1,924
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Microbial desulphurisation of coal: a review

ORCID Icon &
Pages 1-24 | Received 06 Feb 2022, Accepted 26 Nov 2022, Published online: 09 Feb 2023

References

  • Abdollahy, M., A.Z. Moghaddam, and K. Rami. 2006. “Desulfurization of Mezino Coal Using Combination of ‘Flotation’ and ‘Leaching with Potassium Hydroxide/Methanol’.” Fuel 85 (7): 1117–1124. https://doi.org/10.1016/j.fuel.2005.10.011.
  • Ahamed, M.A.A., M.S.A. Perera, S.K. Matthai, et al. 2019. “Coal Composition and Structural Variation with Rank and its Influence on the Coal-Moisture Interactions Under Coal Seam Temperature Conditions – A Review Article.” Journal of Petroleum Science and Engineering 180: 901–917. https://doi.org/10.1016/j.petrol.2019.06.007.
  • Akinyemi, S.A., W.M. Gitari, L.F. Petrik, et al. 2019. “Environmental Evaluation and Nano-Mineralogical Study of Fresh and Unsaturated Weathered Coal fly Ashes.” Science of The Total Environment 663: 177–188. https://doi.org/10.1016/j.scitotenv.2019.01.308.
  • Alcalde, M. 2015. “Engineering the Ligninolytic Enzyme Consortium.” Trends in Biotechnology 33 (3): 155–162. https://doi.org/10.1016/j.tibtech.2014.12.007.
  • Ali, A., and C. Zhao. 2020. “Direct Liquefaction Techniques on Lignite Coal: A Review.” Chinese Journal of Catalysis 41 (3): 375–389. https://doi.org/10.1016/S1872-2067(19)63492-3.
  • Aliebrahimi, S., J. Raheb, G. Ebrahimipour, et al. 2015. “Designing a New Recombinant Indigenous Klebsiella oxytoca ISA4 by Cloning of dsz Genes.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (19): 2056–2063. doi:10.1080/15567036.2012.662266.
  • Almashjary, K.H., M. Khalid, S. Dharaskar, et al. 2018. “Optimisation of Extractive Desulfurization Using Choline Chloride-Based Deep Eutectic Solvents.” Fuel 234: 1388–1400. https://doi.org/10.1016/j.fuel.2018.08.005.
  • Andrews, G.F., and K.S. Noah. 1997. “The Slurry-Column Coal Beneficiation Process.” Fuel Processing Technology 52 (1): 247–266. https://doi.org/10.1016/S0378-3820(97)00033-7.
  • Arnold, S., K. Moss, M. Henkel, et al. 2017. “Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy.” Trends in Biotechnology 35 (10): 925–936. https://doi.org/10.1016/j.tibtech.2017.06.003.
  • Artanto, Y., W.R. Jackson, P.J. Redlich, et al. 2000. “Liquefaction Studies of Some Indonesian low Rank Coals.” Fuel 79 (11): 1333–1340. https://doi.org/10.1016/S0016-2361(99)00275-6.
  • Asghari, I., S.M. Mousavi, F. Amiri, et al. 2013. “Bioleaching of Spent Refinery Catalysts: A Review.” Journal of Industrial and Engineering Chemistry 19 (4): 1069–1081. https://doi.org/10.1016/j.jiec.2012.12.005.
  • Asmatulu, R., B. Ipekoglu, and Y. Dasdemir. 1998. “The Effects of Coal Based Power Stations on The Environment in Turkey.” In Chemistry, Energy and the Environment, edited by C. A. C. Sequeira, and J. B. Moffat, 5–15. Estoril: Woodhead Publishing.
  • Baatar, B., T. Gan-Erdene, M. Myekhlai, et al. 2017. “Desulfurization of Coal Using the Electrochemical Technique in Neutral and Alkaline Media.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (15): 1610–1616. doi:10.1080/15567036.2017.1356886.
  • Basu, P. 2018. “Chapter 7 – Gasification Theory.” In Biomass Gasification, Pyrolysis and Torrefaction. 3rd ed., edited by P. Basu, 211–262. San Diego: Academic Press.
  • Bayram, Z., T. Bozdemir, T. Durusoy, et al. 2002. “Biodesulfurization of Mengen Lignite with Rhodoccocus rhodochrous: Effects of Lignite Concentration and Retreatment.” Energy Sources 24 (7): 625–631. doi:10.1080/00908312.2002.11877437.
  • Beck, S., E. Berry, S. Duke, et al. 2018. “Characterization of Trametes Versicolor Laccase-Catalyzed Degradation of Estrogenic Pollutants: Substrate Limitation and Product Identification.” International Biodeterioration & Biodegradation 127: 146–159. https://doi.org/10.1016/j.ibiod.2017.11.020.
  • Beckmann, S., A.W.S. Luk, M.-L. Gutierrez-Zamora, et al. 2019. “Long-Term Succession in a Coal Seam Microbiome During in situ Biostimulation of Coalbed-Methane Generation.” The ISME Journal 13 (3): 632–650. doi:10.1038/s41396-018-0296-5.
  • Behrouzifar, A., S. Rowshanzamir, Z. Alipoor, et al. 2016. “Application of a Square Wave Potentiometry Technique for Electroreductive Sulfur Removal from a Thiophenic Model Fuel.” International Journal of Environmental Science and Technology 13 (12): 2883–2892. doi:10.1007/s13762-016-1121-1.
  • Belyakov, N. 2019. “Chapter 8 – Efficient and Clean Combustion of Fossil Fuels Within Boiler Island.” In Sustainable Power Generation, edited by N. Belyakov, 179–200. London: Academic Press.
  • Benedik, M.J., P.R. Gibbs, R.R. Riddle, et al. 1998. “Microbial Denitrogenation of Fossil Fuels.” Trends in Biotechnology 16 (9): 390–395. https://doi.org/10.1016/S0167-7799(98)01237-2.
  • Benito G.G., G. Osorio, and D. Bonilla. 1995. “Biological Sulphur Removal by Thiobacillus Thiooxidans in Fine Coal Coming from a Flotation Washing Plant.” In Vol. 24 of Coal Science and Technology, edited by J. A. Pajares, and J. M. D. Tascón, 1745–1748. Lexington: Elsevier.
  • Benson, S.A., J.D. Laumb, C.R. Crocker, et al. 2005. “SCR Catalyst Performance in Flue Gases Derived from Subbituminous and Lignite Coals.” Fuel Processing Technology 86 (5): 577–613. https://doi.org/10.1016/j.fuproc.2004.07.004.
  • Berkowitz, N. 1979. “Chapter 15 – Environmental Aspects of Coal Utilization.” In An Introduction to Coal Technology, edited by N. Berkowitz, 323–335. Academic Press.
  • Biology and Fuel Science. 1995. Fuel Processing Technology 43 (2): 177. https://doi.org/10.1016/0378-3820(95)90027-6.
  • Brambl, R., and G.A. Marzluf. 2013. Biochemistry and Molecular Biology. Berlin Heidelberg: Springer.
  • Bressler, D.C., J.A. Norman, and P.M. Fedorak. 1997. “Ring Cleavage of Sulfur Heterocycles: How Does It Happen?” Biodegradation 8 (5): 297–311. doi:10.1023/A:1008283207090.
  • Brothers, J.A., and J.J. Starzomski. 1976. “Reaction of Pyritic Sulphur in Coal with Lime and Calcined Dolomite During the Coking Process.” Fuel 55 (2): 105–108. https://doi.org/10.1016/0016-2361(76)90004-1.
  • Bubenick, D.V., F.A. Record, and R.J. Kindya. 1983. “Acid Rain – an Overview of the Problem.” Environmental Progress 2 (1): 15–32. doi:10.1002/ep.670020107.
  • Çelik, P.A., DÖ Aksoy, S. Koca, et al. 2019. “The Approach of Biodesulfurization for Clean Coal Technologies: A Review.” International Journal of Environmental Science and Technology 16 (4): 2115–2132. doi:10.1007/s13762-019-02232-7.
  • Cemil Koyunoğlu, E.P. 2017. “Biological Improvement of Coal: Formica Rufa Enzymes Over Mining Fluid and Rumen Liquid.” Advances in Energy and Power 5 (4): 58–62. doi:10.13189/aep.2017.050403.
  • Center USDoETI, Scientific USDoEOo, Information T. 1990. Energy Research Abstracts. Technical Information Center, U.S. Department of Energy (15. c.,11. no.).
  • Chadwick, M. J., and N. Lindman, eds. 1982. “Chapter 9 – Impacts of Coal on Natural Environmental Systems.” In Environmental Implications of Expanded Coal Utilization: New York, Pergamon, 230–272.
  • Chakrabarti, J.N. 1978. “Chapter 9 – Analytical Procedures for Sulfur in Coal Desulfurization Products.” In Analytical Methods for Coal and Coal Products, edited by C. Karr, 279–322. New York: Academic Press.
  • Chakrabarty, A.M. 1985. “Genetically-manipulated Microorganisms and Their Products in the Oil Service Industries.” Trends in Biotechnology 3 (2): 32–39. https://doi.org/10.1016/0167-7799(85)90056-3.
  • Chapter 11 – Physical Desulphurisation of Coal. 1989. The Problems of Sulphur, 65–78. London: Butterworth-Heinemann.
  • Chou, C.-L. 2012. “Sulfur in Coals: A Review of Geochemistry and Origins.” International Journal of Coal Geology 100: 1–13. https://doi.org/10.1016/j.coal.2012.05.009.
  • Chozhavendhan, S., G. Karthiga Devi, B. Bharathiraja, et al. 2020. “Chapter 9 – Assessment of Crude Glycerol Utilization for Sustainable Development of Biorefineries.” In Refining Biomass Residues for Sustainable Energy and Bioproducts, edited by R. P. Kumar, E. Gnansounou, and J. K. Raman, et al., 195–212. London: Academic Press.
  • Civeira, M., M.L. Oliveira, J.C. Hower, et al. 2016. “Modification, Adsorption, and Geochemistry Processes on Altered Minerals and Amorphous Phases on the Nanometer Scale: Examples from Copper Mining Refuse, Touro, Spain.” Environmental science and pollution research international 23 (7): 6535–45. doi:10.1007/s11356-015-5816-5.
  • Civeira, M.S., C.G. Ramos, M.L.S. Oliveira, et al. 2016. “Nano-Mineralogy of Suspended Sediment during the Beginning of Coal Rejects Spill.” Chemosphere 145: 142–147. https://doi.org/10.1016/j.chemosphere.2015.11.059.
  • Clariant to Supply Unique Sorbent to RTI International for Its Warm Gas Desulfurization Technology. 2018. Focus on Catalysts 2018 (2): 6. https://doi.org/10.1016/j.focat.2018.01.043.
  • Clark, T.R., and G.J. Olson. 1993. “Biodepyritization of Pittsburgh Seam Coal: Mechanism and Implications for Process Design.” In Vol. 21 of Coal Science and Technology, edited by B. K. Parekh, and J. G. Groppo, 323–330. Kentucky: Elsevier.
  • Cliffe, K.R., and M.M. Syed. 1993. “Low Temperature Oxidation of Sulphur.” In Vol. 21: of Coal Science and Technology, edited by B. K. Parekh, and J. G. Groppo, 297–304. Kentucky: Elsevier.
  • Constantí, M., J. Giralt, and A. Bordons. 1996. “Degradation and Desulfurization of Dibenzothiophene Sulfone and Other Sulfur Compounds by Agrobacterium MC501 and a Mixed Culture.” Enzyme and Microbial Technology 19 (3): 214–219. https://doi.org/10.1016/0141-0229(95)00236-7.
  • Crawford, D.L., and R.K. Gupta. 1991. “Influence of Cultural Parameters on the Depolymerization of a Soluble Lignite Coal Polymer by Pseudomonas Cepacia DLC-07.” Resources, Conservation and Recycling 5 (2): 245–254. https://doi.org/10.1016/0921-3449(91)90028-M.
  • Dai, S., A. Bechtel, C.F. Eble, et al. 2020. “Recognition of Peat Depositional Environments in Coal: A Review.” International Journal of Coal Geology 219: 103383. https://doi.org/10.1016/j.coal.2019.103383.
  • Dai, S., J.C. Hower, R.B. Finkelman, et al. 2020. “Organic Associations of Non-mineral Elements in Coal: A Review.” International Journal of Coal Geology 218: 103347. https://doi.org/10.1016/j.coal.2019.103347.
  • Dalmora, A.C., C.G. Ramos, M.L.S. Oliveira, et al. 2016. “Chemical Characterization, Nano-Particle Mineralogy and Particle Size Distribution of Basalt Dust Wastes.” Science of The Total Environment 539: 560–565. https://doi.org/10.1016/j.scitotenv.2015.08.141.
  • Dehkordi, A.M., M.A. Sobati, and M.A. Nazem. 2013. “An Experimental Investigation on the Oxidative Desulfurization of Kerosene Feedstock.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35 (3): 226–234. doi:10.1080/15567036.2010.509087.
  • Demirbas, A., and M. Balat. 2004. “Coal Desulfurization via Different Methods.” Energy Sources 26 (6): 541–550. doi:10.1080/00908310490429669.
  • Deriase, S.F., N.S. El-Gendy, and H.N. Nassar. 2012. “Enhancing Biodegradation of Dibenzothiophene by Bacillus sphaericus HN1 Using Factorial Design and Response Surface Optimization of Medium Components.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (22): 2073–2083. doi:10.1080/15567036.2010.497801.
  • Doble, M., and A. Kumar. 2005. “Chapter 24 – Petroleum Hydrocarbon Pollution.” In Biotreatment of Industrial Effluents, edited by M. Doble, and A. Kumar, 241–253. Burlington: Butterworth-Heinemann.
  • Duarte, A.L., K. DaBoit, M.L.S. Oliveira, et al. 2019. “Hazardous Elements and Amorphous Nanoparticles in Historical Estuary Coal Mining Area.” Geoscience Frontiers 10 (3): 927–939. https://doi.org/10.1016/j.gsf.2018.05.005.
  • Elke Hammer, Wolf-Dieter, Ulrike Lindequist Jülich, Annett Schäfer, and Frieder Schauer. 2001. Biotransformation of Biologically Active Compounds Made of Various Classes of Chemical Substances by Means of Laccase and Manganese Peroxidase Enzymes.
  • Ernst WHO. 1998. “Sulfur Metabolism in Higher Plants: Potential for Phytoremediation.” Biodegradation 9 (3): 311–318. doi:10.1023/A:1008250827209.
  • Fairbairn, D.J., and M.E. Bushell. 1992. “Evaluation of Continuous Enrichment as a Method for Isolating Microbial Cultures Capable of Coal Desulfurization.” Enzyme and Microbial Technology 14 (1): 48–52. https://doi.org/10.1016/0141-0229(92)90025-J.
  • Faison, B.D. 1991. “Microbial Conversions of Low Rank Coals.” Bio/Technology 9 (10): 951–956. doi:10.1038/nbt1091-951.
  • Ferrari, V., S.R. Taffarel, E. Espinosa-Fuentes, et al. 2019. “Chemical Evaluation of by-Products of the Grape Industry as Potential Agricultural Fertilizers.” Journal of Cleaner Production 208: 297–306. https://doi.org/10.1016/j.jclepro.2018.10.032.
  • Gasparotto, J., P.R. Chaves, K. da Boit Martinello, et al. 2019. “Obesity Associated with Coal Ash Inhalation Triggers Systemic Inflammation and Oxidative Damage in the Hippocampus of Rats.” Food and Chemical Toxicology 133: 110766. https://doi.org/10.1016/j.fct.2019.110766.
  • Gogoi, B.K., and R.L. Bezbaruah. 2002. “Microbial Degradation of Sulfur Compounds Present in Coal and Petroleum.” In Vol. 36 of Progress in Industrial Microbiology, edited by Ved Pal S, and S. Raymond D, 427–456. Netherland: Elsevier.
  • Gorbaty, M.L., S.R. Kelemen, and G.N. George. 1991. “Characterization and Chemistry of Organically Bound Sulfur during Coal Conversion.” In 1991 International Conference on Coal Science Proceedings, edited by International Energy Agency Coal Research L, 961–964. London: Butterworth-Heinemann.
  • Gredilla, A., Fdez-Ortiz de Vallejuelo S, A. Rodriguez-Iruretagoiena, et al. 2019. “Evidence of Mercury Sequestration by Carbon Nanotubes and Nanominerals Present in Agricultural Soils from a Coal Fired Power Plant Exhaust.” Journal of Hazardous Materials 378: 120747. https://doi.org/10.1016/j.jhazmat.2019.120747.
  • Grogan, G. 2012. “7.14 Oxidation: Asymmetric Enzymatic Sulfoxidation.” In Comprehensive Chirality, edited by E. M. Carreira, and H. Yamamoto, 295–328. Amsterdam: Elsevier.
  • Gu, X.Y., J.W.C. Wong, and R.D. Tyagi. 2017. “Chapter 11 – Bioleaching of Heavy Metals from Sewage Sludge for Land Application.” In Current Developments in Biotechnology and Bioengineering, edited by J. W. C. Wong, R. D. Tyagi, and A. Pandey, 241–265. Amsterdam: Elsevier.
  • Guo, R., J. Yang, and Z. Liu. 2004. “Influence of Heat Treatment Conditions on Release of Chlorine from Datong Coal.” Journal of Analytical and Applied Pyrolysis 71 (1): 179–186. https://doi.org/10.1016/S0165-2370(03)00086-X.
  • Gürü, M. 2007. “Oxidative Desulfurization of Aşkale Coal by Nitric Acid Solution.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29 (5): 463–469. doi:10.1080/009083190966054.
  • Gürü, M., M. Cubuk, S. Dursun, et al. 2006. “Biodesulfurization of Cayirhan Lignites.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 28 (6): 559–565. doi:10.1080/009083190928056.
  • Haddadin, J., C. Dagot, and M. Fick. 1995. “Models of Bacterial Leaching.” Enzyme and Microbial Technology 17 (4): 290–305. https://doi.org/10.1016/0141-0229(94)00032-8.
  • Harayama, S. 1997. “Polycyclic Aromatic Hydrocarbon Bioremediation Design.” Current Opinion in Biotechnology 8 (3): 268–273. https://doi.org/10.1016/S0958-1669(97)80002-X.
  • Hofrichter, M. 2002. “Review: Lignin Conversion by Manganese Peroxidase (MnP).” Enzyme and Microbial Technology 30 (4): 454–466. https://doi.org/10.1016/S0141-0229(01)00528-2.
  • Holst, O., B. Stenberg, and M. Christiansson. 1998. “Biotechnological Possibilities for Waste Tyre-Rubber Treatment.” Biodegradation 9 (3): 301–310. doi:10.1023/A:1008337708006.
  • Huffman, G.P., N. Shah, F.E. Huggins, et al. 1993. “Further Sulfur Speciation Studies by Sulfur K-Edge XANES Spectroscopy.” In Vol. 21 of Coal Science and Technology, edited by B. K. Parekh, and J. G. Groppo, 1–13. Kentucky: Elsevier.
  • Hussein, A.A., and A.B. Fadhil. 2021. “Kinetics and Isothermal Evaluations of Adsorptive Desulfurization of Dibenzothiophene Over Mixed Bio-Wastes Derived Activated Carbon.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–20. doi:10.1080/15567036.2021.1895372.
  • Janda, K. 2015. “6.13 – Petroleum Products.” In Handbook of Material Biodegradation, Biodeterioration, and Biostablization. 2nd ed., edited by M. Falkiewicz-Dulik, K. Janda, and G. Wypych, 257–375. Toronto: ChemTec Publishing.
  • Jiang, L., H. Zhou, and X. Peng. 2007. “Bio-Oxidation of Pyrite, Chalcopyrite and Pyrrhotite by Acidithiobacillus Ferrooxidans.” Chinese Science Bulletin 52 (19): 2702–2714. doi:10.1007/s11434-007-0352-4.
  • Kabe, T., A. Ishihara, E. W. Qian, et al., eds. 2004. “Chapter 2 – Chemical and Macromolecular Structure of Coal.” In Vol. 150 of Studies in Surface Science and Catalysis, 81–126. Louvain-la-Neuve: Elsevier.
  • Kalia, V.C., S. Lal, R. Ghai, et al. 2003. “Mining Genomic Databases to Identify Novel Hydrogen Producers.” Trends in Biotechnology 21 (4): 152–156. https://doi.org/10.1016/S0167-7799(03)00028-3.
  • Kargi, F. 1982. “Microbiological Coal Desulphurization.” Enzyme and Microbial Technology 4 (1): 13–19. https://doi.org/10.1016/0141-0229(82)90004-7.
  • Kargi, F. 1986. “Microbial Methods for Desulfurization of Coal.” Trends in Biotechnology 4 (11): 293–297. https://doi.org/10.1016/0167-7799(86)90232-5.
  • Kazemi, A., M. Malayeri, A. Gharibi Kharaji, et al. 2014. “Feasibility Study, Simulation and Economical Evaluation of Natural Gas Sweetening Processes – Part 1: A Case Study on a low Capacity Plant in Iran.” Journal of Natural Gas Science and Engineering 20: 16–22. https://doi.org/10.1016/j.jngse.2014.06.001.
  • Ken, B.S., and B.K. Nandi. 2019. “Desulfurization of High Sulfur Indian Coal by Oil Agglomeration Using Linseed Oil.” Powder Technology 342: 690–697. https://doi.org/10.1016/j.powtec.2018.10.045.
  • Kilbane, J.J. 1989. “Desulfurization of Coal: The Microbial Solution.” Trends in Biotechnology 7 (4): 97–101. https://doi.org/10.1016/0167-7799(89)90007-3.
  • Kilbane, J.J. 1990. “Sulfur-specific Microbial Metabolism of Organic Compounds.” Resources, Conservation and Recycling 3 (2): 69–79. https://doi.org/10.1016/0921-3449(90)90046-7.
  • Kilbane, J.J. 2006. “Microbial Biocatalyst Developments to Upgrade Fossil Fuels.” Current Opinion in Biotechnology 17 (3): 305–314. https://doi.org/10.1016/j.copbio.2006.04.005.
  • Klasson, K.T., M.D. Ackerson, E.C. Clausen, et al. 1993. “Biological Conversion of Coal and Coal-Derived Synthesis Gas.” Fuel 72 (12): 1673–1678. https://doi.org/10.1016/0016-2361(93)90354-5.
  • Klein, J. 1998. “Technological and Economic Aspects of Coal Biodesulfurisation.” Biodegradation 9 (3): 293–300. doi:10.1023/A:1008282216016.
  • Kuenen, J.G., and L.A. Robertson. 1992. “The Use of Natural Bacterial Populations for the Treatment of Sulphur-Containing Wastewater.” Biodegradation 3 (2): 239–254. doi:10.1007/BF00129086.
  • Kumar, D., and D. Kumar. 2018. “Chapter 10 – High-Sulphur Coal Washing.” In Sustainable Management of Coal Preparation, edited by D. Kumar, and D. Kumar, 231–241. Duxford: Woodhead Publishing.
  • Laumb, J.D., B.C. Folkedahl, and C.J. Zygarlicke. 2008. “Chapter 4 – Characteristics and Behavior of Inorganic Constituents.” In Combustion Engineering Issues for Solid Fuel Systems, edited by B. G. Miller, and D. A. Tillman, 133–170. Burlington: Academic Press.
  • León-Mejía, G., L.F. Silva, M.S. Civeira, et al. 2016. “Cytotoxicity and Genotoxicity Induced by Coal and Coal Fly Ash Particles Samples in V79 Cells.” Environmental Science and Pollution Research International 23 (23): 24019–24031. 10.1007/s11356-016-7623-z.
  • Li, J., S. Lu, D. Liu, et al. 2019. “Chapter 14 – Dynamic Gas Flow in Coals and Its Evaluation.” In Petrophysical Characterization and Fluids Transport in Unconventional, edited by J. Cai, and X. Hu, 277–300. Reservoirs: Elsevier.
  • Liu, T., J. Hou, and Y. Peng. 2016. “Bacterial Removal of Sulfur from the China Lignite by a Newly Isolated Bacterium, Sinomonas flava XL4.” Environmental Progress & Sustainable Energy 35 (2): 374–379. doi:10.1002/ep.12230.
  • Liu, T., J.-H. Hou, and Y.-L. Peng. 2017. “Biodesulfurization from the High Sulfur Coal with a Newly Isolated Native Bacterium, Aspergillus sp.” DP06. Environmental Progress & Sustainable Energy 36 (2): 595–599. doi:10.1002/ep.12464.
  • Liu, F., Y. Lei, J. Shi, et al. 2020. “Effect of Microbial Nutrients Supply on Coal Bio-Desulfurization.” Journal of Hazardous Materials 384: 121324. https://doi.org/10.1016/j.jhazmat.2019.121324.
  • Longwell, J.P., E.S. Rubin, and J. Wilson. 1995. “Coal: Energy for the Future.” Progress in Energy and Combustion Science 21 (4): 269–360. https://doi.org/10.1016/0360-1285(95)00007-0.
  • Malani, R.S., A.H. Batghare, J.B. Bhasarkar, et al. 2021. “Kinetic Modelling and Process Engineering Aspects of Biodesulfurization of Liquid Fuels: Review and Analysis.” Bioresource Technology Reports 14: 100668. https://doi.org/10.1016/j.biteb.2021.100668.
  • Martínez, O., A. Aller, J. Alonso, et al. 1995. “Biodesulphurization of Coals from the North of León (Spain). Optimization of Process Variables.” In Vol. 24 of Coal Science and Technology, edited by J. A. Pajares, and J. M. D. Tascón, 1749–1752. Kentucky: Elsevier.
  • Matsumura, S. 2005. “Chapter 14 – Mechanism of Biodegradation.” In Biodegradable Polymers for Industrial Applications, edited by R. Smith, 357–410. New York: Woodhead Publishing.
  • McIlwain, M.E., and P.R. Dugan. 1990. “Introduction and Overview of the Third Workshop on Bioprocessing of Coals.” Resources, Conservation and Recycling 3 (2): 53–57. https://doi.org/10.1016/0921-3449(90)90044-5.
  • Mokhatab, S., and W.A. Poe. 2012. “Chapter 8 – Sulfur Recovery and Handling.” In Handbook of Natural Gas Transmission and Processing. 2nd ed., edited by S. Mokhatab, and W. A. Poe, 291–316. Boston: Gulf Professional Publishing.
  • Moldoveanu, S.C. 2021. “Chapter 11 – Analytical Pyrolysis of Several Organic Geopolymers.” In Vol. 20 of Analytical Pyrolysis of Natural Organic Polymers. 2nd ed., edited by S. C. Moldoveanu, 403–425. Amsterdam: Elsevier.
  • Nam, Y.-W., and K.-S. Park. 2004. “Thermal and Chemical Desulfurization of low Sulfur Coals.” Korean Journal of Chemical Engineering 21 (2): 370–377. doi:10.1007/BF02705422.
  • Natarajan, K.A. 2018. “Chapter 10 – Microbially Induced Mineral Beneficiation.” In Biotechnology of Metals, edited by K. A. Natarajan, 243–304. Amsterdam: Elsevier.
  • Naudé, G., J. Hoffman, S.J. Theron, et al. 2013. “The Use of X-Ray Computed Tomography in the Characterisation of Coal and Associated Char Reductants.” Minerals Engineering 52: 143–154. https://doi.org/10.1016/j.mineng.2013.05.012.
  • Nazari, F., M.-E. Kefayati, and J. Raheb. 2017. “Isolation, Identification, and Characterization of a Novel Chemolithoautotrophic Bacterium with High Potential in Biodesulfurization of Natural or Industrial Gasses and Biogas.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (10): 971–977. doi:10.1080/15567036.2016.1263255.
  • Oliveira, M.L.S., M. Izquierdo, X. Querol, et al. 2019. “Nanoparticles from Construction Wastes: A Problem to Health and the Environment.” Journal of Cleaner Production 219: 236–243. https://doi.org/10.1016/j.jclepro.2019.02.096.
  • Oliveira, M.L.S., B.K. Saikia, K. da Boit, et al. 2019. “River Dynamics and Nanopaticles Formation: A Comprehensive Study on the Nanoparticle Geochemistry of Suspended Sediments in the Magdalena River, Caribbean Industrial Area.” Journal of Cleaner Production 213: 819–824. https://doi.org/10.1016/j.jclepro.2018.12.230.
  • Olson, G.J., and F.E. Brinckman. 1986. “Bioprocessing of Coal.” Fuel 65 (12): 1638–1646. doi:https://doi.org/10.1016/0016-2361(86)90262-0.
  • Olszewska, D. 2011. “Application of Modified Montmorillonite for Desulfurization During the Combustion of Hard Coal.” Fuel Processing Technology 92 (12): 2412–2419. https://doi.org/10.1016/j.fuproc.2011.08.022.
  • Olszewska, D. 2012. “Application of XPS Method in the Research Into Ni ion-Modified Montmorillonite as a SO2 Sorbent.” Fuel Processing Technology 95: 90–95. https://doi.org/10.1016/j.fuproc.2011.11.023.
  • Parekh, B.K. 2003. “Coal Desulfurization: High Efficiency Preparation Methods: by S. Komar Kawatara and Timothy C. Eisele. Taylor and Francis Inc., New York, NY, 360 pp.” International Journal of Coal Geology 55 (1): 71. https://doi.org/10.1016/S0166-5162(03)00065-X.
  • Pashin, J.C., et al. 2020. “Chapter 2 – Geology of North American Coalbed Methane Reservoirs.” In Coal Bed Methane. 2nd ed., edited by P. Thakur, S. J. Schatzel, and K. Aminian, 35–64. Oxford: Elsevier.
  • Raheb, J., S. Ghaffari, M.J. Hajipour, et al. 2012. “The in vitro Rhamnolipid Biosurfactant Reduced Energy Consuming in Biodesulfurization Activity of Genetically Engineered Strain Pseudomonas aeruginosa ATCC9027.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (14): 1318–1325. doi:10.1080/15567031003735261.
  • Raheb, J., and M.J. Hajipour. 2011a. “The Effect of Elimination of the dszC Gene in Energy Consuming of Biodesulfurization in Broken 4S Pathway.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (19): 1814–1821. doi:10.1080/15567030903419455.
  • Raheb, J., and M.J. Hajipour. 2011b. “The Stable Rhamnolipid Biosurfactant Production in Genetically Engineered Pseudomonas Strain Reduced Energy Consumption in Biodesulfurization.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (22): 2113–2121. doi:10.1080/15567030903503167.
  • Raheb, J., and M.J. Hajipour. 2012. “The Characterization of Biosurfactant Production Related to Energy Consumption of Biodesulfurization in Pseudomonas aeruginosa ATCC9027.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (15): 1391–1399. doi:10.1080/15567036.2010.481659.
  • Raheb, J., B. Memari, and M.J. Hajipour. 2011. “Gene-Manipulated Desulfurizing Strain Pseudomonas Putida Reduced Energy Consuming in the Biodesulfurization Process.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (21): 2018–2026. doi:10.1080/15567030903515054.
  • Rodriguez-Iruretagoiena, A., S.F.-O. de Vallejuelo, A. de Diego, et al. 2016. “The Mobilization of Hazardous Elements After a Tropical Storm Event in a Polluted Estuary.” Science of The Total Environment 565: 721–729. https://doi.org/10.1016/j.scitotenv.2016.05.024.
  • Ruckenstein, E., H. Li, and C. Cheng. 2019. Concentrated Emulsion Polymerization. New York: CRC Press.
  • Saed, D., H.N. Nassar, N.S. El-Gendy, et al. 2014. “The Enhancement of Pyrene Biodegradation by Assembling MFe3O4 Nano-sorbents on the Surface of Microbial Cells.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (17): 1931–1937. doi:10.1080/15567036.2014.889782.
  • Saha, B., S. Vedachalam, and A.K. Dalai. 2021. “Review on Recent Advances in Adsorptive Desulfurization.” Fuel Processing Technology 214: 106685. https://doi.org/10.1016/j.fuproc.2020.106685.
  • Saikia, B.K., A.C. Dalmora, R. Choudhury, et al. 2016. “Effective Removal of Sulfur Components from Brazilian Power-Coals by Ultrasonication (40kHz) in Presence of H2O2.” Ultrasonics Sonochemistry 32: 147–157. https://doi.org/10.1016/j.ultsonch.2016.03.007.
  • Saikia, M., T. Das, N. Dihingia, et al. 2020. “Formation of Carbon Quantum Dots and Graphene Nanosheets from Different Abundant Carbonaceous Materials.” Diamond and Related Materials 106: 107813. https://doi.org/10.1016/j.diamond.2020.107813.
  • Sehn, J.L., F.B. de Leão, K. da Boit, et al. 2016. “Nanomineralogy in the Real World: A Perspective on Nanoparticles in the Environmental Impacts of Coal Fire.” Chemosphere 147: 439–443. https://doi.org/10.1016/j.chemosphere.2015.12.065.
  • Selvaraj, P.T., M.H. Little, and E.N. Kaufman. 1997. “Analysis of Immobilized Cell Bioreactors for Desulfurization of Flue Gases and Sulfite/Sulfate-Laden Wastewater.” Biodegradation 8 (4): 227–236. doi:10.1023/A:1008200411998.
  • Sen, K., and P.S. Dash. 2020. “Quantum Chemical Perspective of Coal Molecular Modeling: A Review.” Fuel 279: 118539. https://doi.org/10.1016/j.fuel.2020.118539.
  • Shirkavand, E., S. Baroutian, D.J. Gapes, et al. 2016. “Combination of Fungal and Physicochemical Processes for Lignocellulosic Biomass Pretreatment – A Review.” Renewable and Sustainable Energy Reviews 54: 217–234. https://doi.org/10.1016/j.rser.2015.10.003.
  • Silva, L.F.O., T.J. Crissien, C.H. Sampaio, et al. 2020. “Occurrence of Carbon Nanotubes and Implication for the Siting of Elements in Selected Anthracites.” Fuel 263: 116740. https://doi.org/10.1016/j.fuel.2019.116740.
  • Silva, L.F.O., T.J. Crissien, B.F. Tutikian, et al. 2020. “Rare Earth Elements and Carbon Nanotubes in Coal Mine Around Spontaneous Combustions.” Journal of Cleaner Production 253: 120068. https://doi.org/10.1016/j.jclepro.2020.120068.
  • Silva, L.F.O., M. Santosh, M. Schindler, et al. 2021. “Nanoparticles in Fossil and Mineral Fuel Sectors and Their Impact on Environment and Human Health: A Review and Perspective.” Gondwana Research 92: 184–201. https://doi.org/10.1016/j.gr.2020.12.026.
  • Singh, A.K., A. Kumar, P.K. Singh, et al. 2018. “Bacterial Desulphurization of low-Rank Coal: A Case Study of Eocene Lignite of Western Rajasthan, India.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (10): 1199–1208. doi:10.1080/15567036.2018.1476608.
  • Singh, V.K., R. Singh, A. Kumar, et al. 2021. “Chapter 14 – Perspectives in Desulfurization of Coal Using Microbes.” In Microbe Mediated Remediation of Environmental, edited by A. Kumar, V. K. Singh, and P. Singh, et al., 141–155. Contaminants: Woodhead Publishing.
  • Singh, A., B. Singh, and O. Ward. 2012. “Potential Applications of Bioprocess Technology in Petroleum Industry.” Biodegradation 23 (6): 865–880. doi:10.1007/s10532-012-9577-2.
  • Soleimani, M., A. Bassi, and A. Margaritis. 2007. “Biodesulfurization of Refractory Organic Sulfur Compounds in Fossil Fuels.” Biotechnology Advances 25 (6): 570–596. https://doi.org/10.1016/j.biotechadv.2007.07.003.
  • Soltanali, S., Z. Shams Hagani, and M. Pazouki Yaftabadi. 2008. “Economic Evaluation for air Pollution Control Technologies Selection in Power Plants Processes.” International Journal of Environmental Science & Technology 5 (4): 555–564. doi:10.1007/BF03326053.
  • Speight, J.G., and N.S. El-Gendy. 2018. “Chapter 6 – Biocatalytic Desulfurization.” In Introduction to Petroleum Biotechnology, edited by J. G. Speight, and N. S. El-Gendy, 165–227. Boston: Gulf Professional Publishing.
  • Tang, L., S. Chen, D. Gui, et al. 2020. “Effect of Removal Organic Sulfur from Coal Macromolecular on the Properties of High Organic Sulfur Coal.” Fuel 259: 116264. doi:10.1016/j.fuel.2019.116286.
  • Tang, L., S. Wang, X. Zhu, et al. 2018. “Feasibility Study of Reduction Removal of Thiophene Sulfur in Coal.” Fuel 234: 1367–1372. https://doi.org/10.1016/j.fuel.2018.08.016.
  • Tangstad, M., J.P. Beukes, J. Steenkamp, et al. 2019. “Chapter 14 – Coal-Based Reducing Agents in Ferroalloys and Silicon Production.” In New Trends in Coal Conversion, edited by I. Suárez-Ruiz, M. A. Diez, and F. Rubiera, 405–438. Duxford: Woodhead Publishing.
  • Technologies AP. n.d. Sulfex™ – Desulfurization Simplified Reno, Nevada 89502, USA2018 [cited 2020]. https://www.altpetrol.com/contact/.
  • Tripathi, N., R.S. Singh, and C.D. Hills. 2019. “Microbial Removal of Sulphur from Petroleum Coke (Petcoke).” Fuel 235: 1501–1505. https://doi.org/10.1016/j.fuel.2018.08.072.
  • United States Department of Energy PETC. 1987. Quaterly Technical Progress Report. Pittsburgh: Pittsburgh Energy Technology Center. p. 183.
  • Uzun, D., and S. Özdoğan. 2006. “Sulfur Removal from Original and Acid Treated Lignites by Pyrolysis.” Fuel 85 (3): 315–322. https://doi.org/10.1016/j.fuel.2005.06.012.
  • Valentim, B. 2020. “Petrography of Coal Combustion Char: A Review.” Fuel 277: 118271. https://doi.org/10.1016/j.fuel.2020.118271.
  • Wackett, L.P. 2000. “Environmental Biotechnology.” Trends in Biotechnology 18 (1): 19–21. https://doi.org/10.1016/S0167-7799(99)01399-2.
  • Weills, J.T. 1976. “Impacts of the Coal Fuel Cycle in Power Generation.” In Energy and the Environment Cost-Benefit Analysis: Georgia, Pergamon, edited by R. A. Karam, and K. Z. Morgan, 297–317.
  • Wierzchowski, K., B. Białecka, J. Calus Moszko, et al. 2020. “Characterization of Unburned Carbon Separated from Power Plant Slag.” International Journal of Environmental Science and Technology 17 (5): 2499–2510. doi:10.1007/s13762-020-02655-7.
  • Wilcox, J., B. Wang, E. Rupp, et al. 2015. “Observations and Assessment of Fly Ashes from High-Sulfur Bituminous Coals and Blends of High-Sulfur Bituminous and Subbituminous Coals: Environmental Processes Recorded at the Macro- and Nanometer Scale.” Energy & Fuels 29 (11): 7168–7177. doi:10.1021/acs.energyfuels.5b02033.
  • Wüst, R.A.J., C.R. Ward, R.M. Bustin, et al. 2002. “Characterization and Quantification of Inorganic Constituents of Tropical Peats and Organic-Rich Deposits from Tasek Bera (Peninsular Malaysia): Implications for Coals.” International Journal of Coal Geology 49 (4): 215–249. https://doi.org/10.1016/S0166-5162(01)00064-7.
  • Xu, Y., Y. Liu, Y. Bu, et al. 2021. “Review on the Ionic Liquids Affecting the Desulfurization of Coal by Chemical Agents.” Journal of Cleaner Production 284: 124788. https://doi.org/10.1016/j.jclepro.2020.124788.
  • Xu, J., X. Liu, C. Song, et al. 2020. “Biodesulfurization of High Sulfur Coal from Shanxi: Optimization of the Desulfurization Parameters of Three Kinds of Bacteria.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (18): 2297–2315. doi:10.1080/15567036.2019.1675821.
  • Yaman, S., and S. Küçükbayrak. 1997. “Sulfur Removal from Lignite by Oxydesulfurization Using fly ash.” Fuel 76 (1): 73–77. https://doi.org/10.1016/S0016-2361(96)00167-6.
  • Yang, J.-K., and S.-F. Chen. 1993. “Chemical Desulfurization of Coal Using Microwave Irradiation.” In Vol. 21 of Coal Science and Technology, edited by B. K. Parekh, and J. G. Groppo, 317–322. Kentucky: Elsevier.
  • Yang, L., and X. Ge. 2016. “Chapter 3 – Biogas and Syngas Upgrading.” In Vol. 1 of Advances in Bioenergy, edited by Y. Li, and X. Ge, 125–188. Elsevier.
  • Yao, Y., and J. Liu. 2019. “Chapter 2 – Petrophysical Characterization of the Pore Structure of Coal.” In Petrophysical Characterization and Fluids Transport in Unconventional, edited by J. Cai, and X. Hu, 21–36. Reservoirs: Elsevier.
  • Ye, J., P. Zhang, G. Zhang, et al. 2018. “Biodesulfurization of High Sulfur Fat Coal with Indigenous and Exotic Microorganisms.” Journal of Cleaner Production 197: 562–575. doi:10.1016/j.jclepro.2018.02.061.
  • Yu, X., Z. Luo, and D. Gan. 2019. “Desulfurization of High Sulfur Fine Coal Using a Novel Combined Beneficiation Process.” Fuel 254: 115603. doi:https://doi.org/10.1016/j.fuel.2019.06.011.
  • Zhang, J., H. Zhou, D. Liu, et al. 2020. “Chapter 2 – Pretreatment of Lignocellulosic Biomass for Efficient Enzymatic Saccharification of Cellulose.” In Lignocellulosic Biomass to Liquid, edited by A. Yousuf, D. Pirozzi, and F. Sannino, 17–65. Biofuels: Academic Press.
  • Zygarlicke, C.J., D.P. McCollor, S.A. Benson, et al. 1992. “Ash Particle Size and Composition Evolution During Combustion of Synthetic Coal and Inorganic Mixtures.” Symposium (International) on Combustion 24 (1): 1171–1177. doi:https://doi.org/10.1016/S0082-0784(06)80138-4.