503
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the challenges of biogas provision in water limited environments through laboratory scale biodigesters

ORCID Icon, ORCID Icon & ORCID Icon
Pages 829-844 | Received 16 Jan 2023, Accepted 15 Jun 2023, Published online: 21 Jul 2023

References

  • Ahn, H.K., M.C. Smith, S.L. Kondrad, and J.W. White. 2010. “Evaluation of Biogas Production Potential by Dry Anaerobic Digestion of Switchgrass-Animal Manure Mixtures.” Applied Biochemistry and Biotechnology 160 (4): 965–975. https://doi.org/10.1007/s12010-009-8624-x.
  • Bansal, V., V. Tumwesige, and J.U. Smith. 2017. “Water for Small-Scale Biogas Digesters in sub-Saharan Africa.” GCB Bioenergy 9 (2): 339–357. https://doi.org/10.1111/gcbb.12339.
  • Bruun, S., S.L. Jensen, V.T. Khanh, and S. Sommer. 2014. “Small-scale Household Biogas Digesters: An Option for Global Warming Mitigation or a Potential Climate Bomb?” Renewable and Sustainable Energy Reviews 33: 736–741. https://doi.org/10.1016/j.rser.2014.02.033.
  • Budiyono, Widiasa, I.N. Johari, and S. Sunarso. 2010. “The Influence of Total Solid Contents on Biogas Yield from Cattle Manure Using Rumen Fluid Inoculum.” Energy Research Journal 1 (1): 6–11. https://doi.org/10.3844/erjsp.2010.6.11.
  • Capson-Tojo, G., R. Moscoviz, S. Astals, Robles, and J.P. Steyer. 2020. “Unraveling the Literature Chaos Around Free Ammonia Inhibition in Anaerobic Digestion.” Renewable and Sustainable Energy Reviews 117 (September 2019): 109487. https://doi.org/10.1016/j.rser.2019.109487.
  • Caruso, B. 2017. Women Still Carry Most of the World’s Water. The Conversation. https://theconversation.com/women-still-carry-most-of-the-worlds-water-81054.
  • Cassivi, A., E.O. Waygood, and C.C. Dorea. 2018. “Collection Time Inequalities: Fetching Water in Ethiopia.” Transformation Towards Sustainable and Resilient WASH Services: Proceedings of the 41st WEDC International Conference, Paper 3071, 6 pp.
  • Chica, E., and J.F. Pérez. 2019. “Development and Performance Evaluation of an Improved Biomass Cookstove for Isolated Communities from Developing Countries.” Case Studies in Thermal Engineering 14 (March): 100435. https://doi.org/10.1016/j.csite.2019.100435.
  • Dionisi, D., I. Bolaji, D. Nabbanda, and I.M.O. Silva. 2018. “Calculation of the Potential Production of Methane and Chemicals Using Anaerobic Digestion.” Biofuels, Bioproducts and Biorefining 12 (5): 788–801. https://doi.org/10.1002/bbb.1884.
  • Dong, L., Y. Zhenhong, and S. Yongming. 2010. “Semi-Dry Mesophilic Anaerobic Digestion of Water Sorted Organic Fraction of Municipal Solid Waste (WS-OFMSW).” Bioresource Technology 101 (8): 2722–2728. https://doi.org/10.1016/j.biortech.2009.12.007.
  • Dumas, C., S. Perez, E. Paul, and X. Lefebvre. 2010. “Combined Thermophilic Aerobic Process and Conventional Anaerobic Digestion: Effect on Sludge Biodegradation and Methane Production.” Bioresource Technology 101 (8): 2629–2636. https://doi.org/10.1016/j.biortech.2009.10.065.
  • Edelmann, W., and H. Engeli. 2015. The Arbi Plug-Flow Digester in Tanzania: A Medium-size Biogas Plant for Developing Countries. http://www.repic.ch/files/6514/3645/5889/SB_Arbi_Tansania_vf_klein.pdf.
  • Guarino, G., C. Carotenuto, F. Di Cristofaro, S. Papa, B. Morrone, and M. Minale. 2016. “Does the C/N Ratio Really Affect the bio-Methane Yield? A Three Years Investigation of Buffalo Manure Digestion.” Chemical Engineering Transactions 49: 463–468. https://doi.org/10.3303/CET1649078.
  • Gupta, K.K., K.R. Aneja, and D. Rana. 2016. “Current Status of Cow Dung as a Bioresource for Sustainable Development.” Bioresources and Bioprocessing 3 (1), https://doi.org/10.1186/s40643-016-0105-9.
  • Guta, D.D., J. Jara, N.P. Adhikari, Q. Chen, V. Gaur, and A. Mirzabaev. 2017. “Assessment of the Successes and Failures of Decentralized Energy Solutions and Implications for the Water-Energy-Food Security Nexus: Case Studies from Developing Countries.” Resources 6 (3): 24–15. https://doi.org/10.3390/resources6030024.
  • Harb, M., Y. Xiong, J. Guest, G. Amy, and P.Y. Hong. 2015. “Supplementary Material: Differences in Microbial Communities and Performance Between Suspended and Attached Growth Anaerobic Membrane Bioreactors Treating Synthetic Municipal Wastewater.” Environmental Science: Water Research and Technology 1(6).
  • Haryanto, A., U. Hasanudin, C. Afrian, and I. Zulkarnaen. 2018. “Biogas Production from Anaerobic Codigestion of Cowdung and Elephant Grass (Pennisetum Purpureum) Using Batch Digester.” IOP Conference Series: Earth and Environmental Science 141 (1), https://doi.org/10.1088/1755-1315/141/1/012011.
  • Hewitt, J., M. Holden, B.L. Robinson, S. Jewitt, and M.J. Clifford. 2022. “Not Quite Cooking on gas: Understanding Biogas Plant Failure and Abandonment in Northern Tanzania.” Renewable and Sustainable Energy Reviews 165 (March): 112600. https://doi.org/10.1016/j.rser.2022.112600.
  • IEA. 2016. Energy and Air Pollution - Executive Summary. In World Energy Outlook, Special Report. https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlookSpecialReportEnergyandAirPollution_Executivesummary_EnglishVersion.pdf.
  • IPCC. 2019. Special Report: Climate Change and Land. Chapter 2. Land–Climate interactions. https://www.ipcc.ch/srccl/chapter/chapter-2/.
  • Kabera, T., H. Nishimwe, I. Imanantirenganya, and M.K. Mbonyi. 2016. “Impact and Effectiveness of Rwanda’s National Domestic Biogas Programme.” International Journal of Environmental Studies 73 (3): 402–421. https://doi.org/10.1080/00207233.2016.1165480.
  • Kalina, M., JÒ Ogwang, and E. Tilley. 2022. “From Potential to Practice: Rethinking Africa’s Biogas Revolution.” Humanities and Social Sciences Communications 9), https://doi.org/10.1057/s41599-022-01396-x.
  • Kamp, L.M., and E. Bermúdez Forn. 2016. “Ethiopia׳s Emerging Domestic Biogas Sector: Current Status, Bottlenecks and Drivers.” Renewable and Sustainable Energy Reviews 60: 475–488. https://doi.org/10.1016/j.rser.2016.01.068.
  • Kelebe, H.E., K.M. Ayimut, G.H. Berhe, and K. Hintsa. 2017. “Determinants for Adoption Decision of Small Scale Biogas Technology by Rural Households in Tigray, Ethiopia.” Energy Economics 66: 272–278. https://doi.org/10.1016/j.eneco.2017.06.022.
  • Kemausuor, F., M.S. Adaramola, and J. Morken. 2018. “A Review of Commercial Biogas Systems and Lessons for Africa.” Energies 11 (11): 2984. https://doi.org/10.3390/en11112984.
  • Kothari, R., A.K. Pandey, S. Kumar, V.V. Tyagi, and S.K. Tyagi. 2014. “Different Aspects of dry Anaerobic Digestion for Bio-Energy: An Overview.” Renewable and Sustainable Energy Reviews 39: 174–195. https://doi.org/10.1016/j.rser.2014.07.011.
  • Luo, L., G. Kaur, J. Zhao, J. Zhou, S. Xu, S. Varjani, W. Jonathan, and C. Wong. 2021. “Optimization of Water Replacement During Leachate Recirculation for Two-Phase Food Waste Anaerobic Digestion System with off-gas Diversion.” Bioresource Technology 335 (April): 125234. https://doi.org/10.1016/j.biortech.2021.125234.
  • Meegoda, J.N., B. Li, K. Patel, and L.B. Wang. 2018. “A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion.” International Journal of Environmental Research and Public Health 15 (10): 2224. https://doi.org/10.3390/ijerph15102224.
  • Merck. 2019. Spectroquant® COD Cell Test. https://www.merckmillipore.com/GB/en/product/COD-Cell-Test,MDA_CHEM-101797?bd=1#anchor_PI.
  • Møller, H.B., S.G. Sommer, and B.K. Ahring. 2004. “Methane Productivity of Manure, Straw and Solid Fractions of Manure.” Biomass and Bioenergy 26 (5): 485–495. https://doi.org/10.1016/j.biombioe.2003.08.008.
  • Nyiwul, L. 2020. “Climate Change Adaptation and Inequality in Africa: Case of Water, Energy and Food Insecurity.” Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2020.123393.
  • Orskov, E.R., K. Yongabi Anchang, M. Subedi, and J. Smith. 2014. “Overview of Holistic Application of Biogas for Small Scale Farmers in Sub-Saharan Africa.” Biomass and Bioenergy 70: 4–16. https://doi.org/10.1016/j.biombioe.2014.02.028.
  • Pezzolla, D., F. Di Maria, C. Zadra, L. Massaccesi, A. Sordi, and G. Gigliotti. 2017. “Optimization of Solid-State Anaerobic Digestion Through the Percolate Recirculation.” Biomass and Bioenergy 96: 112–118. https://doi.org/10.1016/j.biombioe.2016.11.012.
  • Quak, E. 2018. The Costs and Benefits of Lighting and Electricity Services for Off-Grid Populations in Sub-Sahara Africa. https://assets.publishing.service.gov.uk/media/5af96657ed915d0df4e8cdea/Costs_Benefits_Off-Grid_Electricity_Lighting_Systems.pdf.
  • Rajendran, K., S. Aslanzadeh, and M.J. Taherzadeh. 2012. “Household Biogas Digesters—A Review.” Energies 5 (8): 2911–2942. https://doi.org/10.3390/en5082911.
  • Rocamora, I., S.T. Wagland, R. Villa, E.W. Simpson, O. Fernández, and Y. Bajón-Fernández. 2020. “Dry Anaerobic Digestion of Organic Waste: A Review of Operational Parameters and Their Impact on Process Performance.” Bioresource Technology 299 (September 2019): 122681. https://doi.org/10.1016/j.biortech.2019.122681.
  • Roopnarain, A., and R. Adeleke. 2017. “Current Status, Hurdles and Future Prospects of Biogas Digestion Technology in Africa.” Renewable and Sustainable Energy Reviews 67: 1162–1179. https://doi.org/10.1016/j.rser.2016.09.087.
  • Rupf, G.V., P.A. Bahri, K. de Boer, and M.P. McHenry. 2017. “Development of an Optimal Biogas System Design Model for Sub-Saharan Africa with Case Studies from Kenya and Cameroon.” Renewable Energy 109. https://doi.org/10.1016/j.renene.2017.03.048.
  • Saady, N.M.C., and D.I. Massé. 2015a. “High Rate Psychrophilic Anaerobic Digestion of High Solids (35%) Dairy Manure in Sequence Batch Reactor.” Bioresource Technology 186: 74–80. https://doi.org/10.1016/j.biortech.2015.03.038.
  • Saady, N.M.C., and D.I. Massé. 2015b. “Impact of Organic Loading Rate on the Performance of Psychrophilic Dry Anaerobic Digestion of Dairy Manure and Wheat Straw: Long-Term Operation.” Bioresource Technology 182: 50–57. https://doi.org/10.1016/j.biortech.2015.01.065.
  • Saady, N.M.C., and D.I. Massé. 2016. “Feasibility and Performance of High-Rate Psychrophilic dry Anaerobic Digestion of High Solids Content Dairy Manure.” International Journal of Recycling of Organic Waste in Agriculture 5 (1): 33–42. https://doi.org/10.1007/s40093-016-0115-9.
  • Silva, I.M.O., and D. Dionisi. 2020. “Effect of the Operating Conditions on the Anaerobic Digestion of Wheatgrass for Chemicals and Energy Production.” Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-020-00735-9.
  • Sime, G. 2020. “Technical and Socioeconomic Constraints to the Domestication and Functionality of Biogas Technology in Rural Areas of Southern Ethiopia.” Cogent Engineering 7 (1): 1765686. https://doi.org/10.1080/23311916.2020.1765686.
  • Smith, J., A. Apsley, L. Avery, E. Baggs, B. Balana, … K. Yongabi. 2013. “The Potential of Small-Scale Biogas Digesters to Alleviate Poverty and Improve Long Term Sustainability of Ecosystem Services in Sub-Saharan Africa. 1st World Sustain.” Forum (chicago, Ill ) 5 (10): 2911–2942. https://doi.org/10.3390/en5082911.
  • Surendra, K.C., D. Takara, A.G. Hashimoto, and S.K. Khanal. 2014. “Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges.” Renewable and Sustainable Energy Reviews 31: 846–859. https://doi.org/10.1016/j.rser.2013.12.015.
  • ter Heegde, F. 2010. Domestic Biogas Plants: Sizes and Dimensions. http://www.sswm.info/content/anaerobic-digestion-small-scale.
  • Tolessa, A., T.M. Louw, and N.J. Goosen. 2022. “Probabilistic Techno-Economic Assessment of Anaerobic Digestion Predicts Economic Benefits to Smallholder Farmers with Quantifiable Certainty.” Waste Management 138 (November 2021): 8–18. https://doi.org/10.1016/j.wasman.2021.11.004.
  • Troncoso, K., A. Castillo, L. Merino, E. Lazos, and O.R. Masera. 2011. “Understanding an Improved Cookstove Program in Rural Mexico: An Analysis from the Implementers’ Perspective.” Energy Policy 39 (12): 7600–7608. https://doi.org/10.1016/j.enpol.2011.04.070.
  • Tucho, G.T., H.C. Moll, A.J.M. Schoot Uiterkamp, and S. Nonhebel. 2016. “Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements.” Energies 9 (9): 750. https://doi.org/10.3390/en9090750.
  • Uckert, G., J. Hafner, F. Graef, H. Hoffmann, A. Kimaro, O. Sererya, and S. Sieber. 2017. “Farmer Innovation Driven by Needs and Understanding: Building the Capacities of Farmer Groups for Improved Cooking Stove Construction and Continued Adaptation.” Environmental Research Letters 12 (12): 125001. https://doi.org/10.1088/1748-9326/aa88d5.
  • Wang, Z., Y. Jiang, S. Wang, Y. Zhang, Y. Hu, Z. Hu, G. Wu, and X. Zhan. 2020. “Impact of Total Solids Content on Anaerobic co-Digestion of Pig Manure and Food Waste: Insights Into Shifting of the Methanogenic Pathway.” Waste Management 114: 96–106. https://doi.org/10.1016/j.wasman.2020.06.048.
  • Wardle, J. M., A. Fischer, Y. Tesfaye, and J. Smith. 2021. “Seasonal Variability of Resources: The Unexplored Adversary of Biogas use in Rural Ethiopia.” Current Research in Environmental Sustainability 3: 100072. https://doi.org/10.1016/j.crsust.2021.100072.
  • World Nuclear Association. 2020. Heat Values of Various Fuels. https://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx.
  • Yin, F., H. Dong, W. Zhang, Z. Zhu, and B. Shang. 2018. “Antibiotic Degradation and Microbial Community Structures During Acidification and Methanogenesis of Swine Manure Containing Chlortetracycline or Oxytetracycline.” Bioresource Technology 250 (September 2017): 247–255. https://doi.org/10.1016/j.biortech.2017.11.015.