1,524
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Pyrolysis of Colombian spent coffee grounds (SCGs), characterization of bio-oil, and study of its antioxidant properties

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 811-829 | Received 08 Oct 2022, Accepted 07 Jun 2023, Published online: 18 Jul 2023

References

  • Aksoy, L., E. Kolay, Y. Ağılönü, Z. Aslan, and M. Kargıoğlu. 2013. “Free Radical Scavenging Activity, Total Phenolic Content, Total Antioxidant Status, and Total Oxidant Status of Endemic Thermopsis Turcica.” Saudi Journal of Biological Sciences 20 (3): 235–239. https://doi.org/10.1016/j.sjbs.2013.02.003.
  • Anex, R. P., A. Aden, F. K. Kazi, J. Fortman, R. M. Swanson, M. M. Wright, J. A. Satrio, R. C. Brown, D. E. Daugaard, and A. Platon. 2010. “Techno-economic Comparison of Biomass-to-Transportation Fuels via Pyrolysis, Gasification, and Biochemical Pathways.” Fuel 89 (SUPPL. 1): S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015.
  • Ballesteros, L. F., J. A. Teixeira, and S. I. Mussatto. 2014. “Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin.” Food and Bioprocess Technology 7 (12): 3493–3503. https://doi.org/10.1007/s11947-014-1349-z.
  • Baroni, ÉDG, K. Tannous, Y. J. Rueda-Ordóñez, and L. K. Tinoco-Navarro. 2016. “The Applicability of Isoconversional Models in Estimating the Kinetic Parameters of Biomass Pyrolysis.” Journal of Thermal Analysis and Calorimetry 123 (2): 909–917. https://doi.org/10.1007/s10973-015-4707-9.
  • Benzie, I. F. F., and J. J. Strain. 1996. “The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘Antioxidant Power’: The FRAP Assay.” Analytical Biochemistry 239 (1): 70–76. https://doi.org/10.1006/abio.1996.0292.
  • Bok, J. P., H. S. Choi, Y. S. Choi, H. C. Park, and S. J. Kim. Nov. 2012. “Fast Pyrolysis of Coffee Grounds: Characteristics of Product Yields and Biocrude oil Quality.” Energy 47 (1): 17–24. https://doi.org/10.1016/j.energy.2012.06.003.
  • Brachi, P., V. Santes, and E. Torres-García. 2021. “Pyrolytic Degradation of Spent Coffee Ground: A Thermokinetic Analysis Through the Dependence of Activation Energy on Conversion and Temperature.” Fuel 302: 120995. https://doi.org/10.1016/j.fuel.2021.120995.
  • Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. “Use of a Free Radical Method to Evaluate Antioxidant Activity.” LWT - Food Science and Technology 28 (1): 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.
  • Burnham, A. K., and L. N. Dinh. 2007. “A Comparison of Isoconversional and Model-Fitting Approaches to Kinetic Parameter Estimation and Application Predictions.” Journal of Thermal Analysis and Calorimetry 89: 479–490. https://doi.org/10.1007/s10973-006-8486-1.
  • CH2MHILL. 2009. Waste to Energy Review of Alternatives.
  • Chaiya, C. 2011. “Production Of Bio-Oil from Coffee Residue Using Pyrolysis Process.” Proceedings of the world congress on engineering and computer science, 2, 19–21.
  • Chandrasekaran, S. R., D. Murali, K. A. Marley, R. A. Larson, K. M. Doll, B. R. Moser, J. Scott, and B. K. Sharma. 2016. “Antioxidants from Slow Pyrolysis Bio-Oil of Birch Wood: Application for Biodiesel and Biobased Lubricants.” ACS Sustainable Chemistry and Engineering 4 (3): 1414–1421. https://doi.org/10.1021/acssuschemeng.5b01302.
  • Chen, W. H., Y. S. Chu, J. L. Liu, and J. S. Chang. Mar. 2018. “Thermal Degradation of Carbohydrates, Proteins and Lipids in Microalgae Analyzed by Evolutionary Computation.” Energy Conversion and Management 160: 209–219. https://doi.org/10.1016/J.ENCONMAN.2018.01.036.
  • Chen, Jiacong, Jingyong Liu, Yao He, Limao Huang, Shuiyu Sun, Jian Sun, KenLin Chang, Jiahong Kuo, Shaosong Huang, and Xunan Ning. 2017. “Investigation of co-Combustion Characteristics of Sewage Sludge and Coffee Grounds Mixtures Using Thermogravimetric Analysis Coupled to Artificial Neural Networks Modeling.” Bioresource Technology 225: 234–245. https://doi.org/10.1016/j.biortech.2016.11.069.
  • Demirbaş, A., and G. Arin. May 2002. “An Overview of Biomass Pyrolysis.” Energy Sources - Energy Source 24: 471–482. https://doi.org/10.1080/00908310252889979.
  • Durán-Aranguren, D. D., Sebastian Robledo, Eduardo Gomez-Restrepo, Jorge W. Arboleda Valencia, and Natalia A. Tarazona. Dec. 2021. “Scientometric Overview of Coffee By-Products and Their Applications.” Molecules 26 (24): 7605. https://doi.org/10.3390/MOLECULES26247605.
  • Fan, Q., P. Fu, C. Song, and Y. Fan. Jan. 2023. “Valorization of Waste Biomass Through Hydrothermal Liquefaction: A Review with Focus on Linking Hydrothermal Factors to Products Characteristics.” Industrial Crops and Products 191: 116017. https://doi.org/10.1016/J.INDCROP.2022.116017.
  • Friedlingstein, P., M. O'Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, et al. Dec. 2020. “Global Carbon Budget 2020.” Earth System Science Data 12 (4): 3269–3340. https://doi.org/10.5194/essd-12-3269-2020.
  • Fuertes, A. B., M. C. Arbestain, M. Sevilla, J. A. Maciá-Agulló, S. Fiol, R. López, R. J. Smernik, W. P. Aitkenhead, F. Arce, and F. Macias. 2010. “Chemical and Structural Properties of Carbonaceous Products Obtained by Pyrolysis and Hydrothermal Carbonisation of Corn Stover.” Australian Journal of Soil Research 48: 618–626.
  • García-Péres, M., A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy. 2007. “Characterization of bio-Oils in Chemical Families.” Biomass and Bioenergy 31 (4): 222–242.
  • García-Pérez, M., T. T. Adams, J. W. Goodrum, K. Das, and D. P. Geller. 2010. “DSC Studies to Evaluate the Impact of bio-oil on Cold Flow Properties and Oxidation Stability of bio-Diesel.” Bioresource Technology 101 (15): 6219–6224.
  • Geller, D. P., T. T. Adams, J. Goodrum, and J. Pendergrass. 2008. “Storage Stability of Poultry fat and Diesel Fuel Mixtures: Specific Gravity and Viscosity.” Fuel 87 (1): 92–102.
  • Gnansounou, E., and C. M. Alves. 2019. “Chapter 8 - Integrated Sustainability Assessment of Biofuels.” In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition), edited by A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, and S. Ricke, 197–214. Academic Press. https://doi.org/10.1016/B978-0-12-816856-1.00008-7.
  • Gomez, J. P., J. P. A. Velez, M. A. Pinzon, J. A. M. Arango, and A. P. Muriel. 2021. “Chemical Characterization and Antiradical Properties of Pyroligneous Acid from a Preserved Bamboo, Guadua Angustifolia Kunth.” Brazilian Archives of Biology and Technology 64. https://doi.org/10.1590/1678-4324-2021190730.
  • Gray, Murray R., William H. Corcoran, and George R. Gavalas. Pyrolysis of a Wood-Derived Material. Effects Of Moisture and Ash Content.
  • Hazrat, M. A. 2021. “Techniques to Improve the Stability of Biodiesel: A Review.” Environmental Chemistry Letters 19 (3): 2209–2236.
  • Jang, H., J. D. Ocon, S. Lee, J. K. Lee, and J. Lee. 2015. “Direct Power Generation from Waste Coffee Grounds in a Biomass Fuel Cell.” Journal of Power Sources 296: 433–439. https://doi.org/10.1016/j.jpowsour.2015.07.059.
  • Jin, L., H. Zhang, and Z. Ma. 2018. “Study on Capacity of Coffee Grounds To Be Extracted oil, Produce Biodiesel and Combust.” Energy Procedia 152: 1296–1301. https://doi.org/10.1016/j.egypro.2018.09.185.
  • Kan, T., V. Strezov, and T. Evans. Jan. 2014. “Catalytic Pyrolysis of Coffee Grounds Using NiCu-Impregnated Catalysts.” Energy & Fuels 28 (1): 228–235. https://doi.org/10.1021/ef401511u.
  • Kerkel, F., D. Brock, D. Touraud, and W. Kunz. 2021. “Stabilization of Biofuels with Hydrophilic, Natural Antioxidants Solubilized by Glycerol Derivatives.” FUel 284: 119055.
  • Kim, K. H., T. S. Kim, S. M. Lee, D. H. Choi, H. Y. Yeo, I. G. Choi, and J. W. Choi. 2013. “Comparison of Physicochemical Features of Biooils and Biochars Produced from Various Woody Biomasses by Fast Pyrolysis.” Renewable Energy 50: 188–195. https://doi.org/10.1016/j.renene.2012.06.030.
  • Kim, E.-J., D. Seo, and K.-Y. Choi. 2020. “Bioalcohol Production from Spent Coffee Grounds and Okara Waste Biomass by Engineered Bacillus Subtilis.” Biomass Conversion and Biorefinery 10 (1): 167–173. https://doi.org/10.1007/s13399-019-00402-8.
  • Krause, M. C., A. C. Moitinho, L. F. R. Ferreira, R. L. de Souza, L. C. Krause, and E. B. Caramão. 2019. “Production and Characterization of the Bio-Oil Obtained by the Fast Pyrolysis of Spent Coffee Grounds of the Soluble Coffee Industry.” Journal of the Brazilian Chemical Society 30 (8): 1608–1615. https://doi.org/10.21577/0103-5053.20190059.
  • Kumar, A., and S. Sarkar. Jan. 2011. “Biohydrogen Production from Bio-oil.” Biofuels: Alternative Feedstocks and Conversion Processes, 481–497. https://doi.org/10.1016/B978-0-12-385099-7.00022-X.
  • Lee, Xin Jiat, Hwai Chyuan Ong, Wei Gao, Yong Sik Ok, Wei Hsin Chen, Brandon Han Hoe Goh, and Cheng Tung Chong. May 2021. “Solid Biofuel Production from Spent Coffee Ground Wastes: Process Optimisation, Characterisation and Kinetic Studies.” Fuel 292: 120309. https://doi.org/10.1016/J.FUEL.2021.120309.
  • Li, X., V. Strezov, and T. Kan. 2014. “Energy Recovery Potential Analysis of Spent Coffee Grounds Pyrolysis Products.” Journal of Analytical and Applied Pyrolysis 110: 79–87. https://doi.org/10.1016/j.jaap.2014.08.012.
  • Loo, A. Y., K. Jain, and I. Darah. 2007. “Antioxidant and Radical Scavenging Activities of the Pyroligneous Acid from a Mangrove Plant, Rhizophora Apiculata.” Food Chemistry 104 (1): 300–307. https://doi.org/10.1016/j.foodchem.2006.11.048.
  • Luz, F. C., S. Cordiner, A. Manni, V. Mulone, and V. Rocco. 2017. “Anaerobic Digestion of Coffee Grounds Soluble Fraction at Laboratory Scale: Evaluation of the Biomethane Potential.” Applied Energy 207: 166–175. https://doi.org/10.1016/j.apenergy.2017.06.042.
  • Magdziarz, A., and S. Werle. Jan. 2014. “Analysis of the Combustion and Pyrolysis of Dried Sewage Sludge by TGA and MS.” Waste Management 34 (1): 174–179. https://doi.org/10.1016/j.wasman.2013.10.033.
  • Mata, T. M., A. A. Martins, and N. S. Caetano. 2018. “Bio-refinery Approach for Spent Coffee Grounds Valorization.” Bioresource Technology 247: 1077–1084. https://doi.org/10.1016/j.biortech.2017.09.106.
  • Mathew, S., Z. A. Zakaria, and N. F. Musa. 2015. “Antioxidant Property and Chemical Profile of Pyroligneous Acid from Pineapple Plant Waste Biomass.” Process Biochemistry 50 (11): 1985–1992. https://doi.org/10.1016/j.procbio.2015.07.007.
  • Matrapazi, V. K., and A. Zabaniotou. 2020. “Experimental and Feasibility Study of Spent Coffee Grounds Upscaling via Pyrolysis Towards Proposing an eco-Social Innovation Circular Economy Solution.” Science of the Total Environment 718: 137316.
  • Ministerio de Agricultura y Desarrollo Rural. 2017. “Estadísticas Agronet.” pp. 3–5.
  • Mohan, D., C. U. Pittman, and P. H. Steele. 2006. “Pyrolysis of Wood/Biomass for bio-oil: A Critical Review.” Energy & Fuels 20: 848.
  • Moniru, I. M. 2017. “Influence of Poly(Methyl Acrylate) Additive on Cold Flow Properties of Coconut Biodiesel Blends and Exhaust gas Emissions.” Renewable Energy 101: 702–712.
  • Owen, A., and J. Kruijsen. 2013. “The Transition to Future Energy.” In Future Energy: Improved, Sustainable and Clean Options for our Planet, 2nd ed., vol. 2, 667–677. Boston: Elsevier. https://doi.org/10.1016/B978-0-08-099424-6.00030-2
  • Parikh, J., S. A. Channiwala, and G. K. Ghosal. 2007. “A Correlation for Calculating Elemental Composition from Proximate Analysis of Biomass Materials.” Fuel 86 (12–13): 1710–1719.
  • Polat, S., and P. Sayan. Mar. 2020. “Assessment of the Thermal Pyrolysis Characteristics and Kinetic Parameters of Spent Coffee Waste: A TGA-MS Study.” Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 1–14. https://doi.org/10.1080/15567036.2020.1736693.
  • Rabiu, Z., N. Mahmud, R. Hasham, and Z. Akmar Zakaria. 2019. “Characterization and Antioxidant Properties of Ethyl Acetate Fractions from Pyroligneous Acid Obtained by Slow Pyrolysis of Palm Kernel Shell.” Malaysian Journal of Fundamental and Applied Sciences 15 (5): 644–650.
  • Ritchie, H., and M. Roser. 2017. “Fossil fuels,” Our world in data. https://ourworldindata.org/fossil-fuels.
  • Rodríguez, N., and D. Zambrano. 2010. “Los Subproductos del Café: Fuente de Energía Renovable.” Cenicafé (0120–0178): 4–6.
  • Rosendahl, L. 2017. Direct Thermochemical Liquefaction for Energy Applications. Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101029-7.00006-0.
  • Rover, M. R., L. Johnson, B. Lamsal, Y.-J. Lee, and B. Shanks. Analysis of Sugars and Phenolic Compounds in Bio-Oil.
  • Rueda-Ordñez, Y. J., E. De Godois Baroni, L. K. Tinoco-Navarro, and K. Tannous. 2015. “Modeling the Kinetics of Lignocellulosic Biomass Pyrolysis.” In Innovative Solutions in Fluid-Particle Systems and Renewable Energy Management. https://doi.org/10.4018/978-1-4666-8711-0.ch004.
  • Sánchez, N. F. S., R. S. Coronado, and B. H. C. Claudia Villanueva Cañongo. 2019. Antioxidant Compounds and Their Antioxidant Mechanism, no. tourism.
  • Starink, M. J. 2003. “The Determination of Activation Energy from Linear Heating Rate Experiments: A Comparison of the Accuracy of Isoconversion Methods.” Themochimia Acta 404 (1–2): 163–176. https://doi.org/10.1016/S0040-6031(03)00144-8.
  • Tian, Bin, et al. Coupling Pyrolysis and Gasification Processes for Methane-Rich Syngas Production: Fundamental Studies on Pyrolysis Behavior and Kinetics of a Calcium-Rich High-Volatile Bituminous Coal.
  • Tokimoto, T., N. Kawasaki, T. Nakamura, J. Akutagawa, and S. Tanada. 2005. “Removal of Lead Ions in Drinking Water by Coffee Grounds as Vegetable Biomass.” Journal of Colloid and Interface Science 281 (1): 56–61. https://doi.org/10.1016/j.jcis.2004.08.083.
  • Torga, G. N., and E. E. Spers. 2020. “Perspectives of Global Coffee Demand.” In Coffee Consumption and Industry Strategies in Brazil, edited by L. F. de Almeida, and B. Spers, 21–49. Elsevier. https://doi.org/10.1016/B978-0-12-814721-4.00002-0.
  • Trinh, T. N., P. A. Jensen, K. Dam-Johansen, N. O. Knudsen, and H. R. Sørensen. Mar. 2013. “Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties.” Energy & Fuels 27 (3): 1419–1427. https://doi.org/10.1021/ef301944r.
  • Udomsap, P., Y. H. Yein, J. T. Hok Hui, B. Yoosuk, S. B. Yusuf, and S. Sukkasi. 2011. “Towards Stabilization of bio-oil by Addition of Antioxidants and Solvents, and Emulsification with Conventional Hydrocarbon Fuels.” 2011 international conference & utility exhibition on power and energy systems: issues and prospects for Asia (ICUE). https://ieeexplore.ieee.org/document/6497720/authors#authors
  • Valentão, P., E. Fernandes, F. Carvalho, P. B. Andrade, R. M. Seabra, and M. L. Bastos. Aug. 2002. “Antioxidative Properties of Cardoon (Cynara Cardunculus L.) Infusion Against Superoxide Radical, Hydroxyl Radical, and Hypochlorous Acid.” Journal of Agricultural and Food Chemistry 50 (17): 4989–4993. https://doi.org/10.1021/jf020225o.
  • Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. “Methods for Dietary Fiber,Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition.” Journal of Dairy Science 74: 3583–3597.
  • Vardon, Derek R., Bryan R. Moser, Wei Zheng, Katie Witkin, Roque L. Evangelista, Timothy J. Strathmann, Kishore Rajagopalan, and Brajendra K. Sharma. Oct. 2013. “Complete Utilization of Spent Coffee Grounds to Produce Biodiesel, bio-oil, and Biochar.” ACS Sustainable Chemistry and Engineering 1 (10): 1286–1294. https://doi.org/10.1021/sc400145w.
  • Vyazovkin, S., A. Burnham, J. Criado, L. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. “ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data.” Thermochimica Acta 520 (1–2): 1–19.
  • Way, M. L., J. E. Jones, D. S. Nichols, R. G. Dambergs, and N. D. Swarts. 2020. “A Comparison of Laboratory Analysis Methods for Total Phenolic Content of Cider.” Beverages 6 (3), https://doi.org/10.3390/beverages6030055.
  • Wei, Q., X. Ma, Z. Zhao, S. Zhang, and S. Liu. 2010. “Antioxidant Activities and Chemical Profiles of Pyroligneous Acids from Walnut Shell.” Journal of Analytical and Applied Pyrolysis 88 (2): 149–154. https://doi.org/10.1016/j.jaap.2010.03.008.
  • Williams, P. T., and A. R. Reed. Dec. 2003. “Pre-formed Activated Carbon Matting Derived from the Pyrolysis of Biomass Natural Fibre Textile Waste.” Journal of Analytical and Applied Pyrolysis 70 (2): 563–577. https://doi.org/10.1016/S0165-2370(03)00026-3.
  • Xiong, S., J. Zhuo, B. Zhang, and Q. Yao. 2013. “Effect of Moisture Content on the Characterization of Products from the Pyrolysis of Sewage Sludge.” Journal of Analytical and Applied Pyrolysis 104: 632–639. https://doi.org/10.1016/j.jaap.2013.05.003.
  • Yang, Y., Z. Luo, S. Li, and W. Wang. 2019. “Catalytic Pyrolysis of Hemicellulose to Produce Aromatic Hydrocarbons.” Bioresources 14 (3): 5816–5831.
  • Yang, H., R. Yan, H. Chen, D. Ho Lee, and C. Zheng. 2007. “Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis.” Fuel 86: 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013.
  • Yang, H., R. Yan, H. Chen, C. Zheng, D. H. Lee, and D. T. Liang. Jan. 2006. “In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components:  Hemicellulose, Cellulose and Lignin.” Energy & Fuels 20 (1): 388–393. https://doi.org/10.1021/ef0580117.
  • Zhang, Y., T. Culhaoglu, B. Pollet, C. Melin, D. Denoue, Y. Barrière, S. Baumberger, and V. Méchin. 2011. “Impact of Lignin Structure and Cell Wall Reticulation on Maize Cell Wall Degradability.” 16th int. symp. wood, fiber pulping chem. - proceedings, ISWFPC, vol. 2, pp. 942–948.
  • Zhang, H., L. Han, and H. Dong. 2021. “An Insight to Pretreatment, Enzyme Adsorption and Enzymatic Hydrolysis of Lignocellulosic Biomass: Experimental and Modeling Studies.” Renewable and Sustainable Energy Reviews 140 (12), https://doi.org/10.1016/j.rser.2021.110758.
  • Zhao, X., L. Zhang, and D. Liu. Jul. 2012. “Biomass Recalcitrance. Part I: The Chemical Compositions and Physical Structures Affecting the Enzymatic Hydrolysis of Lignocellulose.” Biofuels, Bioproducts and Biorefining 6 (4): 465–482. https://doi.org/10.1002/BBB.1331.