1,591
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Co-pyrolysis of biomass and binary single-use plastics: synergy, kinetics, and thermodynamics

, , , &
Article: 2168003 | Received 09 Nov 2022, Accepted 14 Dec 2022, Published online: 18 Jan 2023

References

  • Alam, Mahboob, Anjireddy Bhavanam, Ashirbad Jana, Jaimin kumar S. Viroja, and Nageswara Rao Peela. 2020. “Co-Pyrolysis of Bamboo Sawdust and Plastic: Synergistic Effects and Kinetics.” Renewable Energy 149: 1133–1145. doi:10.1016/j.renene.2019.10.103.
  • Burra, K. G., and A. K. Gupta. 2018. “Kinetics of Synergistic Effects in Co-Pyrolysis of Biomass with Plastic Wastes.” Applied Energy 220 (February): 408–418. doi:10.1016/j.apenergy.2018.03.117.
  • Chen, Yuan, Abhishek Kumar Awasthi, Fan Wei, Quanyin Tan, and Jinhui Li. 2021a. “Single-Use Plastics: Production, Usage, Disposal, and Adverse Impacts.” Science of the Total Environment 752: 141772. doi:10.1016/j.scitotenv.2020.141772.
  • Chen, Rongjie, Shiyu Zhang, Xiaoxiao Yang, Guanghao Li, Hui Zhou, Qinghai Li, and Yanguo Zhang. 2021b. “Thermal Behaviour and Kinetic Study of Co-Pyrolysis of Microalgae with Different Plastics.” Waste Management 126: 331–339. doi:10.1016/j.wasman.2021.03.001.
  • Coats, A. W., and J. P. Redfern. 1964. Kinetic Parameters from Thermogravimetric Data [12].” Nature. Nature Publishing Group. doi:10.1038/201068a0.
  • Das, Subhasish, S. H. Lee, Pawan Kumar, Ki Hyun Kim, Sang Soo Lee, and Satya Sundar Bhattacharya. 2019. “Solid Waste Management: Scope and the Challenge of Sustainability.” Journal of Cleaner Production 228: 658–678. doi:10.1016/j.jclepro.2019.04.323.
  • Dhyani, Vaibhav, and Thallada Bhaskar. 2018. Kinetic Analysis of Biomass Pyrolysis. Waste Biorefinery: Potential and Perspectives. Elsevier B.V. doi:10.1016/B978-0-444-63992-9.00002-1.
  • Ding, Ziyi, Jingyong Liu, Huashan Chen, Shengzheng Huang, Fatih Evrendilek, Yao He, and Li Zheng. 2021. “Co-Pyrolysis Performances, Synergistic Mechanisms, and Products of Textile Dyeing Sludge and Medical Plastic Wastes.” Science of the Total Environment 799: 149397. doi:10.1016/j.scitotenv.2021.149397.
  • Dubdub, Ibrahim, and Mohammed Al-Yaari. 2020. “Pyrolysis of Mixed Plastic Waste: I. Kinetic Study.” Materials 13 (21): 4912–4915. doi:10.3390/ma13214912.
  • Dubdub, Ibrahim, and Mohammed Al-Yaari. 2021. “Thermal Behavior of Mixed Plastics at Different Heating Rates: I. Pyrolysis Kinetics.” Polymers 13 (19), doi:10.3390/polym13193413.
  • Elkhalifa, Samar, Omar Elhassan, Prakash Parthasarathy, Hamish Mackey, Tareq Al-Ansari, and Gordon McKay. 2020. “Thermogravimetric Analysis of Individual Food Waste Items and Their Blends for Biochar Production.” In 30 European Symposium on Computer Aided Process Engineering, edited by Sauro Pierucci, Flavio Manenti, Giulia Luisa Bozzano, and Davide B T - Computer Aided Chemical Engineering Manca, 48:1543–1548. Elsevier. doi:10.1016/B978-0-12-823377-1.50258-5.
  • Elkhalifa, Samar, Prakash Parthasarathy, Hamish R. Mackey, Tareq Al-Ansari, Omar Elhassan, Said Mansour, and Gordon McKay. 2022. “Biochar Development from Thermal TGA Studies of Individual Food Waste Vegetables and Their Blended Systems.” Biomass Conversion and Biorefinery 0123456789), doi:10.1007/s13399-022-02441-0.
  • Fermanelli, Carla S, Agostina Córdoba, Liliana B. Pierella, and Clara Saux. 2020. “Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study.” Waste Management 102: 362–370. http://dx.doi.org/10.1016/j.wasman.2019.10.057.
  • Foong, Shin Ying, Rock Keey Liew, Yafeng Yang, Yoke Wang Cheng, Peter Nai Yuh Yek, Wan Adibah Wan Mahari, Xie Yi Lee, et al. 2020. “Valorization of Biomass Waste to Engineered Activated Biochar by Microwave Pyrolysis: Progress, Challenges, and Future Directions.” Chemical Engineering Journal 389 (February): 124401. doi:10.1016/j.cej.2020.124401.
  • Hassan, H., B. H. Hameed, and J. K. Lim. 2020. “Co-pyrolysis of Sugarcane Bagasse and Waste High-Density Polyethylene: Synergistic Effect and Product Distributions.” Energy 191: 116545. doi:10.1016/j.energy.2019.116545.
  • Jiang, Liyang, Zhen Zhou, Huan Xiang, Yang Yang, Hong Tian, and Jiawei Wang. 2022. “Characteristics and Synergistic Effects of Co-Pyrolysis of Microalgae with Polypropylene.” Fuel 314 (November 2021): 122765. doi:10.1016/j.fuel.2021.122765.
  • Li, Lixin, Jie Wang, Chao Jia, Ying Lv, and Yan Liu. 2021. “Co-Pyrolysis of Cyanobacteria and Plastics to Synthesize Porous Carbon and Its Application in Methylene Blue Adsorption.” Journal of Water Process Engineering 39 (May 2020): 101753. doi:10.1016/j.jwpe.2020.101753.
  • Li, Haiying, Shuting Zhang, Xinhua Zhao, and Suzuki Eiji. 2005. “Pyrolysis Characteristics and Kinetics of Municipal Solid Waste.” Transactions of Tianjin University 11 (5): 353–359.
  • Liew, Jia Xin, Adrian Chun Minh Loy, Bridgid Lai Fui Chin, Ahmed AlNouss, Muhammad Shahbaz, Tareq Al-Ansari, Rajesh Govindan, and Yee Ho Chai. 2021. “Synergistic Effects of Catalytic Co-Pyrolysis of Corn Cob and HDPE Waste Mixtures Using Weight Average Global Process Model.” Renewable Energy 170: 948–963. doi:10.1016/j.renene.2021.02.053.
  • Liu, Xuan, Kiran G. Burra, Zhiwei Wang, Jinhu Li, Defu Che, and Ashwani K. Gupta. 2020. “On Deconvolution for Understanding Synergistic Effects in Co-Pyrolysis of Pinewood and Polypropylene.” Applied Energy 279 (x): 115811. doi:10.1016/j.apenergy.2020.115811.
  • Mariyam, Sabah, Muhammad Shahbaz, Tareq Al-Ansari, Hamish R. Mackey, and Gordon McKay. 2022. “A Critical Review on Co-Gasification and Co-Pyrolysis for Gas Production.” Renewable and Sustainable Energy Reviews 161 (March): 112349. doi:10.1016/j.rser.2022.112349.
  • Mishra, Ranjeet Kumar, Abhisek Sahoo, and Kaustubha Mohanty. 2019. “Pyrolysis Kinetics and Synergistic Effect in Co-Pyrolysis of Samanea Saman Seeds and Polyethylene Terephthalate Using Thermogravimetric Analyser.” Bioresource Technology 289 (June): 121608. doi:10.1016/j.biortech.2019.121608.
  • Naqvi, Salman Raza, Rumaisa Tariq, Zeeshan Hameed, Imtiaz Ali, Muhammad Naqvi, Wei Hsin Chen, Selim Ceylan, et al. 2019. “Pyrolysis of High Ash Sewage Sludge: Kinetics and Thermodynamic Analysis Using Coats-Redfern Method.” Renewable Energy 131: 854–860. doi:10.1016/j.renene.2018.07.094.
  • Özsin, Gamzenur, Ayşe Eren Pütün, and Ersan Pütün. 2019. “Investigating the Interactions Between Lignocellulosic Biomass and Synthetic Polymers During Co-Pyrolysis by Simultaneous Thermal and Spectroscopic Methods.” Biomass Conversion and Biorefinery 9 (3): 593–608. doi:10.1007/s13399-019-00390-9.
  • Papari, Sadegh, Hanieh Bamdad, and Franco Berruti. 2021. “Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.” Materials 14 (10), doi:10.3390/ma14102586.
  • Parthasarathy, Prakash, Tareq Al-Ansari, Hamish R. Mackey, K. Sheeba Narayanan, and Gordon McKay. 2022a. “A Review on Prominent Animal and Municipal Wastes as Potential Feedstocks for Solar Pyrolysis for Biochar Production.” Fuel 316 (January): 123378. doi:10.1016/j.fuel.2022.123378.
  • Parthasarathy, Prakash, Mohammad Alherbawi, Snigdhendubala Pradhan, Tareq Al-Ansari, Hamish R. Mackey, and Gordon McKay. 2022b. “Pyrolysis Characteristics, Kinetic, and Thermodynamic Analysis of Camel Dung, Date Stone, and Their Blend Using Thermogravimetric Analysis.” Biomass Conversion and Biorefinery 0123456789), doi:10.1007/s13399-021-02249-4.
  • Rasam, Sajjad, Ali Moshfegh Haghighi, Kolsoom Azizi, Antonio Soria-Verdugo, and Mostafa Keshavarz Moraveji. 2020. “Thermal Behavior, Thermodynamics and Kinetics of Co-Pyrolysis of Binary and Ternary Mixtures of Biomass Through Thermogravimetric Analysis.” Fuel 280 (July): 118665. doi:10.1016/j.fuel.2020.118665.
  • Raza, Mohsin, Basim Abu-Jdayil, Ali H. Al-Marzouqi, and Abrar Inayat. 2022. “Kinetic and Thermodynamic Analyses of Date Palm Surface Fibers Pyrolysis Using Coats-Redfern Method.” Renewable Energy 183: 67–77. doi:10.1016/j.renene.2021.10.065.
  • Ro, Kyoung S, Patrick G. Hunt, Michael A Jackson, David L. Compton, Scott R Yates, Keri Cantrell, and SeChin Chang. 2014. “Co-pyrolysis of swine manure with agricultural plastic waste: Laboratory-scale study.” Waste Management 34 (8): 1520–1528. http://dx.doi.org/10.1016/j.wasman.2014.04.001.
  • Singh, Sanjay, Trilok Patil, Shyam P. Tekade, Manoj B. Gawande, and Ashish N. Sawarkar. 2021. “Studies on Individual Pyrolysis and Co-Pyrolysis of Corn Cob and Polyethylene: Thermal Degradation Behavior, Possible Synergism, Kinetics, and Thermodynamic Analysis.” Science of the Total Environment 783 (April): 147004. doi:10.1016/j.scitotenv.2021.147004.
  • Tahir, Aola H.F., Abdul Hameed M.J. Al-Obaidy, and Faris H. Mohammed. 2020. “Biochar from Date Palm Waste, Production, Characteristics and Use in the Treatment of Pollutants: A Review.” IOP Conference Series: Materials Science and Engineering 737 (1), doi:10.1088/1757-899X/737/1/012171.
  • Tang, Yijing, Qunxing Huang, Kai Sun, Yong Chi, and Jianhua Yan. 2018. “Co-Pyrolysis Characteristics and Kinetic Analysis of Organic Food Waste and Plastic.” Bioresource Technology 249 (August 2017): 16–23. doi:10.1016/j.biortech.2017.09.210.
  • Uzun, Başak Burcu, and Elif Yaman. 2017. “Pyrolysis Kinetics of Walnut Shell and Waste Polyolefins Using Thermogravimetric Analysis.” Journal of the Energy Institute 90 (6): 825–837. doi:10.1016/j.joei.2016.09.001.
  • Vanapalli, Kumar Raja, Jayanta Bhattacharya, Biswajit Samal, Subhash Chandra, Isha Medha, and Brajesh K. Dubey. 2021. “Inhibitory and Synergistic Effects on Thermal Behaviour and Char Characteristics During the Co-Pyrolysis of Biomass and Single-Use Plastics.” Energy 235: 121369. doi:10.1016/j.energy.2021.121369.
  • Varma, Anil Kumar, Navneeta Lal, Ashwani Kumar Rathore, Rajesh Katiyar, Lokendra Singh Thakur, Ravi Shankar, and Prasenjit Mondal. 2021. “Thermal, Kinetic and Thermodynamic Study for Co-Pyrolysis of Pine Needles and Styrofoam Using Thermogravimetric Analysis.” Energy 218: 119404. doi:10.1016/j.energy.2020.119404.
  • Varsha, S. S. V., Arun K. Vuppaladadiyam, Farrukh Shehzad, Hosein Ghaedi, S. Murugavelh, Weiguo Dong, and Elsa Antunes. 2021. “Co-Pyrolysis of Microalgae and Municipal Solid Waste: A Thermogravimetric Study to Discern Synergy During Co-Pyrolysis Process.” Journal of the Energy Institute 94: 29–38. doi:10.1016/j.joei.2020.10.010.
  • Wang, Weimin, Guanqun Luo, Yuan Zhao, Yuanjun Tang, Kaige Wang, Xuan Li, and Yousheng Xu. 2022. “Kinetic and Thermodynamic Analyses of Co-Pyrolysis of Pine Wood and Polyethylene Plastic Based on Fraser-Suzuki Deconvolution Procedure.” Fuel 322 (March): 124200. doi:10.1016/j.fuel.2022.124200.
  • Wang, Xuebin, Daoyang Ma, Qiming Jin, Shuanghui Deng, Hrvoje Stančin, Houzhang Tan, and Hrvoje Mikulčić. 2019. “Synergistic Effects of Biomass and Polyurethane Co-Pyrolysis on the Yield, Reactivity, and Heating Value of Biochar at High Temperatures.” Fuel Processing Technology 194 (May), doi:10.1016/j.fuproc.2019.106127.
  • Wen, Yuming, Ilman Nuran Zaini, Shule Wang, Wangzhong Mu, Pär Göran Jönsson, and Weihong Yang. 2021. “Synergistic Effect of the Co-Pyrolysis of Cardboard and Polyethylene: A Kinetic and Thermodynamic Study.” Energy 229), doi:10.1016/j.energy.2021.120693.
  • Yuan, Haoran, Chengyu Li, Rui Shan, Jun Zhang, Yufeng Wu, and Yong Chen. 2022. “Recent Developments on the Zeolites Catalyzed Polyolefin Plastics Pyrolysis.” Fuel Processing Technology 238 (June): 107531. doi:10.1016/j.fuproc.2022.107531.
  • Zaker, Ali, Zhi Chen, Mohammed Zaheer-Uddin, and Jianbo Guo. 2021. “Co-Pyrolysis of Sewage Sludge and Low-Density Polyethylene – A Thermogravimetric Study of Thermo-Kinetics and Thermodynamic Parameters.” Journal of Environmental Chemical Engineering 9 (1): 104554. doi:10.1016/j.jece.2020.104554.
  • Zhang, Wenlong, Juan Zhang, Yanming Ding, Qize He, Kaihua Lu, and Haiyan Chen. 2021. “Pyrolysis Kinetics and Reaction Mechanism of Expandable Polystyrene by Multiple Kinetics Methods.” Journal of Cleaner Production 285: 125042. doi:10.1016/j.jclepro.2020.125042.
  • Zheng, Yunwu, Lei Tao, Xiaoqing Yang, Yuanbo Huang, Can Liu, and Zhifeng Zheng. 2018. “Study of the Thermal Behavior, Kinetics, and Product Characterization of Biomass and Low-Density Polyethylene Co-Pyrolysis by Thermogravimetric Analysis and Pyrolysis-GC/MS.” Journal of Analytical and Applied Pyrolysis 133: 185–197. doi:10.1016/j.jaap.2018.04.001.
  • Zhou, Simiao, Lujia Han, Guangqun Huang, Zengling Yang, and Jizhen Peng. 2018. “Pyrolysis Characteristics and Gaseous Product Release Properties of Different Livestock and Poultry Manures: Comparative Study Regarding Influence of Inherent Alkali Metals.” Journal of Analytical and Applied Pyrolysis 134 (June): 343–350. doi:10.1016/j.jaap.2018.06.024.