917
Views
18
CrossRef citations to date
0
Altmetric
Review

Carbapenemase producing Klebsiella pneumoniae: implication on future therapeutic strategies

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 53-69 | Received 20 Mar 2021, Accepted 24 May 2021, Published online: 03 Jun 2021

References

  • Centers for Disease Control and Prevention (CDC). Antimicrobial resistance threats report. 2019. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  • World Health Organization (WHO). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017. [cited 2021 Feb 01]. Available from: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  • Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin Infect Dis. 2019;69(Suppl 7):S521–S528.
  • van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2017;8(4):460–469.
  • van Duin D, Arias CA, Komarow L, et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infect Dis. 2020;20(6):731–774.
  • Zhang Y, Wang Q, Yin Y, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae infections: report from the China CRE network. Antimicrob Agents Chemother. 2018;62(2):e01882–17.
  • Di Pilato V, Errico G, Monaco M, et al. The changing epidemiology of carbapenemase-producing Klebsiella pneumoniae in Italy: toward polyclonal evolution with emergence of high-risk lineages. J Antimicrob Chemother. 2021;76(2):355–361.
  • Galani I, Karaiskos I, Karantani I, et al. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Euro Surveill. 2018;23(31). DOI:https://doi.org/10.2807/1560-7917.ES.2018.23.30.1700775
  • Tzouvelekis LS, Markogiannakis A, Piperaki E, et al. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014;20(9):862–872.
  • Bassetti M, Giacobbe DR, Giamarellou H, et al. Management of KPC-producing Klebsiella pneumoniae infections. Clin Microbiol Infect. 2018;24(2):133–144.
  • Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother. 2014;15(10):1351–1370.
  • Karaiskos I, Lagou S, Pontikis K, et al. The “Old” and the “New” antibiotics for MDR Gram-Negative pathogens: for whom, when, and how. Front Public Health. 2019;7:151.
  • Theuretzbacher U, Carrara E, Conti M, et al. Role of new antibiotics for KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2021;76(Supplement_1):i47–i54.
  • Yahav D, Giske CG, Grāmatniece A, et al. A new β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev. 2020;34(1):e00115–20.
  • Karaiskos I, Galani I, Souli M, et al. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol. 2019;15(2):133–149.
  • Global Antibiotic Research and Development Partnership (GARDP). Medicines Patent Pool (MPP) and World Health Organization (WHO). Delivering on the sustainable access of antibiotics: moving from principles to practice workshop report. 2019. Available from: https://gardp.org/uploads/2019/10/GARDP-access-workshop-report-2019.pdf
  • Rex JH, Outterson K New antibiotics are not being registered or sold in Europe in a timely manner. 2020. [cited 2021 Jan 30]. Available from: https://amr.solutions/2020/09/07/new-antibiotics-are-not-being-registered-or-sold-in-europe-in-a-timely-manner
  • Jalde SS, Choi HK. Recent advances in the development of β-lactamase inhibitors. J Microbiol. 2020;58(8):633–647.
  • Chaves J, Ladona MG, Segura C, et al. SHV-1 beta-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(10):2856–2861.
  • Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303(6–7):298–304.
  • Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Updat. 2018;36:13–29.
  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–458.
  • Bush K. Past and present perspectives on β-Lactamases. Antimicrob Agents Chemother. 2018;62(10):e01076–18.
  • Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–830.
  • Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol. 2019;17(5):295–306.
  • Hansen GT. Continuous evolution: perspective on the epidemiology of carbapenemase resistance among Enterobacterales and other Gram-negative bacteria. Infect Dis Ther. 2021. Online ahead of print. DOI:https://doi.org/10.1007/s40121-020-00395-2
  • Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33(2):e00047–19.
  • Matsumura Y, Peirano G, Devinney R, et al. Genomic epidemiology of global VIM-producing Enterobacteriaceae. J Antimicrob Chemother. 2017;72(8):2249–2258.
  • Matsumura Y, Peirano G, Motyl MR, et al. Global molecular epidemiology of IMP-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(4):e02729–16.
  • Albiger B, Glasner C, Struelens MJ, et al. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill. 2015;20. DOI:https://doi.org/10.2807/1560-7917.ES.2015.20.45.30062
  • Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. 2014;2014:249856.
  • Vázquez-Ucha JC, Arca-Suárez J, Bou G, et al. New carbapenemase inhibitors: clearing the way for the β-lactams. Int J Mol Sci. 2020;21(23):9308.
  • Shirley M. Ceftazidime-Avibactam: a review in the treatment of serious Gram-Negative bacterial infections. Drugs. 2018;78(6):675–692.
  • Sader HS, Carvalhaes CG, Arends SJR, et al. Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019. J Antimicrob Chemother. 2020;dkaa504. Online ahead of print. DOI:https://doi.org/10.1093/jac/dkaa504
  • Isler B, Harris P, Stewart AG, et al. An update on cefepime and its future role in combination with novel beta-lactamase inhibitors for MDR Enterobacterales and Pseudomonas aeruginosa. J Antimicrob Chemother. 2020;dkaa511. Online ahead of print. DOI:https://doi.org/10.1093/jac/dkaa511
  • Monogue ML, Giovagnoli S, Bissantz C, et al. In vivo efficacy of meropenem with a novel non-beta-lactam-beta-lactamase inhibitor, nacubactam, against Gram-Negative organisms exhibiting various resistance mechanisms in a murine complicated urinary tract infection model. Antimicrob Agents Chemother. 2018;62(9):e02596–17.
  • Rossolini GM, Stone GG. Assessment of the in vitro activity of ceftazidime/avibactam against a global collection of multidrug-resistant Klebsiella spp. from the INFORM surveillance programme (2015-2017). Int J Antimicrob Agents. 2020;56(3):106111.
  • CLSI. Clinical & Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 30th ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2020.
  • EUCAST. European committee on antimicrobial susceptibility testing breakpoint tables for interpretation of MICs and zone diameters. Version 11.0. 2021. [cited 2021 Feb 01]. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf
  • AVYCAZ (ceftazidime and avibactam) for injection, for intravenous use. FDA. 2016. [cited 2021 Feb 01]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/206494s005,s006lbl.pdf
  • European Medicines Agency. Zavicefta: summary of product characteristics. 2018. [cited 2021 Feb 01]. Available from: https://www.ema.europa.eu/en/documents/product-information/zavicefta-epar-product-information_en.pdf
  • Mazuski JE, Gasink LB, Armstrong J, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016;62(11):1380–1389.
  • Qin X, Tran BG, Kim MJ, et al. A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia. Int J Antimicrob Agents. 2017;49(5):579–588.
  • Wagenlehner FM, Sobel JD, Newell P, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a Phase 3 randomized trial program. Clin Infect Dis. 2016;63(6):754–762.
  • Torres A, Zhong N, Pachl J, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2018;18(3):285–295.
  • Carmeli Y, Armstrong J, Laud PJ, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016;16(6):661–673.
  • Shields RK, Nguyen MH, Chen L, et al. Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2017;61(8):e00883–17.
  • van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis. 2018;66(2):163–171.
  • Tumbarello M, Trecarichi EM, Corona A, et al. Efficacy of ceftazidime avibactam salvage therapy in patients with infections caused by KPC producing Klebsiella pneumoniae. Clin Infect Dis. 2019;68(3):355–364.
  • Jorgensen SCJ, Trinh TD, Zasowski EJ, et al. Real-world experience with ceftazidime-avibactam for multidrug-resistant Gram-Negative bacterial infections. Open Forum Infect Dis. 2019;6(12):ofz522.
  • Tsolaki V, Mantzarlis K, Mpakalis A, et al. Ceftazidime-Avibactam to treat life-threatening infections by carbapenem-resistant pathogens in critically ill mechanically ventilated patients. Antimicrob Agents Chemother. 2020;64(3):e02320–19.
  • Karaiskos I, Daikos GL, Gkoufa A, et al. Ceftazidime/avibactam in the era of carbapenemase-producing Klebsiella pneumoniae: experience from a national registry study. J Antimicrob Chemother. 2021;76(3):775–783.
  • Tumbarello M, Raffaelli F, Giannella M, et al. Ceftazidime-avibactam use for KPC-Kp infections: a retrospective observational multicenter study. Clin Infect Dis. 2021;ciab176. Online ahead of print. DOI:https://doi.org/10.1093/cid/ciab176
  • Wilson GM, Fitzpatrick M, Walding K, et al. Meta-analysis of Clinical outcomes using Ceftazidime/ Avibactam,Ceftolozane/ Tazobactam,and Meropenem/Vaborbactam for the treatment of multidrug-resistant Gram-Negative infections. Open Forum Infect Dis. 2021;8(2):ofaa651.
  • Zhanel GG, Lawrence CK, Adam H, et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78(1):65–98.
  • Lapuebla A, Abdallah M, Olafisoye O, et al. Activity of Imipenem with relebactam against gram-negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59(8):5029–5031.
  • Lob SH, Hackel MA, Kazmierczak KM, et al. In vitro activity of Imipenem-relebactam against gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (Results from the SMART global surveillance program). Antimicrob Agents Chemother. 2017;61(6):e02209–16.
  • Carpenter J, Neidig N, Campbell A, et al. Activity of imipenem/relebactam against carbapenemase-producing Enterobacteriaceae with high colistin resistance. J Antimicrob Chemother. 2019;74(11):3260–3263.
  • Galani I, Souli M, Nafplioti K, et al. In vitro activity of imipenem-relebactam against non-MBL carbapenemase-producing Klebsiella pneumoniae isolated in Greek hospitals in 2015-2016. Eur J Clin Microbiol Infect Dis. 2019;38(6):1143–1150.
  • Galani I, Souli M, Nafplioti K, et al. Correction to: in vitro activity of imipenem-relebactam against non-MBL carbapenemase-producing Klebsiella pneumoniae isolated in Greek hospitals in 2015-2016. Eur J Clin Microbiol Infect Dis. 2019;38(6):1151–1152.
  • Gomez-Simmonds A, Stump S, Giddins MJ, et al. Clonal background, resistance gene profile, and porin gene mutations modulate in vitro susceptibility to Imipenem-Relebactam in diverse Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62(8):e00573–18.
  • FDA (RECARBRIO) imipenem-cilastatin-relebactam injection. 2019. [cited 2021 Feb 01]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212819s000lbl.pdf
  • EMA. Recarbrio (Imipenem-cilastatin-relebactam). Summary of Product Characteristics. 2020. [cited 2021 Feb 01]. Available from: https://www.ema.europa.eu/en/documents/product-information/recarbrio-epar-product-information_en.pdf
  • Motsch J, Murta de Oliveira C, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of Imipenem/Relebactam vs Colistin plus Imipenem in patients with Imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2020;70(9):1799–1808.
  • Campanella TA, Gallagher JC. A clinical review and critical evaluation of Imipenem-Relebactam: evidence to date. Infect Drug Resist. 2020;13:4297–4308.
  • Karlowsky JA, Kazmierczak KM, de Jonge BLM, et al. In vitro activity of aztreonam-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother. 2017;61(9):e00472–17.
  • Esposito S, Stone GG, Papaparaskevas J. In vitro activity of aztreonam/avibactam against a global collection of Klebsiella pneumoniae collected from defined culture sources in 2016 and 2017. J Glob Antimicrob Resist. 2020;24:14–22. Online ahead of print.
  • Cornely OA, Cisneros JM, Torre-Cisneros J, et al. Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: results from the REJUVENATE study. J Antimicrob Chemother. 2020;75(3):618–627.
  • Bassetti M, Di Pilato V, Giani T, et al. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol. 2020;1489–1505. Online ahead of print. DOI:https://doi.org/10.2217/fmb-2020-0210
  • Falcone M, Daikos GL, Tiseo G, et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by MBL- producing Enterobacterales. Clin Infect Dis. 2020;ciaa586. Online ahead of print. DOI:https://doi.org/10.1093/cid/ciaa586
  • Moya B, Barcelo IM, Cabot G, et al. In vitro and in vivo activities of β-lactams in combination with the novel β-lactam enhancers Zidebactam and WCK 5153 against multidrug-resistant metallo-β-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2019;63(5):e00128–19.
  • Karlowsky JA, Hackel MA, Bouchillon SK, et al. In vitro activity of WCK 5222 (Cefepime-Zidebactam) against worldwide collected Gram-Negative bacilli not susceptible to carbapenems. Antimicrob Agents Chemother. 2020;64(12):e01432–20.
  • Rodvold KA, Gotfried MH, Chugh R, et al. Plasma and intrapulmonary concentrations of cefepime and zidebactam following intravenous administration of WCK 5222 to healthy adult subjects. Antimicrob Agents Chemother. 2018;62(8):e00682–18.
  • Vena A, Castaldo N, Bassetti M. The role of new β-lactamase inhibitors in Gram-negative infections. Curr Opin Infect Dis. 2019;32(6):638–646.
  • Barnes MD, Taracila MA, Good CE, et al. Nacubactam enhances meropenem activity against carbapenem-resistant Klebsiella pneumoniae producing KPC. Antimicrob Agents Chemother. 2019;63(8):e00432–19.
  • Mushtaq S, Vickers A, Woodford N, et al. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. J Antimicrob Chemother. 2019;74(4):953–960.
  • Mallalieu NL, Winter E, Fettner S, et al. Safety and pharmacokinetic characterization of nacubactam, a novel beta-lactamase inhibitor, alone and in combination with meropenem, in healthy volunteers. Antimicrob Agents Chemother. 2020;64(5):e02229–19.
  • Durand-Réville TF, Comita-Prevoir J, Zhang J, et al. Discovery of an orally available diazabicyclooctane inhibitor (ETX0282) of Class A, C, and D serine beta-lactamases. J Med Chem. 2020;63(21):12511–12525.
  • Shapiro AB, Moussa SH, Carter NM, et al. Ceftazidime-Avibactam resistance mutations V240G, D179Y, and D179Y/T243M in KPC-3 β-Lactamase do not alter cefpodoxime-ETX1317 susceptibility. ACS Infect Dis. 2021;7(1):79–87.
  • Miller AA, Shapiro AB, McLeod SM, et al. In vitro characterization of ETX1317, a broad-spectrum β-lactamase inhibitor that restores and enhances β-lactam activity against multi-drug-resistant Enterobacteriales, including carbapenem-resistant strains. ACS Infect Dis. 2020;6(6):1389–1397.
  • Lomovskaya O, Sun D, Rubio-Aparicio D, et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(11):e 01443–17.
  • Hecker SJ, Reddy KR, Totrov M, et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J Med Chem. 2015;58(9):3682–3692.
  • Lapuebla A, Abdallah M, Olafisoye O, et al. Activity of meropenem combined with RPX7009, a novel β-Lactamase Inhibitor, against Gram-negative clinical isolates in New York City. Antimicrob Agents Chemother. 2015;59(8):4856–4860.
  • Castanheira M, Rhomberg PR, Flamm RK, et al. Effect of the β-Lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(9):5454–5458.
  • Castanheira M, Huband MD, Mendes RE, et al. Meropenem-Vaborbactam tested against contemporary Gram-Negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(9):e00567–17.
  • Pfaller MA, Huband MD, Mendes RE, et al. In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme. Int J Antimicrob Agents. 2018;52(2):144–150.
  • Wilson WR, Kline EG, Jones CE, et al. Effects of KPC variant and porin genotype on the in vitro activity of meropenem-vaborbactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63(3):e02048–18.
  • Hackel MA, Lomovskaya O, Dudley MN, et al. In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae. Antimicrob Agents Chemother. 2017;62(1):e01904–17.
  • Zhou M, Yang Q, Lomovskaya O, et al. In vitro activity of meropenem combined with vaborbactam against KPC-producing Enterobacteriaceae in China. J Antimicrob Chemother. 2018;73(10):2789–2796.
  • Castanheira M, Doyle TB, Kantro V, et al. Meropenem-vaborbactam activity against carbapenem-resistant Enterobacterales isolates collected in U.S. hospitals during 2016 to 2018. Antimicrob Agents Chemother. 2020;64(2):e01951–19.
  • Tsivkovski R, Lomovskaya O. Potency of vaborbactam is less affected than that of avibactam in strains producing KPC-2 mutations that confer resistance to ceftazidime-avibactam. Antimicrob Agents Chemother. 2020;64(4):e01936–19.
  • Vabomere® (meropenem/vaborbactam for injection) [prescribing information]. U.S. Food and drug administration (FDA). 2017. [cited 2021 Feb 01]. Available from: www.accessdata.fda.gov/drugsatfda_docs/label/2017/209776lbl.pdf
  • European Medicines Agency (EMA). Vaborem product information. 2018. [cited 2021 Feb 01]. Available from: https://www.ema.europa.eu/en/documents/product-information/vaborem-epar-product-information_en.pdf
  • Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA. 2018;319(8):788–799.
  • Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7(4):439–455.
  • Shields RK, McCreary EK, Marini RV, et al. Early Experience with meropenem-vaborbactam for treatment of carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis. 2020;71(3):667–671.
  • Alosaimy S, Jorgensen SCJ, Lagnf AM, et al. Real-world multicenter analysis of clinical outcomes and safety of meropenem-vaborbactam in patients treated for serious Gram-negative bacterial infections. Open Forum Infect Dis. 2020;7(3):ofaa051.
  • Ackley R, Roshdy D, Meredith J, et al. Meropenem-vaborbactam versus ceftazidime-avibactam for treatment of carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother. 2020;64(5):e02313–19.
  • Athans V, Neuner EA, Hassouna H, et al. Meropenem-vaborbactam as salvage therapy for ceftazidime-avibactam-resistant Klebsiella pneumoniae bacteremia and abscess in a liver transplant recipient. Antimicrob Agents Chemother. 2018;63(1):e01551–18.
  • Liu B, Trout REL, Chu GH, et al. Discovery of Taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-beta-lactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem. 2020;63(6):2789–2801.
  • Mushtaq S, Vickers A, Doumith M, et al. Activity of β-lactam/taniborbactam (VNRX-5133) combinations against carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother. 2021;76(1):160–170.
  • Mendes P, Rhomberg A, Watters M, et al. Flamm. In vitro activity of the orally available ceftibuten/VNRX-7145 combination against a challenge set of Enterobacteriaceae pathogens carrying molecularly characterised beta-lactamase genes (P1180). 29th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Apr 13-16, 2019, Amsterdam, Netherlands.
  • Tsivkovski R, Totrov M, Lomovskaya O. Biochemical characterization of QPX7728, a new ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases. Antimicrob Agents Chemother. 2020;64(6):e00130–20.
  • Lomovskaya O, Nelson K, Rubio-Aparicio D, et al. Impact of intrinsic resistance mechanisms on potency of QPX7728, a new ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Antimicrob Agents Chemother. 2020;64(6):e00552–20.
  • Lomovskaya O, Tsivkovski R, Nelson K, et al. Spectrum of beta-lactamase inhibition by the cyclic boronate QPX7728, an ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases: enhancement of activity of multiple antibiotics against isogenic strains expressing single beta-lactamases. Antimicrob Agents Chemother. 2020;64(6):e00212–20.
  • Nelson K, Rubio-Aparicio D, Sun D, et al. In vitro activity of the ultrabroad-spectrum-beta-lactamase inhibitor QPX7728 against carbapenem-resistant Enterobacterales with varying intrinsic and acquired resistance mechanisms. Antimicrob Agents Chemother. 2020;64(8):e00757–20.
  • Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 2019;69(Suppl 7):S538–S543.
  • Giacobbe DR, Ciacco E, Girmenia C, et al. Evaluating Cefiderocol in the treatment of multidrug-resistant Gram-negative bacilli: a review of the emerging data. Infect Drug Resist. 2020;13:4697–4711.
  • Wu JY, Srinivas P, Pogue JM. Cefiderocol: a novel agent for the management of multidrug-resistant Gram-negative organisms. Infect Dis Ther. 2020;9(1):17–40.
  • EUCAST. Breakpoints for cefiderocol from EUCAST. 2020. [cited 2021 Feb 01]. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Addenda/Cefiderocol_addendum_20200501.pdf
  • Hackel MA, Tsuji M, Yamano Y, et al. In vitro activity of the siderophore cephalosporin, Cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob Agents Chemother. 2018;62(2):e01968–17.
  • Mushtaq S, Sadouki Z, Vickers A, et al. In vitro activity of Cefiderocol, a siderophore cephalosporin, against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother. 2020;64(12):e01582–20.
  • Katsube T, Echols R, Wajima T. Pharmacokinetic and pharmacodynamic profiles of Cefiderocol, a novel siderophore cephalosporin. Clin Infect Dis. 2019;69(Suppl 7):S552–S558.
  • FETROJA (cefiderocol) – U.S. food and drug administration (FDA). 2020. [cited 2021 Feb 01]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209445s002lbl.pdf
  • Fetcroja (cefiderocol) | European medicines agency (EMA). 2020. [cited 2021 Feb 01]. Available from: https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-fetcroja_en.pdf
  • Portsmouth S, Van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18(12):1319–1328.
  • Wunderink RG, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2021;21(2):213–225.
  • Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021;21(2):226–240.
  • Naseer S, Weinstein EA, Rubin DB, et al. US Food and Drug Administration (FDA): benefit-risk considerations for Cefiderocol (Fetroja). Clin Infect Dis. 2020 Dec 2:ciaa1799. Online ahead of print. DOI:https://doi.org/10.1093/cid/ciaa1799
  • Scott LJ. Eravacycline: a review in complicated intra-abdominal infections. Drugs. 2019;79(3):315–324.
  • Zhanel GG, Cheung D, Adam H, et al. Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs. 2016;76(5):567–588.
  • Morrissey I, Olesky M, Hawser S, et al. In vitro activity of eravacycline against Gram-negative bacilli isolated in clinical laboratories worldwide from 2013 to 2017. Antimicrob Agents Chemother. 2020;64(3):e01699–19.
  • Zhanel GG, Baxter MR, Adam HJ, et al. In vitro activity of eravacycline against 2213 Gram-negative and 2424 Gram-positive bacterial pathogens isolated in Canadian hospital laboratories: CANWARD surveillance study 2014-2015. Diagn Microbiol Infect Dis. 2018;91(1):55–62.
  • Livermore DM, Mushtaq S, Warner M, et al. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(6):3840–3844.
  • XERAVA (eravacycline) for injection – FDA. 2018. [cited 2021 Feb 01]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf
  • XERAVA (eravacycline) - EMA. 2018. [cited 2021 Feb 01]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/xerava
  • Lv L, Wan M, Wang C, et al. Emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae. mBio. 2020;11(2):e02930–19.
  • Connors KP, Housman ST, Pope JS, et al. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother. 2014;58(4):2113–2118.
  • Solomkin JS, Gardovskis J, Lawrence K, et al. IGNITE4: results of a Phase 3, randomized, multicenter, prospective trial of Eravacycline vs Meropenem in the treatment of complicated intraabdominal infections. Clin Infect Dis. 2019;69(6):921–929.
  • Galani I, Nafplioti K, Adamou P, et al. Nationwide epidemiology of carbapenem resistant Klebsiella pneumoniae isolates from Greek hospitals, with regards to plazomicin and aminoglycoside resistance. BMC Infect Dis. 2019;19(1):167.
  • Juhas M, Widlake E, Teo J, et al. In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii. J Antimicrob Chemother. 2019;74(4):944–952.
  • Bordeleau E, Stogios PJ, Evdokimova E, et al. ApmA is a unique aminoglycoside antibiotic acetyltransferase that inactivates apramycin. mBio. 2021;12(1):e02705–20.
  • Hao M, Shi X, Lv J, et al. In vitro activity of apramycin against carbapenem-resistant and hypervirulent Klebsiella pneumoniae isolates. Front Microbiol. 2020;11:425.
  • Ishikawa M, García-Mateo N, Čusak A, et al. Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use. Sci Rep. 2019;9(1):2410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.