433
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Automatic thermal model identification and distributed optimisation for load shifting in city quarters

, , , , , , , , , & show all
Pages 1063-1078 | Received 14 Sep 2022, Accepted 31 Jul 2023, Published online: 29 Aug 2023

References

  • Bacher, P., and H. Madsen. 2011. “Identifying Suitable Models for the Heat Dynamics of Buildings.” Energy and Buildings 43 (7): 1511–1522. https://doi.org/10.1016/j.enbuild.2011.02.005.
  • Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah. 2017. “Julia: A Fresh Approach to Numerical Computing.” SIAM Review 59 (1): 65–98. https://doi.org/10.1137/141000671.
  • Boodi, A., K. Beddiar, Y. Amirat, and M. Benbouzid. 2020. “Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach.” Energies 13: 2899. https://doi.org/10.3390/en13112899.
  • Boyd, S., N. Parikh, E. Chu, and J. Eckstein. 2010. “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.” Foundations and Trends® in Machine Learning 3 (1): 1–122. https://doi.org/10.1561/2200000016.
  • Capone, M., and E. Guelpa. 2023. “Implementing Optimal Operation of Multi-Energy Districts with Thermal Demand Response.” Designs 7 (1): 11. https://doi.org/10.3390/designs7010011.
  • Coninck, R. D. 2015. “Grey-Box Based Optimal Control for Thermal Systems in Buildings – Unlocking Energy Efficiency and Flexibility.” (PhD Thesis). KU LEUVEN, Arenberg Doctoral School Faculty of Engineering. https://lirias.kuleuven.be/retrieve/321342.
  • Coninck, R. D. 2017. “FastBuildings Library.” https://github.com/open-ideas/FastBuildings.
  • Guelpa, E., and V. Verda. 2021. “Demand Response and Other Demand Side Management Techniques for District Heating: A Review.” Energy 219: 119440. https://doi.org/10.1016/j.energy.2020.119440.
  • Gurobi Optimisation, L. 2019. “Gurobi Optimizer Reference Manual.” https://www.gurobi.com.
  • Kaisermayer, V., D. Muschick, M. Horn, and M. Gölles. 2020. “Progressive Hedging for Stochastic Energy Management Systems.” Energy Systems 12 (1): 1–29. https://doi.org/10.1007/s12667-020-00401-z.
  • Kensby, J., A. Trüschel, and J. O. Dalenbäck. 2015. “Potential of Residential Buildings as Thermal Energy Storage in District Heating Systems - Results from a Pilot Test.” Applied Energy 137: 773–781. https://doi.org/10.1016/j.apenergy.2014.07.026.
  • Montoison, A., P. Pascal, and K. Salomon. 2020. “NOMAD.jl: A Julia Interface for the Constrained Blackbox Solver NOMAD”.. https://doi.org/10.5281/zenodo.3700167.
  • Moser, A., D. Muschick, M. Gölles, P. Nageler, H. Schranzhofer, T. Mach, C. Ribas Tugores, et al. 2020. “A MILP-based Modular Energy Management System for Urban Multi-Energy Systems: Performance and Sensitivity Analysis.” Applied Energy 261. https://doi.org/10.1016/j.apenergy.2019.114342.
  • Nageler, P. J., R. Heimrath, T. Mach, and C. Hochenauer. 2019. “Prototype of a Simulation Framework for Georeferenced Large-Scale Dynamic Simulations of District Energy Systems.” Applied Energy 252. https://doi.org/10.1016/j.apenergy.2019.113469.
  • Nageler, P., G. Schweiger, H. Schranzhofer, T. Mach, R. Heimrath, and C. Hochenauer. 2018. “Novel Method to Simulate Large-Scale Thermal City Models.” Energy 157: 633–646. https://doi.org/10.1016/j.energy.2018.05.190.
  • Nigitz, T., and M. Gölles. 2019. “A Generally Applicable, Simple and Adaptive Forecasting Method for the Short-Term Heat Load of Consumers.” Applied Energy 241: 73–81. https://doi.org/10.1016/j.apenergy.2019.03.012.
  • Parisio, A., and S. P. Gutierrez. 2018. “Distributed Model Predictive Control for Building Demand-Side Management.” Paper presented at the 2018 European Control Conference (ECC), 2549–2554.
  • Prívara, S., J. Cigler, V. Zdeněk, F. Oldewurtelb, C. Sagerschnig, and E. Žáčeková. 2013. “Building Modeling as a Crucial Part for Building Predictive Control.” Energy and Buildings 56: 8–22. https://doi.org/10.1016/j.enbuild.2012.10.024.
  • Rackauckas, C., and Q. Nie. 2017. “DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem ForSolving Differential Equations in Julia.” Journal of Open Research Software 5. https://doi.org/10.5334/jors.151.
  • Široký, J., F. Oldewurtel, J. Cigler, and S. Prívara. 2011. “Experimental Analysis of Model Predictive Control for an Energy Efficient Building Heating System.” Applied Energy 88 (9): 3079–3087. https://doi.org/10.1016/j.apenergy.2011.03.009.
  • Sourbron, M., C. Verhelst, and L. Helsen. 2013. “Building Models for Model Predictive Control of Office Buildings with Concrete Core Activation.” Journal of Building Performance Simulation 6 (3): 175–198. https://doi.org/10.1080/19401493.2012.680497.
  • Sturzenegger, D., D. Gyalistras, M. Morari, and R. S. Smith. 2016. “Model Predictive Climate Control of a Swiss Office Building: Implementation, Results, and Cost-Benefit Analysis.” IEEE Transactions on Control Systems Technology 24: 1–12. https://doi.org/10.1109/TCST.2015.2415411.
  • Sturzenegger, D., D. Gyalistras, V. Semeraro, M. Morari, and R. S. Smith. 2014. BRCM Matlab Toolbox: Model Generation for Model Predictive Building Control”. https://doi.org/10.1109/ACC.2014.6858967.
  • Žáčeková, E., S. Prívara, and Z. Váňa. 2011. “Model Predictive Control Relevant Identification Using Partial Least Squares for Building Modeling.” Paper presented at the Australian Control Conference, 422–427.
  • Zagoni, C. 2020a. “DarkGreyBox: An Open-source Data-driven Python Building Thermal Model Inspired by Genetic Algorithms and Machine Learning.” Accessed February 5, 2022. https://medium.com/analytics-vidhya/data-driven-thermal-models-for-buildings-15385f744fc5.
  • Zagoni, C. 2020b. “Python Package DarkGreyBox.” https://github.com/czagoni/darkgreybox.