1,498
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A techno-economic assessment for fuel cells hybrid systems in stationary applications

, , , &
Pages 889-912 | Received 27 Mar 2023, Accepted 12 Jul 2023, Published online: 09 Aug 2023

References

  • Afzal, A., M. Mohibullah, and V. Kumar Sharma. 2010. “Optimal Hybrid Renewable Energy Systems for Energy Security: A Comparative Study.” International Journal of Sustainable Energy 29 (1): 48–58. https://doi.org/10.1080/14786460903337241.
  • Aguilar-Arias, J., and D. Hotza. 2013. “Configuraciones alternativas para celdas de combustible de óxido sólido.” Revista Latinoamericana de Metalurgia y Materiales 33:172–185.
  • AL-bonsrulah, H. A. Z., M. J. Alshukri, L. M. Mikhaeel, N. N. AL-sawaf, K. Nesrine, M. V. Reddy, and K. Zaghib. 2021. “Design and Simulation Studies of Hybrid Power Systems Based on Photovoltaic, Wind, Electrolyzer, and PEM Fuel Cells.” Energies 14:2643. https://doi.org/10.3390/en14092643.
  • Amutha, W. M., and V. Rajini. 2015. “Techno-economic Evaluation of Various Hybrid Power Systems for Rural Telecom.” Renewable and Sustainable Energy Reviews 43: 553–561. https://doi.org/10.1016/j.rser.2014.10.103.
  • Atsonios, K., C. Samlis, K. Manou, A. Nikolopoulos, K. Sfetsioris, A. Mitsotakis, and P. Grammelis. 2021. “Technical Assessment of LNG Based Polygeneration Systems for Non-interconnected Island Cases Using SOFC.” International Journal of Hydrogen Energy 46 (6): 4827–4843. https://doi.org/10.1016/j.ijhydene.2020.03.072.
  • Babatunde, O. M., J. L. Munda, and Y. Hamam. 2022. “Off-grid Hybrid Photovoltaic – Micro Wind Turbine Renewable Energy System with Hydrogen and Battery Storage: Effects of Sun Tracking Technologies.” Energy Conversion and Management 255:115335. https://doi.org/10.1016/j.enconman.2022.115335.
  • Bahramara, S., M. P. Moghaddam, and M. R. Haghifam. 2016. “Optimal Planning of Hybrid Renewable Energy Systems Using HOMER: A Review.” Renewable and Sustainable Energy Reviews 62: 609–620. https://doi.org/10.1016/j.rser.2016.05.039.
  • Baniasad Askari, I., L. Baniasad Askari, M. M. Kaykhah, and H. Baniasad Askari. 2014. “Optimisation and Techno-economic Feasibility Analysis of Hybrid (Photovoltaic/Wind/Fuel Cell) Energy Systems in Kerman, Iran; Considering the Effects of Electrical Load and Energy Storage Technology.” International Journal of Sustainable Energy 33 (3): 635–649. https://doi.org/10.1080/14786451.2013.769991.
  • Barik, A. K., S. Jaiswal, and D. C. Das. 2022. “Recent Trends and Development in Hybrid Microgrid: A Review on Energy Resource Planning and Control.” International Journal of Sustainable Energy 41 (4): 308–322. https://doi.org/10.1080/14786451.2021.1910698.
  • Bezmalinović, D., F. Barbir, and I. Tolj. 2013. “Techno-economic Analysis of PEM Fuel Cells Role in Photovoltaic-based Systems for the Remote Base Stations.” International Journal of Hydrogen Energy 38 (1): 417–425. https://doi.org/10.1016/j.ijhydene.2012.09.123.
  • Cammeraat, E., A. Dechezleprêtre, and G. Lalanne. n.d. “Innovation and Industrial Policies for Green Hydrogen.” OECD Science, Technology and Industry Policy Papers 125. https://doi.org/10.1787/f0bb5d8c-en.
  • Canales, F. A., A. Beluco, and C. A. B. Mendes. 2017. “Modelling a Hydropower Plant with Reservoir with the Micropower Optimisation Model (HOMER).” International Journal of Sustainable Energy 36 (7): 654–667. https://doi.org/10.1080/14786451.2015.1080706.
  • Carvajal-Osorio, H., J. H. Babativa, and J. A. Alonso. 2010. “Estudio sobre producción de H2 con hidroelectricidad para una economía de hidrógeno en Colombia.” Ingeniería y Competitividad 12: 31–42. https://doi.org/10.25100/iyc.v12i1.2700
  • Ceylan, C., and Y. Devrim. 2021. “Design and Simulation of the PV/PEM Fuel Cell Based Hybrid Energy System Using MATLAB/Simulink for Greenhouse Application.” International Journal of Hydrogen Energy 46 (42): 22092–22106. https://doi.org/10.1016/j.ijhydene.2021.04.034.
  • Duman, A. C., and Ö Güler. 2018. “Techno-economic Analysis of Off-grid PV/Wind/Fuel Cell Hybrid System Combinations with a Comparison of Regularly and Seasonally Occupied Households.” Sustainable Cities and Society 42: 107–126. https://doi.org/10.1016/j.scs.2018.06.029.
  • European Commission. 2010. EUROPE 2020 A European Strategy for Smart, Sustainable and Inclusive Growth.
  • Fakour, A., A. Behbahani-Nia, and F. Torabi. 2018. “Economic Feasibility of Solid Oxide Fuel Cell (SOFC) for Power Generation in Iran.” Energy Sources, Part B: Economics, Planning and Policy 13 (3): 149–157. https://doi.org/10.1080/15567249.2017.1316796.
  • Fuel Cell Technologies Office. n.d. About the Fuel Cell Technologies Office. Department of Energy. Accessed September 30, 2019. https://www.energy.gov/eere/fuelcells/fuel-cell-technologies-office.
  • Hitachi Chemical. 2018. Stationary VRLA Batteries for Power Storage (LL-W). Accessed October 2, 2018. http://www.hitachi-chem.co.jp/english/products/sds/ibattery/001.html.
  • HOMER. 2018. HOMER Load Following Strategy. Accessed October 23, 2022. https://www.homerenergy.com/products/pro/docs/3.11/load_following_strategy.html.
  • HOMER. 2022a. HOMER Constraints. Accessed January 30, 2023. https://www.homerenergy.com/products/pro/docs/3.14/_constraints.html.
  • HOMER. 2022b. HOMER Cycle Charging. Accessed January 30, 2023. https://www.homerenergy.com/products/pro/docs/3.10/cycle_charging.html.
  • HOMER Energy LLC. 2022. Accessed February 8, 2022. HOMER. http://www.homerenergy.com/.
  • Hoogers, G. 2003. “Fuel Cell Technology Handbook.”
  • IDEAM. 2015. Atlas Interactivo – Vientos. Accessed October 7, 2018. http://atlas.ideam.gov.co/visorAtlasVientos.html.
  • IEA (International Energy Agency). 2017. Global Trends and Outlook for Hydrogen. IEA Hydrogen.
  • IEA (International Energy Agency). 2018. Key World Energy Statistics. France: IEA Publications.
  • IEA (International Energy Agency). 2019. The Future of Hydrogen. Paris: IEA. Accessed April 29, 2023. https://www.iea.org/reports/the-future-of-hydrogen.
  • IEA (International Energy Agency). 2021. Key World Energy Statistics 2021. 1–82. France: IEA Publications.
  • IEA (International Energy Agency). n.d. Energy Statistics Data Browser – Data Tools, 2022. Accessed December 27, 2022. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser.
  • IRENA (International Renewable Energy Agency). 2020. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.50C Climate Goal. Abu Dhabi: IRENA. Accessed May 29, 2023. https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction.
  • Khare, V., S. Nema, and P. Baredar. 2017. “Optimisation of the Hybrid Renewable Energy System by HOMER, PSO and CPSO for the Study Area.” International Journal of Sustainable Energy 36 (4): 326–343. https://doi.org/10.1080/14786451.2015.1017500.
  • Kumar, P., N. Pal, and H. Sharma. 2021. “Techno-economic Analysis of Solar Photo-voltaic/Diesel Generator Hybrid System Using Different Energy Storage Technologies for Isolated Islands of India.” Journal of Energy Storage 41. https://doi.org/10.1016/j.est.2021.102965.
  • Lindell, M., J. Abulu, M. Yandrasits, G. Thoma, A. Steinbach, M. Kurkowski, G. Weatherman, et al. 2018. “Annual Progress Report 1 DOE Hydrogen and Fuel Cells Program Novel Ionomers and Electrode Structures for Improved Polymer Electrolyte Membrane Fuel Cell Electrode Performance at Low Platinum-Group-Metal Loadings Overall Objectives.” Accessed September 30, 2019. https://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22.
  • Mining and Energy Planning Unit (UPME). 2019. Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética. Bogotá. Accessed February 8, 2023. https://www1.upme.gov.co/DemandayEficiencia.
  • Mining and Energy Planning Unit (UPME). 2023. Installed Capacity by Source. Accessed January 23, 2023. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad.
  • Montoya García, M., and H. Reyes Pineda. 2013. “Optimización de una celda combustible de hidrógeno.” Optimization of a Hydrogen Fuel Cell 18:200–205. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=89861724&lang=es&site=ehost-live.
  • Napoli, R., M. Gandiglio, A. Lanzini, and M. Santarelli. 2015. “Techno-economic Analysis of PEMFC and SOFC Micro-CHP Fuel Cell Systems for the Residential Sector.” Energy and Buildings 103:131–146. https://doi.org/10.1016/j.enbuild.2015.06.052.
  • Nasser, M., T. F. Megahed, S. Ookawara, and H. Hassan. 2022. “Performance Evaluation of PV Panels/Wind Turbines Hybrid System for Green Hydrogen Generation and Storage: Energy, Exergy, Economic, and Enviroeconomic.” Energy Conversion and Management 267:115870. https://doi.org/10.1016/j.enconman.2022.115870.
  • NREL (National Renewable Energy Lab). 2022. Annual Technology Baseline. Accessed December 27, 2022. https://atb.nrel.gov/electricity/2022/data.
  • Onwe, C. A., D. Rodley, and S. Reynolds. 2020. “Modelling and Simulation Tool for Off-grid PV-hydrogen Energy System.” International Journal of Sustainable Energy 39 (1): 1–20. https://doi.org/10.1080/14786451.2019.1617711.
  • Pal, P., and V. Mukherjee. 2021. “Off-grid Solar Photovoltaic/Hydrogen Fuel Cell System for Renewable Energy Generation: An Investigation Based on Techno-economic Feasibility Assessment for the Application of End-user Load Demand in North-East India.” Renewable and Sustainable Energy Reviews 149:111421. https://doi.org/10.1016/j.rser.2021.111421.
  • Papageorgopoulos, D. 2018. “U. Department of Energy, Fuel Cell R&D Subprogram Overview; DOE Hydrogen and Fuel Cells Program FY 2018 Annual Progress Report.” Accessed September 30, 2019. https://www.hydrogen.energy.gov/program_records.html.
  • Pujari, H. K., and M. Rudramoorthy. 2022. “Optimal Design, Prefeasibility Techno-economic and Sensitivity Analysis of Off-grid Hybrid Renewable Energy System.” International Journal of Sustainable Energy 41 (10): 1466–1498. https://doi.org/10.1080/14786451.2022.2058502.
  • Rastayesh, S., S. Bahrebar, A. S. Bahman, J. D. Sørensen, and F. Blaabjerg. 2019. “Lifetime Estimation and Failure Risk Analysis in a Power Stage Used in Wind-fuel Cell Hybrid Energy Systems.” Electronics 8:1412. https://doi.org/10.3390/electronics8121412.
  • Samy, M. M., S. Barakat, and H. S. Ramadan. 2020. “Techno-economic Analysis for Rustic Electrification in Egypt Using Multi-source Renewable Energy Based on PV/Wind/FC.” International Journal of Hydrogen Energy 45 (20): 11471–11483. https://doi.org/10.1016/j.ijhydene.2019.04.038.
  • Schmidt, O., A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few. 2017. “Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study.” International Journal of Hydrogen Energy 42 (52): 30470–30492. https://doi.org/10.1016/j.ijhydene.2017.10.045.
  • Silva, S. B., M. M. Severino, and M. A. G. De Oliveira. 2013. “Technical Note A Stand-alone Hybrid Photovoltaic, Fuel Cell and Battery System: A Case Study of Tocantins, Brazil.” Renewable Energy 57: 384–389. https://doi.org/10.1016/j.renene.2013.02.004.
  • Singh, A., P. Baredar, and B. Gupta. 2017. “Techno-economic Feasibility Analysis of Hydrogen Fuel Cell and Solar Photovoltaic Hybrid Renewable Energy System for Academic Research Building.” Energy Conversion and Management 145: 398–414. https://doi.org/10.1016/j.enconman.2017.05.014.
  • Tebibel, H. 2021. “Methodology for Multi-objective Optimization of Wind Turbine/Battery/Electrolyzer System for Decentralized Clean Hydrogen Production Using an Adapted Power Management Strategy for Low Wind Speed Conditions.” Energy Conversion and Management 238:114125. https://doi.org/10.1016/j.enconman.2021.114125.
  • Universidad Nacional de Colombia. 2013. Optimizan celdas de combustible con tecnología colombiana. http://www.elespectador.com/noticias/actualidad/optimizan-celdas-de-combustible-tecnologia-colombiana-articulo-466170.
  • U.S. Department of Energy. (n.d.). DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat and Power) Applications. Department of Energy. Accessed July 25, 2019. https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-stationary-combined-heat-and-power.
  • Wang, X., J.-K. Peng, D. Manager, and N. L. Garland, 2018. “Performance of Advanced Automotive Fuel Cell Stacks and Systems with State-of-the-Art d-PtCo/C Cathode Catalyst in Membrane Electrode Assemblies; DOE Hydrogen and Fuel Cells Program FY 2018 Annual Progress Report.” Accessed September 30, 2019. https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22.
  • XANT. 2017. “XANT M-24 General Specifications.”