1,144
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Molybdenum-Tungsten carbides based electrocatalysts for hydrogen evolution reaction

, &
Pages 91-102 | Received 23 Jun 2022, Accepted 29 Jan 2023, Published online: 10 Feb 2023

References

  • Abad, M. D., M. A. Muñoz-Márquez, S. El Mrabet, A. Justo, and J. C. Sánchez-López. 2010. “Tailored Synthesis of Nanostructured WC/a-C Coatings by Dual Magnetron Sputtering.” Surface and Coatings Technology 204 (21–22): 3490–3500. doi:10.1016/j.surfcoat.2010.04.019.
  • Buitendach, B., E. Erasmus, J. Niemantsverdriet, and J. Swarts. 2016. “Properties of Manganese(III) Ferrocenyl-β-Diketonato Complexes Revealed by Charge Transfer and Multiplet Splitting in the Mn 2p and Fe 2p X-Ray Photoelectron Envelopes.” Molecules 21 (11): 1427. doi:10.3390/molecules21111427.
  • Chen, M., Y. Ma, Y. Zhou, C. Liu, Y. Qin, Y. Fang, G. Guan, X. Li, Z. Zhang, and T. Wang. 2018. “Influence of Transition Metal on the Hydrogen Evolution Reaction Over Nano-Molybdenum-Carbide Catalyst.” Catalysts 8 (7): 294. doi:10.3390/catal8070294.
  • Czyzniewski, A. 2003. “Deposition and Some Properties of Nanocrystalline WC and Nanocomposite WC/a-C:H Coatings.” Thin Solid Films 433 (1–2): 180–185. doi:10.1016/S0040-6090(03)00324-9.
  • Darband, G. B., M. Aliofkhazraei, A. S. Rouhaghdam, and M. A. Kiani. 2019. “Three-Dimensional Ni-Co Alloy Hierarchical Nanostructure as Efficient Non-Noble-Metal Electrocatalyst for Hydrogen Evolution Reaction.” Applied Surface Science 465: 846–862. doi:10.1016/j.apsusc.2018.09.204.
  • Erasmus, E., J. W. (Hans) Niemantsverdriet, and J. C. Swarts. 2012. “Preparation and Characterization of Supported Bimetallic PdIV–CoIII Model Catalyst from Organometallic Single Source Precursor for Aerobic Oxidation of Alcohols.” Langmuir 28 (47): 16477–16484. doi:10.1021/la3032978.
  • Gao, S., H. Chen, Y. Liu, G.-D. Li, R. Gao, and X. Zou. 2019. “Surface-Clean, Phase-Pure Multi-Metallic Carbides for Efficient Electrocatalytic Hydrogen Evolution Reaction.” Inorganic Chemistry Frontiers 6 (4): 940–947. doi:10.1039/C8QI01360H.
  • Gao, L., Y. Shi, Z. Yao, H. Gao, Y. Sun, F. Liang, and B. Jiang. 2018. “Phenolic Resin as a Carbon Source for the Synthesis of Monometallic Mo and Bimetallic CoMo Carbides via Carbothermal Reduction Route.” Phosphorus, Sulfur, and Silicon and the Related Elements 193 (5): 267–272. doi:10.1080/10426507.2017.1418740.
  • Gerber, S. J., and E. Erasmus. 2018. “Surfactant-Stabilized Nano-Metal Hexacyanoferrates with Electrocatalytic and Heterogeneous Catalytic Applications.” Transition Metal Chemistry 43 (5): 409–420. doi:10.1007/s11243-018-0228-2.
  • Gómez-Marín, A. M., and E. A. Ticianelli. 2017. “Effect of Transition Metals in the Hydrogen Evolution Electrocatalytic Activity of Molybdenum Carbide.” Applied Catalysis B: Environmental 209: 600–610. doi:10.1016/j.apcatb.2017.03.044.
  • Gong, Q., Y. Wang, Q. Hu, J. Zhou, R. Feng, P. N. Duchesne, P. Zhang, et al. 2016. “Ultrasmall and Phase-Pure W2C Nanoparticles for Efficient Electrocatalytic and Photoelectrochemical Hydrogen Evolution.” Nature Communications 7 (1): 13216. doi:10.1038/ncomms13216.
  • Greeley, J., T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov. 2006. “Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution.” Nature Materials 5 (11): 909–913. doi:10.1038/nmat1752.
  • Ha, G. H., and B. K. Kim. 2002. “Synthesis of Ultrafine WC/Co Powder by Mechanochemical Process.” Powder Metallurgy 45 (1): 29–32. doi:10.1179/003258902225001506.
  • Hirose, T., Y. Ozawa, and M. Nagai. 2011. “Preparation of a Nickel Molybdenum Carbide Catalyst and Its Activity in the Dry Reforming of Methane.” Chinese Journal of Catalysis 32 (5): 771–776. doi:10.1016/S1872-2067(10)60185-4.
  • Hu, Z., L. Zhang, J. Huang, Z. Feng, Q. Xiong, Z. Ye, Z. Chen, X. Li, and Z. Yu. 2021. “Self-Supported Nickel-Doped Molybdenum Carbide Nanoflower Clusters on Carbon Fiber Paper for an Efficient Hydrogen Evolution Reaction.” Nanoscale 13 (17): 8264–8274. doi:10.1039/D1NR00169H.
  • Krasovskii, P. V., O. S. Malinovskaya, A. V. Samokhin, Y. V. Blagoveshchenskiy, VА Kazakov, and AА Ashmarin. 2015. “XPS Study of Surface Chemistry of Tungsten Carbides Nanopowders Produced Through DC Thermal Plasma/Hydrogen Annealing Process.” Applied Surface Science 339: 46–54. doi:10.1016/j.apsusc.2015.02.152.
  • Lei, D., M. Nie, Y. Cao, W. Zuo, X. Tian, Z. Zhao, and Q. Li. 2018. “Properties of AuPdPt-WC/C Nanocomposite Catalyst in Simulated Seawater Solution for Hydrogen Evolution.” Materials Research Innovations 22 (4): 183–186. doi:10.1080/14328917.2017.1287491.
  • Li, S., and B. Fei. 2022. “Two-Dimensional Transition Metal-Based Electrocatalyst and Their Application in Water Splitting.” Materials Science and Technology 38 (9): 535–555. doi:10.1080/02670836.2022.2062644.
  • Li, X., D. Ma, L. Chen, and X. Bao. 2007. “Fabrication of Molybdenum Carbide Catalysts Over Multi-Walled Carbon Nanotubes by Carbothermal Hydrogen Reduction.” Catalysis Letters 116 (1–2): 63–69. doi:10.1007/s10562-007-9093-x.
  • Lin, H., N. Liu, Z. Shi, Y. Guo, Y. Tang, and Q. Gao. 2016a. “Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution.” Advanced Functional Materials 26 (31): 5590–5598. doi:10.1002/adfm.201600915.
  • Lin, H., Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, and Y. Tang. 2016b. “Heteronanowires of MoC–Mo2C as Efficient Electrocatalysts for Hydrogen Evolution Reaction.” Chemical Science 7 (5): 3399–3405. doi:10.1039/C6SC00077K.
  • Liu, Y., G.-D. Li, L. Yuan, L. Ge, H. Ding, D. Wang, and X. Zou. 2015. “Carbon-Protected Bimetallic Carbide Nanoparticles for a Highly Efficient Alkaline Hydrogen Evolution Reaction.” Nanoscale 7 (7): 3130–3136. doi:10.1039/C4NR06295G.
  • Mabuea, B. P., H. C. Swart, and E. Erasmus. 2022. “Photocatalytic Decomposition of an Azo Dye Using Transition-Metal-Doped Tungsten and Molybdenum Carbides.” ACS Omega 7 (27): 23401–23411. doi:10.1021/acsomega.2c01727.
  • Miao, M., J. Pan, T. He, Y. Yan, B. Y. Xia, and X. Wang. 2017. “Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction.” Chemistry – A European Journal 23 (46): 10947–10961. doi:10.1002/chem.201701064.
  • Michalsky, R., Y.-J. Zhang, A. J. Medford, and A. A. Peterson. 2014. “Departures from the Adsorption Energy Scaling Relations for Metal Carbide Catalysts.” The Journal of Physical Chemistry C 118 (24): 13026–13034. doi:10.1021/jp503756g.
  • Moulder, J. F., W. F. Stickle, P. E. Sobol, and K. D. Bomben. 1995. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Chigasaki: ULVAC-PHI, Inc.
  • Nagai, M., and K. Matsuda. 2006. “Low-Temperature Water–Gas Shift Reaction Over Cobalt–Molybdenum Carbide Catalyst.” Journal of Catalysis 238 (2): 489–496. doi:10.1016/j.jcat.2006.01.003.
  • Roohi, P., R. Alizadeh, and E. Fatehifar. 2016. “Dry Reforming of Methane Over Nano-Mo2C/Al2O3 Catalyst: Effect of Carburization Conditions on Excess Carbon Deposition.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (24): 3565–3571. doi:10.1080/15567036.2016.1198848.
  • Saeed, N. A. M., E. Coetsee, R. E. Kroon, M. Bettinelli, and H. C. Swart. 2021. “Photoluminescence of Bi3+ Doped in YOF Phosphor as an Activator.” Optical Materials 119: 111291. doi:10.1016/j.optmat.2021.111291.
  • Sapountzi, F. M., J. M. Gracia, C. J. (Kees-J.) Weststrate, H. O. A. Fredriksson, and J. W. (Hans) Niemantsverdriet. 2017. “Electrocatalysts for the Generation of Hydrogen, Oxygen and Synthesis Gas.” Progress in Energy and Combustion Science 58: 1–35. doi:10.1016/j.pecs.2016.09.001.
  • Singla, G., K. Singh, and O. P. Pandey. 2015. “Effect of Processing Variables on WC Nanoparticles Synthesized by Solvothermal Route.” Particulate Science and Technology 33 (1): 47–52. doi:10.1080/02726351.2014.933147.
  • Smirnov, A. A., Z. Geng, S. A. Khromova, S. G. Zavarukhin, O. A. Bulavchenko, A. A. Saraev, V. V. Kaichev, D. Y. Ermakov, and V. A. Yakovlev. 2017. “Nickel Molybdenum Carbides: Synthesis, Characterization, and Catalytic Activity in Hydrodeoxygenation of Anisole and Ethyl Caprate.” Journal of Catalysis 354: 61–77. doi:10.1016/j.jcat.2017.07.009.
  • Song, H. J., M. Sung, H. Yoon, B. Ju, and D. Kim. 2019. “Ultrafine Α-Phase Molybdenum Carbide Decorated with Platinum Nanoparticles for Efficient Hydrogen Production in Acidic and Alkaline Media.” Advanced Science 6 (8): 1802135. doi:10.1002/advs.201802135.
  • Sun, T., J. Cao, J. Dong, H. Du, H. Zhang, J. Chen, and L. Xu. 2017. “Ordered Mesoporous Ni Co Alloys for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction.” International Journal of Hydrogen Energy 42 (10): 6637–6645. doi:10.1016/j.ijhydene.2017.01.071.
  • Tominaga, H., Y. Aoki, and M. Nagai. 2012. “Hydrogenation of CO on Molybdenum and Cobalt Molybdenum Carbides.” Applied Catalysis A: General 423–424: 192–204. doi:10.1016/j.apcata.2012.02.041.
  • Voevodin, A. A., J. P. O’Neill, S. V. Prasad, and J. S. Zabinski. 1999. “Nanocrystalline WC and WC/a-C Composite Coatings Produced from Intersected Plasma Fluxes at Low Deposition Temperatures.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17 (3): 986–992. doi:10.1116/1.581674.
  • Wan, C., Y. N. Regmi, and B. M. Leonard. 2014. “Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction.” Angewandte Chemie 126 (25): 6525–6528. doi:10.1002/ange.201402998.
  • Wang, X.-H., H.-L. Hao, M.-H. Zhang, W. Li, and K.-Y. Tao. 2006. “Synthesis and Characterization of Molybdenum Carbides Using Propane as Carbon Source.” Journal of Solid State Chemistry 179 (2): 538–543. doi:10.1016/j.jssc.2005.11.009.
  • Wang, J., H. Wei, X. Chen, C. Chen, and X. Chen. 2020. “Facile Preparation of N, P Co-Doped Molybdenum Carbide / Porous Carbon Rough Microspheres for Efficient Electrocatalytic Hydrogen Evolution.” International Journal of Hydrogen Energy 45 (1): 595–604. doi:10.1016/j.ijhydene.2019.10.241.
  • Wei, H., Q. Xi, X. Chen, D. Guo, F. Ding, Z. Yang, S. Wang, J. Li, and S. Huang. 2018. “Molybdenum Carbide Nanoparticles Coated Into the Graphene Wrapping N-Doped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media.” Advanced Science 5 (3): 1700733. doi:10.1002/advs.201700733.
  • Xiong, K., L. Li, L. Zhang, W. Ding, L. Peng, Y. Wang, S. Chen, S. Tan, and Z. Wei. 2015. “Ni-Doped Mo2C Nanowires Supported on Ni Foam as a Binder-Free Electrode for Enhancing the Hydrogen Evolution Performance.” Journal of Materials Chemistry A 3 (5): 1863–1867. doi:10.1039/C4TA05686H.
  • Xu, X., F. Nosheen, and X. Wang. 2016. “Ni-Decorated Molybdenum Carbide Hollow Structure Derived from Carbon-Coated Metal–Organic Framework for Electrocatalytic Hydrogen Evolution Reaction.” Chemistry of Materials 28 (17): 6313–6320. doi:10.1021/acs.chemmater.6b02586.
  • Yu, W., M. D. Porosoff, and J. G. Chen. 2012. “Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts.” Chemical Reviews 112 (11): 5780–5817. doi:10.1021/cr300096b.
  • Zhu, J., L. Hu, P. Zhao, L. Y. S. Lee, and K.-Y. Wong. 2020. “Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles.” Chemical Reviews 120 (2): 851–918. doi:10.1021/acs.chemrev.9b00248.