biomass and Bioenergy 27 (3): 265–275. doi: 10.1016/j.biombioe.2003.12.001.
  • Demiral, I., A. Eryazici, and S. Şensöz. 2012. “Bio-Oil Production from Pyrolysis of Corncob (Zea mays L.).” Biomass and Bioenergy 36: 43–49. doi: 10.1016/j.biombioe.2011.10.045.
  • Demirbas, A. 2008. “Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections.” Energy Conversion and Management 49: 2106–2116. doi: 10.1016/j.enconman.2008.02.020.
  • Ganesh, P. S., E. V. Ramasamy, S. Gajalakshmi, and S. A. Abbasi. 2005. “Extraction of Volatile Fatty Acids (VFAs) from Water Hyacinth Using Inexpensive Contraptions, and the Use of the VFAs as Feed Supplement in Conventional Biogas Digesters with Concomitant Final Disposal of Water Hyacinth as Vermicompost.” Biochemical Engineering Journal 27 (1): 17–23. doi: 10.1016/j.bej.2005.06.010.
  • Gomez-Serrano, V., J. Pastor-Villegas, A. Perez-Florindo, C. Duran-Valle, and C. Valenzuela-Calahorro. 1996. “FT-IR Study of Rockrose and of Char and Activated Carbon.” Journal of Analytical and Applied Pyrolysis 36 (1): 71–80. doi: 10.1016/0165-2370(95)00921-3.
  • Gomez, J. P., J. P. A. Velez, M. A. Pinzon, J. A. M. Arango, and A. P. Muriel. 2021. “Chemical Characterization and Antiradical Properties of Pyroligneous Acid from a Preserved Bamboo, Guadua Angustifolia Kunth.” Brazilian Archives of Biology and Technology 64), doi: 10.1590/1678-4324-2021190730.
  • Gonzales, N. 2015. Análisis Multitemporal Del Espejo De Agua En La Laguna De Fúquene Para El Periodo De 1985 A 2015.
  • Hu, Z., X. Ma, and L. Li. 2015. “Optimal Conditions for the Catalytic and Non-Catalytic Pyrolysis of Water Hyacinth.” Energy Conversion and Management 94: 337–344. doi: 10.1016/j.enconman.2015.01.087.
  • Hussain, M., Gulab. Khadim, and Hussain. Shahi. 2016. “Catalytic Co-pyrolysis of Eichhornia Crassipes Biomaѕѕ and Polyethylene Using Waste Fe and CaCO3 Catalysts.” International Journal of Energy Research, doi: 10.1002/er.
  • Jahirul, M., M. Rasul, A. Ahmed, and N. Ashwath. 2012. “Biofuels Production Through Biomass Pyrolysis —A Technological Review.” Energies 5 (12): 4952–5001. doi:10.3390/en5124952.
  • Kim, K. H., Tae-Seung Kim, Soo-Min Lee, Donha Choi, Hwanmyeong Yeo, In-Gyu Choi, and Joon Weon Choi. 2013. “Comparison of Physicochemical Features of Biooils and Biochars Produced from Various Woody Biomasses by Fast Pyrolysis.” Renewable Energy 50: 188–195. doi: 10.1016/j.renene.2012.06.030.
  • Kumar, R., V. Strezov, H. Weldekidan, J. He, S. Singh, T. Kan, and B. Dastjerdi. 2020. “Lignocellulose Biomass Pyrolysis for Bio-Oil Production: A Review of Biomass Pre-Treatment Methods for Production of Drop-in Fuels.” Renewable and Sustainable Energy Reviews 123), doi: 10.1016/j.rser.2020.109763.
  • Londoño Feria, J. M., G. Nausa Galeano, and D. H. Malagón-Romero. 2021. “Production of Bio-Oil from Waste Cooking Oil by Pyrolysis.” Chemical Engineering & Technology 44 (12): 2341–2346. doi: 10.1002/ceat.202100018.
  • Ma, Y., H. Bao, X. Hu, R. Wang, and W. Dong. 2021. “Productions of Phenolic Rich Bio-Oil Using Waste Chilli Stem Biomass by Catalytic Pyrolysis: Evaluation of Reaction Parameters on Products Distributions.” Journal of the Energy Institute 97: 233–239. doi: 10.1016/j.joei.2021.05.004.
  • Ma, C., W. Li, Y. Zu, L. Yang, and J. Li. 2014. “Antioxidant Properties of Pyroligneous Acid Obtained by Thermochemical Conversion of Schisandra Chinensis Baill.” Molecules 19 (12): 20821–20838. doi: 10.3390/molecules191220821.
  • D. Mallick, B. J. Bora, D. Baruah, S. A. Barbhuiya, R. Banik, and J. Garg. 20AD “Mechanistic investigation and thermal degradation of Eichhornia crassipes using Thermogravimetric analysis,” SSRN, pp. 1–28.
  • Martin, J. A., C. A. Mullen, and A. A. Boateng. 2014. “Maximizing the Stability of Pyrolysis Oil/Diesel Fuel Emulsions.” Energy & Fuels 28 (9): 5918–5929. doi: 10.1021/ef5015583.
  • Nigam, J. N. 2002. “Bioconversion of Water-Hyacinth (Eichhornia Crassipes) Hemicellulose Acid Hydrolysate to Motor Fuel Ethanol by Xylose-Fermenting Yeast.” Journal of Biotechnology 97 (2): 107–116. doi: 10.1016/S0168-1656(02)00013-5.
  • Önal, E., B. B. Uzun, and A. E. Pütün. 2014. “Bio-Oil Production Via Co-pyrolysis of Almond Shell As Biomass and High Density Polyethylene.” Energy Conversion and Management 78: 704–710. doi: 10.1016/j.enconman.2013.11.022.
  • Onay, Ö, S. H. Beis, and ÖM Koçkar. 2004. “Pyrolysis of Walnut Shell in a Well-Swept Fixed-Bed Reactor.” Energy Sources 26 (8): 771–782. doi: 10.1080/00908310490451402.
  • Philip, S., and R. Rakendu. 2020. “Thermal Insulation Materials Based on Water Hyacinth for Application in Sustainable Buildings.” Materials Today: Proceedings 33: 3803–3809. doi: 10.1016/j.matpr.2020.06.219.
  • Plis, A., J. Lasek, and A. Skawińska. 2017. “Kinetic Analysis of the Combustion Process of Nannochloropsis Gaditana Microalgae Based on Thermogravimetric Studies.” Journal of Analytical and Applied Pyrolysis 127: 109–119. doi: 10.1016/J.JAAP.2017.08.017.
  • Ramirez, A., S. Pérez, E. Flórez, and N. Acelas. 2021. “Utilization of Water Hyacinth (Eichhornia Crassipes) Rejects as Phosphate-Rich Fertilizer.” Journal of Environmental Chemical Engineering 9 (1), doi: 10.1016/j.jece.2020.104776.
  • Rueda-Ordoñez, Y. J., and K. Tannous. 2015. “Isoconversional Kinetic Study of the Thermal Decomposition of Sugarcane Straw for Thermal Conversion Processes.” Bioresource Technology 196: 136–144. doi: 10.1016/j.biortech.2015.07.062.
  • Y. Rueda, L. Tinoco, É. Godois, and K. Tannous, “Modeling the Kinetics of Lignocellulosic Biomass Pyrolysis,” in Katia Tannous Innovative Solutions in Fluid-Particle Systems and Renewable Energy Management, IGI Global pp. 92–130, 2015, doi: 10.4018/978-1-4666-8711-0.
  • Şensöz, S., I. Demiral, and H. F. Gerçel. 2006. “Olive Bagasse (Olea europea L.) Pyrolysis.” Bioresource Technology 97 (3): 429–436. doi: 10.1016/j.biortech.2005.03.007.
  • Somerville, M., and A. Deev. 2020. “The Effect of Heating Rate, Particle Size and Gas Flow on the Yield of Charcoal During the Pyrolysis of Radiata Pine Wood.” Renewable Energy 151 (xxxx): 419–425. doi: 10.1016/j.renene.2019.11.036.
  • Syafri, E., Sudirman, Mashadi, Evi Yulianti, Deswita, Mochamad Asrofi, Hairul Abral, et al. 2019. “Effect of Sonication Time on the Thermal Stability, Moisture Absorption, and Biodegradation of Water Hyacinth (Eichhornia crassipes) Nanocellulose-Filled Bengkuang (Pachyrhizus erosus) Starch Biocomposites.” Journal of Materials Research and Technology 8 (6): 6223–6231. doi: 10.1016/j.jmrt.2019.10.016.
  • Telfer, M. A., C. A. Heidenreich, and D. K. Zhang. 1999. “The Effect of Particle Size and Heating Rate on the Transformation of Sulphur during Pyrolysis of a South Australian Low-rank Coal.” Developments in Chemical Engineering and Mineral Processing 7 (3): 409–426. doi: 10.1002/apj.5500070312.
  • Thi Nguyen, T. H., Pieter Boets, Koen Lock, Minar Naomi Damanik Ambarita, Marie Ane Eurie Forio, Peace Sasha, Luis Elvin Dominguez-Granda, Thu Huong Thi Hoang, Gert Everaert, and Peter L.M. Goethals. 2015. “Habitat Suitability of the Invasive Water Hyacinth and Its Relation to Water Quality and Macroinvertebrate Diversity in a Tropical Reservoir.” Limnologica 52: 67–74. doi: 10.1016/j.limno.2015.03.006.
  • Tran, Q. K., M. L. Le, H. V. Ly, H. C. Woo, J. Kim, and S. S. Kim. 2021. “Fast Pyrolysis of Pitch Pine Biomass in a Bubbling Fluidized-Bed Reactor for Bio-Oil Production.” Journal of Industrial and Engineering Chemistry 98: 168–179. doi: 10.1016/j.jiec.2021.04.005.
  • Uddin, M., M. U. H. Joardder, and M. N. Islam. 2012. “Design and Construction of Fixed Bed Pyrolysis System and Plum Seed Pyrolysis for Bio-Oil Production.” International Journal of Renewable Energy Research 1 (7): 405–409.
  • Van de Velden, M., J. Baeyens, A. Brems, B. Janssens, and R. Dewil. 2010. “Fundamentals, Kinetics and Endothermicity of the Biomass Pyrolysis Reaction.” Renewable Energy 35 (1): 232–242. doi: 10.1016/j.renene.2009.04.019.
  • Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. “Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition.” Journal of Dairy Science 74: 3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, and C. G. Vassileva. 2010. “An Overview of the Chemical Composition of Biomass.” Fuel 89 (5): 913–933. doi: 10.1016/j.fuel.2009.10.022.
  • Villamagna, A. M., and B. R. Murphy. 2010. “Ecological and Socio-Economic Impacts of Invasive Water Hyacinth (Eichhornia crassipes): A Review.” Freshwater Biology 55 (2): 282–298. doi: 10.1111/j.1365-2427.2009.02294.x.
  • Vo, T. K., Hoang Vu Ly, Ok Kyung Lee, Eun Yeol Lee, Chul Ho Kim, Jeong-Woo Seo, Jinsoo Kim, and Seung-Soo Kim. 2017. “Pyrolysis Characteristics and Kinetics of Microalgal Aurantiochytrium sp. KRS101.” Energy 118: 369–376. doi: 10.1016/j.energy.2016.12.040.
  • Wang, S., Bin Cao, Xinlin Liu, Lujiang Xu, Yamin Hu, Stephen Afonaa-Mensah, Abd El-Fatah Abomohra, Zhixia He, Qian Wang, and Shannan Xu. 2018. “A Comparative study on the Quality of Bio-Oil Derived from Green Macroalga Enteromorpha Clathrata Over Metal Modified ZSM-5 Catalysts.” Bioresource Technology 256: 446–455. doi: 10.1016/j.biortech.2018.01.134.
  • Wauton, I., and S. E. Ogbeide. 2021. “Characterization of Pyrolytic Bio-Oil from Water Hyacinth (Eichhornia crassipes) Pyrolysis in a Fixed Bed Reactor.” Biofuels 12 (8): 899–904. doi: 10.1080/17597269.2018.1558838.
  • Wauton, I., and S. E. Ogbeide. 2022. “Investigation of the Production of Pyrolytic Bio- Oil from Water Hyacinth (Eichhornia crassipes) in a Fixed Bed Reactor Using Pyrolysis Process.” Biofuels 13 (2): 189–195. doi: 10.1080/17597269.2019.1660061.
  • White, J. E., W. J. Catallo, and B. L. Legendre. 2011. “Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies.” Journal of Analytical and Applied Pyrolysis 91 (1): 1–33. doi: 10.1016/j.jaap.2011.01.004.
  • Wu, P., Xia Zhang, Jing Wang, Jia Yang, Xuanwei peng, Li Feng, Bo Zu, Yudong Xie, and Mengke Li. 2021. “Pyrolysis of Aquatic Fern and Macroalgae Biomass Into Bio-Oil: Comparison and Optimization of Operational Parameters Using Response Surface Methodology.” Journal of the Energy Institute 97: 194–202. doi: 10.1016/j.joei.2021.04.010.
  • Yaman, S. 2004. “Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks.” Energy Conversion and Management 45 (5): 651–671. doi: 10.1016/S0196-8904(03)00177-8.