579
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of the performance of solar chimneys using associated petroleum gas

, , &
Article: 2259009 | Received 26 Jun 2023, Accepted 08 Sep 2023, Published online: 18 Jan 2024

References

  • Abbas, E. F., and S. A. Aziz. 2022. “The Impact of Air Gap Width on the Free Thermal Load in the Trombe Wall Contains a Phase Change Material.” Al-Kitab Journal for Pure Sciences 2 (2): 264–275. https://doi.org/10.32441/kjps.02.02.p18.
  • Ahmed, O. K. 2018. “Assessment of the Performance for a New Design of Storage Solar Collector.” International Journal of Renewable Energy Research 8 (1): 250–257.
  • Ahmed, O. K. 2018. “A Numerical and Experimental Investigation for a Triangular Storage Collector.” Solar Energy 171 (June): 884–892. https://doi.org/10.1016/j.solener.2018.06.097.
  • Ahmed, O. K., S. Algburi, Z. H. Ali, A. K. Ahmed, and H. N. Shubat. 2022a. “Hybrid Solar Chimneys: A Comprehensive Review.” Energy Reports 8: 438–460. https://doi.org/10.1016/j.egyr.2021.12.007.
  • Ahmed, O. K., A. A. Hassan, E. F. Abbas, and R. W. Doud. 2022b. “Numerical and Experimental Assessment of PV / Solar Chimney.” NTU Journal of Renewable Energy 2 (1).
  • Ahmed, O. K., and A. S. Hussein. 2018. “New Design of Solar Chimney (Case Study).” Case Studies in Thermal Engineering 11 (December 2017): 105–112. https://doi.org/10.1016/j.csite.2017.12.008.
  • Akbarzadeh, A., P. Johnson, and R. Singh. 2009. “Examining Potential Benefits of Combining a Chimney with a Salinity Gradient Solar Pond for Production of Power in Salt Affected Areas.” Solar Energy 83 (8): 1345–1359. https://doi.org/10.1016/j.solener.2009.02.010.
  • Al-Jibouri, D. O. K. A. 2014. “Feasibility of Using Wind Energy for Irrigation in Iraq.” International Journal of Mechanical Engineering and Technology 5 (5): 62–72.
  • Al-Kayiem, H. H., M. A. Aurybi, S. I. U. Gilani, A. A. Ismaeel, and S. T. Mohammad. 2019. “Performance Evaluation of Hybrid Solar Chimney for Uninterrupted Power Generation.” Energy 166: 490–505. https://doi.org/10.1016/j.energy.2018.10.115.
  • Alkasrawi, M., E. Abdelsalam, H. Alnawafah, F. Almomani, M. Tawalbeh, and A. Mousa. 2021. “Integration of Solar Chimney Power Plant with Photovoltaic for co-Cooling, Power Production, and Water Desalination.” Processes 9 (12): 2155–2117. https://doi.org/10.3390/pr9122155.
  • ANSYS, I. 2013. ANSYS Fluent Tutorial Guide Releas 15 (1. Canonsburg): 130–140.
  • Aweid, R. S., O. K. Ahmed, and S. Algburi. 2022. “Performance of Floating Photovoltaic/Thermal System: Experimental Assessment.” International Journal of Energy Research (April): 24229–24242. https://doi.org/10.1002/er.8729.
  • Bouabidi, A., H. Nasraoui, A. Ayadi, Z. Driss, and M. S. Abid. 2019. “Numerical Analysis of Chimney Diameter Effect on the Fluid Flow and the Heat Transfer Characteristics Within the Solar Tower.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (20): 2494–2506. https://doi.org/10.1080/15567036.2019.1568631.
  • BP. 2022. “BP Statistical Review of World Energy 2022, (71st ed.),” [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf.
  • Cao, F., H. Li, Q. Ma, and L. Zhao. 2014. “Design and Simulation of a Geothermal-Solar Combined Chimney Power Plant.” Energy Conversion and Management 84: 186–195. https://doi.org/10.1016/j.enconman.2014.04.015.
  • Cuce, E., et al. 2022. “Solar Chimney Power Plants: A Review of the Concepts, Designs and Performances.” Sustainability 14 (3), https://doi.org/10.3390/su14031450.
  • Das, P., and V. P. Chandramohan. 2018. “CFD Analysis on Flow and Performance Parameters Estimation of Solar Updraft Tower (SUT) Plant Varying its Geometrical Configurations.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (12): 1532–1546. https://doi.org/10.1080/15567036.2018.1477881.
  • Djaouida, B., Z. Aouachria, A. H. Benmachiche, and S. Ali. 2020. “Controlling Power Output of Solar Chimney Power Plant According to Demand.” International Journal of Ambient Energy 41 (13): 1467–1481. https://doi.org/10.1080/01430750.2018.1517677.
  • Esmaili, M. M., S. H. Fallah, M. Izanlu, and M. S. Valipour. 2022. “Investigation on the Performance of a Solar Chimney-Flare gas Hybrid System.” Sustainable Energy Technologies and Assessments 52 (PC): 102279. https://doi.org/10.1016/j.seta.2022.102279.
  • Fathi, N., et al. 2018. “Efficiency Enhancement of Solar Chimney Power Plant by use of Waste Heat from Nuclear Power Plant.” Journal of Cleaner Production 180: 407–416. https://doi.org/10.1016/j.jclepro.2018.01.132.
  • Ganguli, A. A., and S. Deshpande. 2020. “Three Dimensional CFD Studies of a Solar Chimney: Effect of Geometrical Parameters and Diurnal Variations on Power Generated.” Frontiers in Chemical Engineering 2 (April): 1–15. https://doi.org/10.3389/fceng.2020.00002.
  • Gholamalizadeh, E., and J. D. Chung. 2017. “Analysis of Fluid Flow and Heat Transfer on a Solar Updraft Tower Power Plant Coupled with a Wind Turbine Using Computational Fluid Dynamics.” Applied Thermal Engineering 126: 548–558. https://doi.org/10.1016/j.applthermaleng.2017.07.192.
  • Gomaa, M. R., M. Ahmed, and H. Rezk. 2022. “Temperature Distribution Modeling of PV and Cooling Water PV/T Collectors Through Thin and Thick Cooling Cross-Fined Channel box.” Energy Reports 8: 1144–1153. https://doi.org/10.1016/j.egyr.2021.11.061.
  • Guo, P., T. Li, B. Xu, X. Xu, and J. Li. 2019. “Questions and Current Understanding About Solar Chimney Power Plant: A Review.” Energy Conversion and Management 182 (October 2018): 21–33. https://doi.org/10.1016/j.enconman.2018.12.063.
  • Guo, P., Y. Zhou, D. Zhang, B. Xu, and J. Li. 2021. “Numerical Investigation and Multi-Objective Thermo-Economic Optimization of a Solar Chimney Power Plant.” International Journal of Energy Research 45 (7): 10317–10331. https://doi.org/10.1002/er.6521.
  • Habibollahzade, A., E. Houshfar, P. Ahmadi, and A. Behzadi. 2018. “Exergoeconomic Assessment and Multi-Objective Optimization of a Solar Chimney Integrated with Waste-to-Energy.” Solar Energy 176 (April): 30–41. https://doi.org/10.1016/j.solener.2018.10.016.
  • Habibollahzade, A., E. Houshfar, M. Ashjaee, and K. Ekradi. 2021. “Continuous Power Generation Through a Novel Solar/Geothermal Chimney System: Technical/Cost Analyses and Multi-Objective Particle Swarm Optimization.” Journal of Cleaner Production 283: 124666. https://doi.org/10.1016/j.jclepro.2020.124666.
  • Hassan, A., M. Ali, and A. Waqas. 2018. “Numerical Investigation on Performance of Solar Chimney Power Plant by Varying Collector Slope and Chimney Diverging Angle.” Energy 142: 411–425. https://doi.org/10.1016/j.energy.2017.10.047.
  • hua Guo, P., J. yin Li, and Y. Wang. 2014. “Numerical Simulations of Solar Chimney Power Plant with Radiation Model.” Renewable Energy 62 (January 2014): 24–30. https://doi.org/10.1016/j.renene.2013.06.039.
  • Hussein, A. S., and O. K. Ahmed. 2018. “Assessment of the Performance for a Hybrid PV / Solar Chimney.” International Journal of Engineering & Technology 7 (4.37): 114–120. https://doi.org/10.14419/ijet.v7i4.37.24085
  • Ibrahim, A. K., S. Algburi, and O. K. Ahmed. 2023. “Enhancement of the Performance of the PV Trombe Wall: A Short Review.” Cleaner Engineering and Technology 14 (June): 100652. https://doi.org/10.1016/j.clet.2023.100652.
  • Ismail, A., A.-A. El-Marhoumy, A. Hamed, and A. T. A. Eldein Hussin. 2019. “Numerical Modeling for a Solar Chimney.” Journal of Al-Azhar University Engineering Sector 14 (50): 87–98. https://doi.org/10.21608/auej.2019.28512.
  • Kiwan, S., M. Al-Nimr, and I. Salim. 2020. “A Hybrid Solar Chimney/Photovoltaic Thermal System for Direct Electric Power Production and Water Distillation.” Sustainable Energy Technologies and Assessments 38 (November 2019): 100680. https://doi.org/10.1016/j.seta.2020.100680.
  • Lipnicki, Z., M. Gortych, A. Staszczuk, T. Kuczyński, and P. Grabas. 2019. “Analytical and Experimental Investigation of the Solar Chimney System.” Energies 12 (11), https://doi.org/10.3390/en12112060.
  • Mahmood Ibrahim, A., R. R. Ibraheem, and R. Bakr Weli. 2023. “Energy Saving in Batteries Using the Photovoltaic System.” Al-Kitab Journal for Pure Sciences 4 (1): 78–94. https://doi.org/10.32441/kjps.04.01.p7.
  • H. K. V., and W. Malalasekera. 2007. Introduction to Computational Fluid Dynamics. 2nd ed. Glasgow: Harlow.
  • Mullett, L. B. 1987. “The Solar Chimney—Overall Efficiency, Design and Performance.” International Journal of Ambient Energy 8 (1): 35–40. https://doi.org/10.1080/01430750.1987.9675512
  • Pratap Singh, A., A. Kumar Akshayveer, and O. P. Singh. 2020. “Performance Enhancement Strategies of a Hybrid Solar Chimney Power Plant Integrated with Photovoltaic Panel.” Energy Conversion and Management 218 (May): 113020. https://doi.org/10.1016/j.enconman.2020.113020.
  • Rabehi, R., A. Chaker, Z. Aouachria, and M. Tingzhen. 2017. “CFD Analysis on the Performance of a Solar Chimney Power Plant System: Case Study in Algeria.” International Journal of Green Energy 14 (12): 971–982. https://doi.org/10.1080/15435075.2017.1339043.
  • Setareh, M. 2021. “Comprehensive Mathematical Study on Solar Chimney Powerplant.” Renewable Energy 175: 470–485. https://doi.org/10.1016/j.renene.2021.05.017.
  • Torabi, M. R., et al. 2021. “Investigation the Performance of Solar Chimney Power Plant for Improving the Efficiency and Increasing the Outlet Power of Turbines Using Computational Fluid Dynamics.” Energy Reports 7: 4555–4565. https://doi.org/10.1016/j.egyr.2021.07.044.
  • US Energy Information Adminsitration (EIA). 2017. “Country Analysis Executive Summary: Iraq.” U.S. Energy Information Administration 2022 (January): 1–8.
  • Zou, Z., and S. He. 2015. “Modeling and Characteristics Analysis of Hybrid Cooling-Tower-Solar-Chimney System.” Energy Conversion and Management 95: 59–68. https://doi.org/10.1016/j.enconman.2015.01.085.
  • Zuo, L., et al. 2021. “Economic Performance Evaluation of the Wind Supercharging Solar Chimney Power Plant Combining Desalination and Waste Heat After Parameter Optimization.” Energy 227: 120496. https://doi.org/10.1016/j.energy.2021.120496.