312
Views
8
CrossRef citations to date
0
Altmetric
Systematic review

Investigating forthcoming strategies to tackle deadly superbugs: current status and future vision

, , , , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1309-1332 | Received 05 Mar 2022, Accepted 16 Aug 2022, Published online: 28 Sep 2022

References

  • Uddin TM, Chakraborty AJ, Khusro A, et al. Antibiotic resistance in microbes: history, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021;14(12):1750–1766.
  • Ferri M, Ranucci E, Romagnoli P, et al. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2017;57(13):2857–2876.
  • Mehta AC, Muscarella LF. Bronchoscope-related “superbug. Infections Chest. 2020;157(2):454–469.
  • Ma Z, Lee S, Casey Jeong K. Mitigating antibiotic resistance at the livestock-environment interface: a review. J Microbiol Biotechnol. 2019;29(11):1683–1692.
  • Dweba CC, Zishiri OT, El Zowalaty ME. Methicillin-resistant staphylococcus aureus: livestock-associated, antimicrobial, and heavy metal resistance. Infect Drug Resist. 2018;11:2497–2509.
  • Simren D, Yordanova R. New hope for dealing with “superbugs. Trakia J Sci. 2020;18(Suppl.1):122–124.
  • Yin X, Hamasaki T, Follmann D, et al. OutSMARTing superbugs. Chance. 2020;33(3):22–30.
  • Alharthi S, Alavi SE, Moyle PM, et al. Sortase A (SrtA) inhibitors as an alternative treatment for superbug infections. Drug Discov Today. 2021;26(9):2164–2172.
  • Hossain MA. Evolution of superbugs: a lethal bioterror. Brac University; 2019.
  • Yam ELY, Hsu LY, Yap EPH, et al. Antimicrobial resistance in the Asia Pacific region: a meeting report. Antimicrob Resist Infect Control. 2019;8(1):1–12.
  • Levy DD, Sharma B, Cebula TA. Single-nucleotide polymorphism mutation spectra and resistance to quinolones in Salmonella enterica serovar enteritidis with a mutator phenotype. Antimicrob Agents Chemother. 2004;48(7):2355–2363.
  • Dramé O, Leclair D, Parmley EJ, et al. Antimicrobial resistance of campylobacter in broiler chicken along the food chain in Canada. Foodborne Pathog Dis. 2020;17(8):512–520.
  • Organization WH. New report calls for urgent action to avert antimicrobial resistance crisis. Jt News Release. 2019;29:2019–2022.
  • Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66.
  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655.
  • GLOBAL TUBERCULOSIS REPORT 2018. 2018.
  • Lim C, Takahashi E, Hongsuwan M, et al. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Elife. 2016;5. DOI:10.7554/eLife.18082.
  • Kaur S, Sneha Hariharan SD. Superbugs: the powerful warriors. Int J Pharm Sci Res. 2020;11:1506–1526.
  • Global Antimicrobial Resistance and Use Surveillance System (GLASS) report: 2021.
  • Domingues CPF, Rebelo JS, Pothier J, et al. The perfect condition for the rising of superbugs: person-to-person contact and antibiotic use are the key factors responsible for the positive correlation between antibiotic resistance gene diversity and virulence gene diversity in human metagenomes. Antibiotics. 2021;10(5):605.
  • John WP. Defeating pathogen drug resistance: guidance from evolutionary theory. Evolution. 2008;62(12):3185–3191.
  • Dykhuizen D. Species numbers in bacteria. Proc Calif Acad Sci. 2005;56(6 Suppl 1):62–71.
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health Maney Publishing. 2015;109(7):309–318.
  • Kapil A. The challenge of antibiotic resistance: need to contemplate. Ind J Med Res. 2005;121(2):83–91.
  • Bansal R, Jain A, Goyal M, et al. Antibiotic abuse during endodontic treatment: a contributing factor to antibiotic resistance. J Fam Med Prim Care. 2019;8(11):3518.
  • Ramachandran P, Rachuri N, Martha S, et al. Implications of overprescription of antibiotics: a cross-sectional study. J Pharm Bioallied Sci. 2019;11(6):S434–S437.
  • Konde S, Jairam LS, Peethambar P, et al. Antibiotic overusage and resistance: a cross-sectional survey among pediatric dentists. J Indian Soc Pedod Prev Dent. 2016;34(2):145–151.
  • Johansen TB, Scheffer L, Jensen VK, et al. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective. Sci Rep. 2018;8(1):8538.
  • Nepal G, Bhatta S. Self-medication with antibiotics in WHO Southeast Asian Region: a systematic review. Cureus. 2018;10.
  • Karakonstantis S, Kalemaki D. Antimicrobial overuse and misuse in the community in Greece and link to antimicrobial resistance using methicillin-resistant S. aureus as an example. J Infect Public Health Elsevier Ltd. 2019;12(4):460–464.
  • Zawahir S, Lekamwasam S, Aslani P. A cross-sectional national survey of community pharmacy staff: knowledge and antibiotic provision. PLoS One. 2019;14.
  • Bengtsson B, Greko C. Antibiotic resistance-consequences for animal health, welfare, and food production. Ups J Med Sci Informa Healthcare. 2014;119(2):96–102.
  • Manyi-Loh C, Mamphweli S, Meyer E, et al. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules MDPI AG. 2018;23(4):795.
  • Shi X, Wang S. Antibiotic resistance in environment of animal farms. Shengwu Gongcheng Xuebao/Chinese J Biotechnol. 2018;34:1234–1245.
  • Lindsay JA. Hospital-associated MRSA and antibiotic resistance-what have we learned from genomics? Int J Med Microbiol Urban & Fischer. 2013;303(6–7):318–323.
  • Morris A, Kellner JD, Low DE. The superbugs: evolution, dissemination and fitness. Curr Opin Microbiol. 1998;1(5):524–529.
  • Progress on wastewater treatment. 2021 UN-Water.
  • Sano D, Wester AL, Schmitt H, et al. Updated research agenda for water, sanitation and antimicrobial resistance. J Water Health. 2020;18(6):858–866.
  • Collignon P, Beggs JJ, Walsh TR, et al. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Heal. 2018;2(9):e398–e405.
  • Andremont A, Walsh T. The role of sanitation in the development and spread of antimicrobial resistance. Glob Heal Dyn. 2015;67: 68–73
  • Ramay BM, Caudell MA, Cordón-Rosales C, et al. Antibiotic use and hygiene interact to influence the distribution of antimicrobial-resistant bacteria in low-income communities in Guatemala. Sci Rep. 2020;10(1):1–10.
  • Musoke D, Namata C, Lubega GB, et al. The role of environmental health in preventing antimicrobial resistance in low- and middle-income countries. Environ Health Prev Med. 2021;26(1):4–9.
  • Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol Microbiology Society. 2015;64(5):471–497.
  • Jacob ME, Fox JT, Nagaraja TG, et al. Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle. Foodborne Pathog Dis. 2010;7(6):643–648.
  • Knapp CW, McCluskey SM, Singh BK, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One. 2011;6(11):27300.
  • Watkins RR, Bonomo RA. Overview: global and local impact of antibiotic resistance. Infect Dis Clin North Am. 2016;30(2):313–322.
  • Chang Q, Wang W, Regev-Yochay G, et al. Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl. 2015;8(3):240–247.
  • COM. A European one health action plan against antimicrobial resistance (AMR). Brussels, Belgium: European Commission; 2017. https://ec.europa.eu/health/antimicrobial-resistance/eu-action-on-antimicrobial-resistance_es
  • Wells V, Piddock LJV. Addressing antimicrobial resistance in the UK and Europe. Lancet Infect Dis. 2017;17(12):1230–1231.
  • Ntt D, Ntd T, Tran NTH, et al. Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial. Lancet Glob Heal. 2016;4(9):e633–e641.
  • Liz Szabo, Kaiser Health News, Digital Access to Scientific American. “Nightmare bacteria” widespread in U.S. Springer Nature, USA: Hospitals - Scientific American 2018.
  • Gulumbe B. Despite huge investment to contain AMR, recent reports of increased occurrence of superbugs are terrifying. Sri Lankan J Infect Dis. 2018;8(2):69.
  • Pollack LA, Srinivasan A. Core elements of hospital antibiotic stewardship programs from the centers for disease control and prevention. Clin Infect Dis. 2014;59(suppl_3):S97–S100.
  • Valiullina ZR, Galeeva AM, Gimalova FA, et al. Synthesis and in vitro antibacterial activity of new C-3-modified carbapenems. Russ J Bioorganic Chem. 2019;45(5):398–404.
  • Raza A, Ngieng SC, Sime FB, et al. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today. 2021;26(2):551–560.
  • Lederberg J. Smaller fleas … ad infinitum: therapeutic bacteriophage redux. Proc Natl Acad Sci U S A. 1996;93(8):3167.
  • Marcuk LM, Nikiforov VN, Scerbak JF, et al. Clinical studies of the use of bacteriophage in the treatment of cholera. Bull World Health Organ. 1971;45(1):77.
  • Jacobs-Sera D, Marinelli LJ, Bowman C, et al. On the nature of mycobacteriophage diversity and host preference. Virology. 2012;434(2):187–201.
  • Shahraki AH, Mirsaeidi M. Phage therapy for mycobacterium abscessus and strategies to improve outcomes. Microorganisms. 2021;9:1–20.
  • Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111–114.
  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730–733.
  • Baral B, Mozafari MR. Strategic moves of “superbugs” against available chemical scaffolds: signaling, regulation, and challenges. ACS Pharmacol Transl Sci. 2020;3(3):373–400.
  • Murteira S, Millier A, Ghezaiel Z, et al. Drug reformulations and repositioning in the pharmaceutical industry and their impact on market access: regulatory implications. J Mark Access Heal Policy. 2014;2(1):22813.
  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2018;18(1):41–58.
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673–683.
  • De Oliveira HC, Monteiro MC, Rossi SA, et al. Identification of off-patent compounds that present antifungal activity against the emerging fungal pathogen Candida auris. Front Cell Infect Microbiol. 2019;9:83.
  • González-Bello C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg Med Chem Lett. 2017;27(18):4221–4228.
  • Billamboz M, Fatima Z, Hameed S, et al. Promising drug candidates and new strategies for fighting against the emerging superbug candida auris. Microorganisms. 2021;9(3):1–39.
  • Drlica K, Malik M, Kerns RJ, et al. Quinolone-mediated bacterial death. Antimicrob Agents Chemother. 2008;52(2):385–392.
  • Gray DA, Wenzel M. Multitarget approaches against multiresistant superbugs. ACS Infect Dis. 2020;6(6):1346–1365.
  • Schneider EK, Reyes-Ortega F, Velkov T, et al. Antibiotic-non-antibiotic combinations for combating extremely drug-resistant gram-negative “superbugs. Essays Biochem. 2017;61(1):115–125.
  • Pericas JM, Cervera C, Del Rio A, et al. Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: from ampicillin plus gentamicin to ampicillin plus ceftriaxone. Clin Microbiol Infect. 2014;20(12):O1075–O1083.
  • Fiore M, Maraolo AE, Gentile I, et al. Current concepts and future strategies in the antimicrobial therapy of emerging Gram-positive spontaneous bacterial peritonitis. World J Hepatol. 2017;9(30):1166–1175.
  • Sharifi-Rad J. Herbal antibiotics: moving back into the mainstream as an alternative for “superbugs. Cell Mol Biol. 2016;62(9):1–2.
  • Draenert R, Seybold U, Grützner E, et al. Novel antibiotics: are we still in the pre–post-antibiotic era? Infection. Infection. 2015;43(2):145–151.
  • Dwivedi GR, Tyagi R, Sanchita, et al. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J Biomol Struct Dyn. 2018;36(16):4270–4284.
  • Liang CH, Romero A, Rabuka D, et al. Structure-activity relationships of bivalent aminoglycosides and evaluation of their microbiological activities. Bioorganic Med Chem Lett. 2005;15(8):2123–2128.
  • Hamilton-miller JMT. Dual-action antibiotic hybrids. J Antimicrob Chemother. 1994;33(2):197–200.
  • Yang X, Ammeter D, Idowu T, et al. Amphiphilic nebramine-based hybrids rescue legacy antibiotics from intrinsic resistance in multidrug-resistant gram-negative bacilli. Eur J Med Chem. 2019;175:187–200.
  • Ma Z, Lynch AS. Development of a dual-acting antibacterial agent (TNP-2092) for the Treatment of persistent bacterial infections. J Med Chem. 2016;59(14):6645–6657.
  • Robertson GT, Bonventre EJ, Doyle TB, et al. In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: studies of the mode of action in Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52(7):2313–2323.
  • Reid G, Dhir R. Probiotics: reiterating what they are and what they are not. Front Microbiol. 2019;10. DOI:10.3389/fmicb.2019.00424
  • Hill C, Guarner F, Reid G, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514.
  • Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):1–27.
  • Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2011;9(2):88–96.
  • Isolauri E, Salminen S, Ouwehand AC. Microbial-gut interactions in health and disease. Probiotics Best Pract Res Clin Gastroenterol. 2004;18(2):299–313.
  • Kassam Z, Lee CH, Yuan Y, et al. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108(4):500–508.
  • Nagpal R, Kumar A, Kumar M, et al. Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett. 2012;334(1):1–15.
  • Miller KP, Wang L, Benicewicz BC, et al. Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev. 2015;44(21):7787–7807.
  • Fang G, Li W, Shen X, et al. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat Commun. 2018;9(1). DOI:10.1038/s41467-017-02502-3.
  • Zheng Y, Liu W, Qin Z, et al. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjug Chem. 2018;29(9):3094–3103.
  • Ahmady IM, Hameed MK, Almehdi AM, et al. Green and cytocompatible carboxyl modified gold-lysozyme nanoantibacterial for combating multidrug-resistant superbugs. Biomater Sci. 2019;7(12):5016–5026.
  • Yang X, Yang J, Wang L, et al. Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano. 2017;11(6):5737–5745.
  • Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904–6910.
  • V WJ, Cheeseman S, Truong VK, et al. Outsmarting superbugs: bactericidal activity of nanostructured titanium surfaces against methicillin- and gentamicin-resistant Staphylococcus aureus ATCC 33592. J Mater Chem B. 2019;7(28):4424–4431.
  • Richter K, Facal P, Thomas N, et al. Taking the silver bullet colloidal silver particles for the topical treatment of biofilm-related Infections. ACS Appl Mater Interfaces. 2017;9(26):21631–21638.
  • Munguia J, Nizet V. Pharmacological targeting of the host–pathogen interaction: alternatives to classical antibiotics to combat drug-resistant superbugs. Trends Pharmacol Sci. 2017;38(5):473–488.
  • Richter K. Tackling superbugs in their slime castles: innovative approaches against antimicrobial-resistant biofilm infections. Microbiol Aust. 2019;40:165–168.
  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–199.
  • Brackman G, Breyne K, De Rycke R, et al. The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA Release. Sci Rep. 2016;6(1):6.
  • Parrino B, Schillaci D, Carnevale I, et al. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem. 2019;161:154–178.
  • Cascioferro S, Carbone D, Parrino B, et al. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 2021;16(1):65–80.
  • Zrelovs N, Kurbatska V, Rudevica Z, et al. Sorting out the superbugs: potential of sortase a inhibitors among other antimicrobial strategies to tackle the problem of antibiotic resistance. Antibiotics. 2021;10(2):1–14.
  • Kourtesi C, Ball AR, Huang -Y-Y, et al. Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J. 2013;7(1):34–52.
  • Darzynkiewicz ZM, Green AT, Abdali N, et al. Identification of binding sites for efflux pump inhibitors of the AcrAB-TolC component AcrA. Biophys J. 2019;116(4):648–658.
  • Zechini B, Versace I. Inhibitors of multidrug resistant Efflux systems in Bacteria. Recent Pat Antiinfect Drug Discov. 2009;4(1):37–50.
  • Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418.
  • Singh R, Swick MC, Ledesma KR, et al. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother. 2012;56(4):1680–1685.
  • Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2006;59(1):126–141.
  • Kvist M, Hancock V, Klemm P. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol. 2008;74(23):7376–7382.
  • Renau TE, Léger R, Filonova L, et al. Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorganic Med Chem Lett. 2003;13(16):2755–2758.
  • Renau TE, Léger R, Flamme EM, et al. Addressing the stability of C-capped dipeptide efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorganic Med Chem Lett. 2001;11(5):663–667.
  • Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic - A vision for applied use. Biochem Pharmacol. 2006;71(7):910–918.
  • Yoshida KI, Nakayama K, Kuru N, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: carbon-substituted analogues at the C-2 position. Bioorg Med Chem. 2006;14(6):1993–2004.
  • Opperman TJ, Kwasny SM, Kim HS, et al. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother. 2014;58(2):722–733.
  • Pos KM. Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta - Proteins Proteomics. 2009;1794(5):782–793.
  • Murakami S, Nakashima R, Yamashita E, et al. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature. 2006;443(7108):173–179.
  • Seeger MA, Von Ballmoos C, Eicher T, et al. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat Struct Mol Biol. 2008;15(2):199–205.
  • Seeger MA, Von Ballmoos C, Verrey F, et al. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry. 2009;48(25):5801–5812.
  • French S, Farha M, Ellis MJ, et al. Potentiation of antibiotics against gram-negative bacteria by polymyxin B analogue SPR741 from unique perturbation of the outer membrane. ACS Infect Dis. 2020;6(6):1405–1412.
  • Klobucar K, Côté JP, French S, et al. Chemical screen for vancomycin antagonism uncovers probes of the gram-negative outer membrane. ACS Chem Biol. 2021;16(5):929–942.
  • Membrane O, Overcomes D. Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance. MBio. 2020;11:1–15.
  • Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94(3):223–253.
  • Ultee A, Smid EJ. Influence of carvacrol on growth and toxin production by Bacillus cereus. Int J Food Microbiol. 2001;64(3):373–378.
  • Lahmar A, Bedoui A, Mokdad-Bzeouich I, et al. Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. Microb Pathog. 2017;106:50–59.
  • Moon SE, Kim HY, Cha JD. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch Oral Biol. 2011;56(9):907–916.
  • Zhang D, Hu H, Rao Q, et al. Synergistic effects and physiological responses of selected bacterial isolates from animal feed to four natural antimicrobials and two antibiotics. Foodborne Pathog Dis. 2011;8(10):1055–1062.
  • Coutinho HDM, Costa JGM, Falcão-Silva VS, et al. Effect of Momordica charantia L. in the resistance to aminoglycosides in methicilin-resistant Staphylococcus aureus. Comp Immunol Microbiol Infect Dis. 2010;33(6):467–471.
  • Mishra B, Reiling S, Zarena D, et al. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol. 2017;38:87–96.
  • Masuda R, Kudo M, Dazai Y, et al. Collagen-like antimicrobial peptides. Biopolymers. 2016;106(4):453–459.
  • Krizsan A, Prahl C, Goldbach T, et al. Short proline-rich antimicrobial peptides inhibit either the bacterial 70S ribosome or the assembly of its large 50S subunit. ChemBioChem. 2015;16(16):2304–2308.
  • Siddiqui R, Khan NA. Strategies to counter transmission of “superbugs” by targeting free-living amoebae. Exp Parasitol. 2017;183:133–136.
  • Carr A, Schultz J. Prospective evaluation of the incidence of wound infection in rattlesnake envenomation in dogs. J Vet Emerg Crit Care (San Antonio). 2015;25(4):546–551.
  • Pérez-Peinado C, Defaus S, Andreu D. Hitchhiking with nature: snake venom peptides to fight cancer and superbugs. Toxins (Basel). 2020;12(4):1–23.
  • Adegoke AA, Faleye AC, Singh G, et al. Antibiotic resistant superbugs: assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules. 2017;22(1):29.
  • Becker K, Schaumburg F, Fegeler C, et al. Staphylococcus aureus from the German general population is highly diverse. Int J Med Microbiol. 2017;307(1):21–27.
  • Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Prim. 2018;4:1–23.
  • Dzintars K, Grayson MK. The Use of antibiotics. Boca Raton, Florida, USA: CRC Press; 2018.
  • Chambers FD HF. Waves of resistance: staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7:629–641.
  • Fridkin S. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352:1436–1444.
  • Aguado JM, San-Juan R, Lalueza A, et al. High vancomycin MIC and complicated methicillin-susceptible staphylococcus aureus bacteremia. Emerg Infect Dis. 2011;17:1099–1102.
  • on behalf of the Joint Working Party of the British Society for Antimicrobial Chemotherapy HIS and ICNA: Gemmell CG, Edwards DI, Fraise AP, et al. Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother. 2006;57:589–608. DOI:10.1093/jac/dkl017
  • Gould IM, David MZ, Esposito S, et al. New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents. 2012;39:96–104.
  • Nguyen HM, Graber CJ. Limitations of antibiotic options for invasive infections caused by methicillin-resistant Staphylococcus aureus: is combination therapy the answer? J Antimicrob Chemother. 2009;65:24–36.
  • Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):285-292.
  • Stryjewski ME, Corey GR. New treatments for methicillin-resistant Staphylococcus aureus. Curr Opin Crit Care. 2009;15:403–412.
  • Vancomycin: a 50-something-year-old antibiotic we still don’t understand. p. 465–471.
  • Gu B, Kelesidis T, Tsiodras S, et al. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother. 2013;68:4–11.
  • García MS, De La Torre MÁ, Morales G, et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. J Am Med Assoc. 2010;303:2260–2264.
  • Daptomycin: a novel cyclic lipopeptide antimicrobial. p. 1145–1158.
  • New insights into meticillin-resistant Staphylococcus aureus pathogenesis, treatment and resistance. p. 96–104.
  • Tasina E, Haidich AB, Kokkali S, et al. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis. 2011;11:834–844.
  • Shirley DAT, Heil EL, Johnson JK. Ceftaroline fosamil: a brief clinical review. Infect Dis Ther. 2013;2:95–110.
  • Zasowski EJ, Trinh TD, Claeys KC, et al. Multicenter cohort study of ceftaroline versus daptomycin for treatment of methicillin-resistant staphylococcus aureus bloodstream infection. Open Forum infectious Diseases. 2014;9(3). DOI:10.1093/ofid/ofab606.
  • Echols RM. Understanding the regulatory hurdles for antibacterial drug development in the post-ketek world. Ann N Y Acad Sci. 2011;1241(1):153–161.
  • Shaw KJ, Barbachyn MR. The oxazolidinones: past, present, and future. Ann N Y Acad Sci. 2011;1241(1):48–70.
  • Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect. 2019;25(8):943–950.
  • Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423–435.
  • Goodman KE, Simner PJ, Tamma PD, et al. Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE). Expert Rev Anti Infect Ther. 2016;14(1):95–108.
  • Sheu CC, Chang YT, Lin SY, et al. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10:10.
  • P M, T PT, A A, et al. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J Antimicrob Chemother. 2008;61(1):59–63.
  • Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602.
  • Navarro-San Francisco C, Mora-Rillo M, Romero-Gómez MP, et al. Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: a major clinical challenge. Clin Microbiol Infect. 2013;19(2):E72–9.
  • C A, G M, F D, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol Infect. 2013;19(1):E23–E30.
  • Falagas ME, Karageorgopoulos DE, Nordmann P. Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future microbiology. 2011;6(6):653–666.
  • Livermore DM, Warner M, Mushtaq S, et al. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents. 2011;37(5):415–419.
  • Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, et al. Treatment of infections caused by extended-spectrum-beta-lactamase-, ampC-, and carbapenemase-producing enterobacteriaceae. Clin Microbiol Rev. 2018;31(2):e00079-17.
  • Ku YH, Chen CC, Lee MF, et al. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. J Microbiol Immunol Infect. 2017;50(6):931–939.
  • Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55(6):3002.
  • Isler B, Doi Y, Bonomo RA, et al. New treatment options against carbapenem-resistant acinetobacter baumannii infections. Antimicrob Agents Chemother. 2019;63(1):e01110-18.
  • Abbott I, Cerqueira GM, Bhuiyan S, et al. Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti Infect Ther. 2013;11(4):395–409.
  • Viehman JA, Nguyen MH, Doi Y. Treatment options for carbapenem-resistant and extensively drug-resistant acinetobacter baumannii infections. Drugs. 2014;74(12):1315–1333.
  • Piperaki ET, Tzouvelekis LS, Miriagou V, et al. Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin Microbiol Infect. 2019;25(8):951–957.
  • Routsi C, Kokkoris S, Douka E, et al. High-dose tigecycline-associated alterations in coagulation parameters in critically ill patients with severe infections. Int J Antimicrob Agents. 2015;45(1):90–93.
  • Greig SL, Scott LJ. Intravenous minocycline: a review in acinetobacter infections. Drugs. 2016;76(15):1467–1476.
  • Falagas ME, Vardakas KZ, Roussos NS. Trimethoprim/sulfamethoxazole for acinetobacter spp.: a review of current microbiological and clinical evidence. Int J Antimicrob Agents. 2015;46(3):231–241.
  • Levy SB, Bonnie M. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(S12):S122–S129.
  • Kubiczek D, Raber H, Gonzalez-García M, et al. Derivates of the antifungal peptide Cm-p5 inhibit development of candida auris biofilms in vitro. Antibiot. 2020;9(7):363.
  • Shaban S, Patel M, Ahmad A. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris. Sci Rep. 2020;10:1–8.
  • Chami N, Bennis S, Chami F, et al. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol Immunol. 2005;20(2):106–111.
  • Ahmad A, Khan A, Akhtar F, et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis. 2011;30(1):41–50.
  • Sebaa S, Hizette N, Boucherit-Otmani Z, et al. Dose-dependent effect of lysozyme upon Candida albicans biofilm. Mol Med Rep. 2017;15(3):1135–1142.
  • Van Duin D, Kaye KS, Neuner EA, et al. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis. 2013;75(2):115–120.
  • AK M, Pg A, TH G, et al. Pharmacokinetic/pharmacodynamic profile for tigecycline-a new glycylcycline antimicrobial agent. Diagn Microbiol Infect Dis. 2005;52(3):165–171.
  • E A, H KM, H AM, et al. ACHN-490, a neoglycoside with potent in vitro activity against multidrug-resistant Klebsiella pneumoniae isolates. Antimicrob Agents Chemother. 2009;53(10):4504–4507.
  • Karlowsky JA, Nichol K, Zhanel GG. Telavancin: mechanisms of action, in vitro activity, and mechanisms of resistance. Clin Infect Dis. 2015;61(suppl 2):S58–S68.
  • Choo EJ, Chambers HF. Treatment of methicillin-resistant Staphylococcus aureus bacteremia. Infect Chemother. 2016;48(4):267–273.
  • DJ F, RK F, HS S, et al. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011-2012). Antimicrob Agents Chemother. 2013;57(12):6305–6310.
  • Mangion IK, Ruck RT, Rivera N, et al. A concise synthesis of a β-lactamase inhibitor. Org Lett. 2011;13:5480–5483.
  • Chai J, Lee CH. Management of primary and recurrent clostridium difficile infection: an update. Antibiotics. 2018;7(3):1–8.
  • Nair DVT, Venkitanarayanan K, Johny AK. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods. 2018;7(10):167.
  • Linden PK. Treatment options for vancomycin-resistant enterococcal infections. Drugs. 2012;62(3):425–441.
  • Norris JRPE AH, Reilly JP, Edelstein PH. Chloramphenicol for the treatment of vancomycin-resistant enterococcal infections. Clin Infect Dis. 1995;20(5):1137–1144.
  • JR A, MJ R. Pharmacodynamic analysis of the activity of quinupristin-dalfopristin against vancomycin-resistant Enterococcus faecium with differing MBCs via time-kill-curve and postantibiotic effect methods. Antimicrob Agents Chemother. 1998;42(9):2188–2192.
  • McNeil NCPC SA. Successful treatment of vancomycin-resistant Enterococcus faecium bacteremia with linezolid after failure of treatment with synercid (quinupristin/dalfopristin). Clin Infect Dis. 2000;30(2):403–404.
  • Abadi ATB. Helicobacter pylori: emergence of a Superbug. Front Med. 2014;1:1–1.
  • Agudo S, Perez-Perez G, Alarcon T, et al. High prevalence of clarithromycin-resistant helicobacter pylori strains and risk factors associated with resistance in Madrid, Spain. J Clin Microbiol. 2010;48(10):3703–3707.
  • Chen D, Cunningham SA, Cole NC, et al. Phenotypic and molecular antimicrobial susceptibility of Helicobacter pylori. Antimicrob Agents Chemother. 2017;61(4):e02530-16.
  • Hu Y, Zhang M, Lu B, et al. Helicobacter pylori and antibiotic resistance, A continuing and intractable problem. Helicobacter. 2016;21:349–363.
  • JP Q, EJ D, CA D, et al. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. J Infect Dis. 1986;154(2):289–294.
  • Köhler T, Michea-Hamzehpour M, Epp SF, et al. Carbapenem activities against pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother. 1999;43(2):424–427.
  • Huband MD, Castanheira M, Flamm RK, et al. In vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from U.S. Medical centers by Census Region, 2014. Antimicrob Agents Chemother. 2016;60(4):2537–2541.
  • Lolans K, Queenan AM, Bush K, et al. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne Metallo-β-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother. 2005;49(8):3538–3540.
  • Tran TB, Velkov T, Nation RL, et al. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet? Int J Antimicrob Agents. 2016;48(6):592–597.
  • Zusman O, Altunin S, Koppel F, et al. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J Antimicrob Chemother. 2017;72(1):29–39.
  • Grupper M, Sutherland C, Nicolau DP. Multicenter evaluation of ceftazidime-avibactam and ceftolozane-tazobactam inhibitory activity against meropenem-nonsusceptible Pseudomonas aeruginosa from blood, respiratory tract, and wounds. Antimicrob Agents Chemother. 2017;61(10):e00875-17.
  • YM W, G-Q KE, AN S, et al. Activity of Ceftolozane-tazobactam against carbapenem-resistant, non-carbapenemase-producing Pseudomonas aeruginosa and associated resistance mechanisms. Antimicrob Agents Chemother. 2017;62(1):e01970-17.
  • Takeda S, Nakai T, Wakai Y, et al. In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2007;51(3):826–830.
  • Pfaller MA, Bassetti M, Duncan LR, et al. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: report from an antimicrobial surveillance programme (2012-15). J Antimicrob Chemother. 2017;72(5):1386–1395.
  • DM L, W M, M S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68(10):2286–2290.
  • Smith JL, Fratamico PM. Fluoroquinolone resistance in campylobacter. J Food Prot. 2010;73(6):1141–1152.
  • Mathew AG, Cissell R, Liamthong S. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne Pathog Dis. 2007;4(2):115–133.
  • Pinto M, Matias R, Rodrigues JC, et al. Cephalosporin-resistant neisseria gonorrhoeae isolated in Portugal, 2019. Sex Transm Dis. 2020;47(11):e54–e56.
  • Ross JDC, Lewis DA. Cephalosporin resistant Neisseria gonorrhoeae: time to consider gentamicin? Sex Transm Infect. 2012;88(1):6–8.
  • Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev. 2003;16(3):430–450.
  • Burckhardt MHI, Burckhardt I. In vitro activity of newer antimicrobials against penicillin non-susceptible strains of Streptococcus pneumoniae. Infect Drug Resist. 2019;12:1889.
  • RF J. Imipenem-cilastatin: the first thienamycin antibiotic. Pediatr Infect Dis. 1986;62(Suppl_2):75-77.
  • Hikida M, Kawashima K, Yoshida M, et al. Inactivation of new carbapenem antibiotics by dehydropeptidase-i from porcine and human renal cortex. J Antimicrob Chemother. 1992;30(2):129–134.
  • Hori Y, Aoki N, Kuwahara S, et al. Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J Am Soc Nephrol. 2017;28(6):1783–1791.
  • Falagas ME, Mavroudis AD, Vardakas KZ. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect? Expert Rev Anti Infect Ther. 2016;14(8):747–763.
  • Blizzard TA, Chen H, Kim S, et al. Discovery of MK-7655, a β-lactamase inhibitor for combination with Primaxin®. Bioorganic Med Chem Lett. 2014;24(3):780–785.
  • Lucasti C, Vasile L, Sandesc D, et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60(10):6234–6243.
  • Domalaon R, Idowu T, Zhanel GG, et al. Antibiotic hybrids: the next generation of agents and adjuvants against gram-negative pathogens? Clin Microbiol Rev. 2018;31(2):e00077-17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.