518
Views
0
CrossRef citations to date
0
Altmetric
Review

Reviewing novel treatment options for carbapenem-resistant Enterobacterales

&
Pages 71-85 | Received 02 Aug 2023, Accepted 04 Jan 2024, Published online: 10 Jan 2024

References

  • van Duin D, Doi Y. The global epidemiology of carbapenemase-producing enterobacteriaceae. Virulence. 2017 May 19;8(4):460–469. doi: 10.1080/21505594.2016.1222343
  • Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among enterobacteriaceae worldwide. Clin Microbiol Infect. 2014 Sep;20(9):821–830. doi: 10.1111/1469-0691.12719
  • Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing enterobacteriaceae. Emerg Infect Dis. 2011 Oct;17(10):1791–1798. doi: 10.3201/eid1710.110655
  • Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. 2018 Apr 3;66(8):1290–1297. doi: 10.1093/cid/cix893
  • Kelly AM, Mathema B, Larson EL. Carbapenem-resistant enterobacteriaceae in the community: a scoping review. Int J Antimicrob Agents. 2017 Aug;50(2):127–134. doi: 10.1016/j.ijantimicag.2017.03.012
  • Hu H, Mao J, Chen Y, et al. clinical and microbiological characteristics of community-onset carbapenem-resistant enterobacteriaceae isolates. Infect Drug Resist. 2020;13:3131–3143. 10.2147/IDR.S260804
  • van Duin D, Paterson DL. Multidrug-resistant bacteria in the community: an update. Infect Dis Clin North Am. 2020 Dec;34(4):709–722. doi: 10.1016/j.idc.2020.08.002
  • Reyes J, Komarow L, Chen L, et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): a prospective cohort study. Lancet Microbe. 2023 Mar;4(3):e159–e170.
  • Kazmierczak KM, Karlowsky JA, de Jonge BLM, et al. Epidemiology of carbapenem resistance determinants identified in meropenem-nonsusceptible enterobacterales collected as part of a global surveillance program, 2012 to 2017. Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0200020. doi: 10.1128/AAC.02000-20
  • Martin A, Fahrbach K, Zhao Q, et al. Association between carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to enterobacteriaceae: results of a systematic literature review and meta-analysis. Open Forum Infect Dis. 2018 Jul;5(7):ofy150.
  • Kahlmeter J, Kluytmans YC, Ouellette M, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3): 318–327. doi: 10.1016/S1473-3099(17)30753-3
  • CDC. Antibiotic resistance threats in the United States, 2019. Atlanta GA: U.S. Department of Health and Human Services; 2019.
  • CDC. COVID-19: U.S. Impact on antimicrobial resistance, special report 2022. Atlanta GA: U.S. Department of Health and Human Sevices, CDC; 2022.
  • CDC. Facility guidance for control of carbapenem-resistant enterobacteriaceae. Atlanta GA: National Center for Emerging and Zoonotic Infectious Diseases, Division of Healthcare Quality Promotion, CDC; 2015.
  • Stoesser N, Sheppard AE, Peirano G, et al. Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci Rep. 2017 Jul 19;7(1):5917. doi: 10.1038/s41598-017-06256-2
  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007 Jul;20(3):440–458. table of contents. doi: 10.1128/CMR.00001-07
  • Aurilio C, Sansone P, Barbarisi M, et al. Mechanisms of action of carbapenem resistance. Antibiotics. 2022 Mar 21;11(3):421. doi: 10.3390/antibiotics11030421
  • Tamma PD, Goodman KE, Harris AD, et al. Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant enterobacteriaceae bacteremia. Clin Infect Dis. 2017 Feb 1;64(3):257–264. doi: 10.1093/cid/ciw741
  • van Duin D, Arias CA, Komarow L, et al. Molecular and clinical epidemiology of carbapenem-resistant enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infect Dis. 2020 Jun;20(6):731–741. doi: 10.1016/S1473-3099(19)30755-8
  • Sader HS, Castanheira M, Shortridge D, et al. Antimicrobial activity of ceftazidime-avibactam tested against multidrug-resistant enterobacteriaceae and pseudomonas aeruginosa isolates from U.S. medical centers, 2013 to 2016. Antimicrob Agents Chemother. 2017 Nov;61(11). doi: 10.1128/AAC.01045-17
  • Sader HS, Mendes RE, Duncan L, et al. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam activities against multidrug-resistant enterobacterales from United States medical centers (2018-2022). Diagn Microbiol Infect Dis. 2023 Jun;106(2):115945.
  • Ozyurt OK, Tufanoglu P, Cetinkaya O, et al. In vitro activity of cefiderocol and ceftazidime-avibactam, against carbapenemase-producing enterobacterales. Clin Lab. 2023 Jan 1;69(1). doi: 10.7754/Clin.Lab.2022.220827
  • Castanheira M, Doyle TB, Collingsworth TD, et al. Increasing frequency of OXA-48-producing enterobacterales worldwide and activity of ceftazidime/avibactam, meropenem/vaborbactam and comparators against these isolates. J Antimicrob Chemother. 2021 Nov 12;76(12):3125–3134. doi: 10.1093/jac/dkab306
  • Haidar G, Clancy CJ, Chen L, et al. Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2017 Sep;61(9). doi: 10.1128/AAC.00642-17
  • Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010 Jan;23(1):160–201. doi: 10.1128/CMR.00037-09
  • Citron DM, Tyrrell KL, Merriam V, et al. In vitro activity of ceftazidime-NXL104 against 396 strains of beta-lactamase-producing anaerobes. Antimicrob Agents Chemother. 2011 Jul;55(7):3616–3620.
  • Rasmussen BA, Bush K, Tally FP. Antimicrobial resistance in anaerobes. Clin Infect Dis. 1997 Jan;24(Suppl 1):S110–S120. doi: 10.1093/clinids/24.Supplement_1.S110
  • Karlowsky JA, Biedenbach DJ, Kazmierczak KM, et al. Activity of ceftazidime-avibactam against extended-spectrum- and AmpC beta-lactamase-producing enterobacteriaceae collected in the INFORM global surveillance study from 2012 to 2014. Antimicrob Agents Chemother. 2016 May;60(5):2849–2857.
  • Carmeli Y, Armstrong J, Laud PJ, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016 Jun;16(6):661–673.
  • Mazuski JE, Gasink LB, Armstrong J, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016 Jun 1;62(11):1380–1389. doi: 10.1093/cid/ciw133
  • Torres A, Zhong N, Pachl J, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2018 Mar;18(3):285–295.
  • Wagenlehner FM, Sobel JD, Newell P, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis. 2016 Sep 15;63(6):754–762. doi: 10.1093/cid/ciw378
  • Mazuski JE, Wagenlehner F, Torres A, et al. Clinical and microbiological outcomes of ceftazidime-avibactam treatment in adults with gram-negative bacteremia: a subset analysis from the phase 3 clinical trial program. Infect Dis Ther. 2021 Dec;10(4):2399–2414.
  • Almangour TA, Ghonem L, Aljabri A, et al. Ceftazidime-avibactam versus colistin for the treatment of infections due to carbapenem-resistant enterobacterales: a multicenter cohort study. Infect Drug Resist. 2022;15:211–221. doi: 10.2147/IDR.S349004
  • Karaiskos I, Daikos GL, Gkoufa A, et al. Ceftazidime/avibactam in the era of carbapenemase-producing Klebsiella pneumoniae: experience from a national registry study. J Antimicrob Chemother. 2021 Feb 11;76(3):775–783. doi: 10.1093/jac/dkaa503
  • Shields RK, Nguyen MH, Chen L, et al. Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against carbapenem-resistant Klebsiella pneumoniae Bacteremia. Antimicrob Agents Chemother. 2017 Aug;61(8). doi: 10.1128/AAC.00883-17
  • van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant enterobacteriaceae. Clin Infect Dis. 2018 Jan 6;66(2):163–171. doi: 10.1093/cid/cix783
  • Zheng G, Cai J, Zhang L, et al. Ceftazidime/avibactam-based versus polymyxin B-Based therapeutic regimens for the treatment of carbapenem-resistant Klebsiella pneumoniae infection in critically Ill patients: a retrospective cohort study. Infect Dis Ther. 2022 Oct;11(5):1917–1934.
  • Fang J, Li H, Zhang M, et al. Efficacy of ceftazidime-avibactam versus polymyxin B and risk factors affecting clinical outcomes in patients with carbapenem-resistant klebsiella pneumoniae infections a retrospective study. Front Pharmacol. 2021;12:780940. doi: 10.3389/fphar.2021.780940
  • Qu J, Xu J, Liu Y, et al. Real-world effectiveness of ceftazidime/avibactam versus polymyxin B in treating patients with carbapenem-resistant Gram-negative bacterial infections. Int J Antimicrob Agents. 2023 May 27;62(2):106872. doi: 10.1016/j.ijantimicag.2023.106872
  • Ackley R, Roshdy D, Meredith J, et al. Meropenem-vaborbactam versus ceftazidime-avibactam for treatment of carbapenem-resistant enterobacteriaceae infections. Antimicrob Agents Chemother. 2020 Apr 21;64(5). doi: 10.1128/AAC.02313-19
  • Bonnin RA, Bernabeu S, Emeraud C, et al. Susceptibility of OXA-48-producing Enterobacterales to imipenem/relebactam, meropenem/vaborbactam and ceftazidime/avibactam. Int J Antimicrob Agents. 2022 Oct;60(4):106660.
  • Bonnin RA, Bernabeu S, Emeraud C, et al. In vitro activity of imipenem-relebactam, meropenem-vaborbactam, ceftazidime-avibactam and comparators on carbapenem-resistant non-carbapenemase-producing enterobacterales. Antibiotics. 2023 Jan 6;12(1):102. doi: 10.3390/antibiotics12010102
  • Bakthavatchalam YD, Routray A, Mane A, et al. In vitro activity of ceftazidime-avibactam and its comparators against carbapenem resistant enterobacterales collected across India: results from ATLAS surveillance 2018 to 2019. Diagn Microbiol Infect Dis. 2022 May;103(1):115652.
  • Tamma PD, Aitken SL, Bonomo RA, et al. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. 2023 Jul 18; doi: 10.1093/cid/ciad428
  • Paul M, Carrara E, Retamar P, et al. European society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect. 2022 Apr;28(4):521–547. doi: 10.1016/j.cmi.2021.11.025
  • Shields RK, Nguyen MH, Chen L, et al. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant enterobacteriaceae infections. Antimicrob Agents Chemother. 2018 May;62(5). doi: 10.1128/AAC.02497-17
  • Tumbarello M, Raffaelli F, Giannella M, et al. Ceftazidime-avibactam use for Klebsiella  pneumoniae carbapenemase-producing K. pneumoniae infections: a retrospective observational multicenter study. Clin Infect Dis. 2021 Nov 2;73(9):1664–1676. doi: 10.1093/cid/ciab176
  • Yahav D, Giske CG, Gramatniece A, et al. New beta-lactam-beta-lactamase inhibitor combinations. Clin Microbiol Rev. 2020 Dec 16;34(1). doi: 10.1128/CMR.00115-20
  • Cavallini S, Unali I, Bertoncelli A, et al. Ceftazidime/avibactam resistance is associated with different mechanisms in KPC-producing Klebsiella pneumoniae strains. Acta Microbiol Immunol Hung. 2021 Nov 5. doi: 10.1556/030.2021.01626
  • Haidar G, Clancy CJ, Shields RK, et al. Mutations in bla(KPC-3) that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2017 May;61(5). doi: 10.1128/AAC.02534-16
  • Shields RK, Potoski BA, Haidar G, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant enterobacteriaceae infections. Clin Infect Dis. 2016 Dec 15;63(12):1615–1618. doi: 10.1093/cid/ciw636
  • Xiong L, Wang Y, Wang X, et al. Mechanisms of ceftazidime/avibactam resistance in drug-naïve bacteraemic enterobacterales strains without metallo-beta-lactamase production: associated with ceftazidime impedance. Int J Antimicrob Agents. 2023 Jun 2;62(2):106877. doi: 10.1016/j.ijantimicag.2023.106877
  • Hemarajata P, Humphries RM. Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J Antimicrob Chemother. 2019 May 1;74(5):1241–1243. doi: 10.1093/jac/dkz026
  • Shi Q, Han R, Guo Y, et al. Multiple novel ceftazidime-avibactam-resistant variants of bla(KPC-2)-positive Klebsiella pneumoniae in two patients. Microbiol Spectr. 2022 Jun 29;10(3):e0171421. doi: 10.1128/spectrum.01714-21
  • De Almeida Torres N, Morales Junior R, Bueno Lopes LF, et al. Synergistic combination of aztreonam and ceftazidime/avibactam against resistant Stenotrophomonas maltophilia on pancreatitis. J Infect Dev Ctries. 2023 Jun 30;17(6):881–885. doi: 10.3855/jidc.17290
  • Kuai J, Zhang Y, Lu B, et al. In vitro synergistic activity of ceftazidime-avibactam in combination with aztreonam or meropenem against clinical enterobacterales producing bla(KPC) or bla(NDM). Infect Drug Resist. 2023;16:3171–3182. doi: 10.2147/IDR.S408228
  • Taha R, Kader O, Shawky S, et al. Ceftazidime-avibactam plus aztreonam synergistic combination tested against carbapenem-resistant enterobacterales characterized phenotypically and genotypically: a glimmer of hope. Ann Clin Microbiol Antimicrob. 2023 Mar 21;22(1):21. doi: 10.1186/s12941-023-00573-3
  • Mauri C, Maraolo AE, Di Bella S, et al. The revival of aztreonam in combination with avibactam against metallo-β-lactamase-producing Gram-negatives: a systematic review of in vitro studies and clinical cases. Antibiotics. 2021 Aug 20;10(8):1012. doi: 10.3390/antibiotics10081012
  • Falcone M, Daikos GL, Tiseo G, et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-beta-lactamase-producing enterobacterales. Clin Infect Dis. 2021 Jun 1;72(11):1871–1878. doi: 10.1093/cid/ciaa586
  • Lodise TP, O’Donnell JN, Raja S, et al. Safety of Ceftazidime-Avibactam in Combination with Aztreonam (COMBINE) in a Phase I, Open-Label Study in Healthy Adult Volunteers. Antimicrob Agents Chemother. 2022 Dec 20;66(12):e0093522. doi: 10.1128/aac.00935-22
  • Sempere A, Vinado B, Los-Arcos I, et al. Ceftazidime-avibactam plus aztreonam for the treatment of infections by VIM-Type-producing gram-negative bacteria. Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0075122. doi: 10.1128/aac.00751-22
  • Shaw E, Rombauts A, Tubau F, et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother. 2018 Apr 1;73(4):1104–1106. doi: 10.1093/jac/dkx496
  • Novelli A, Del Giacomo P, Rossolini GM, et al. Meropenem/vaborbactam: a next generation beta-lactam beta-lactamase inhibitor combination. Expert Rev Anti Infect Ther. 2020 Jul;18(7):643–655.
  • Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA. 2018 Feb 27;319(8):788–799. doi: 10.1001/jama.2018.0438
  • Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018 Dec;7(4):439–455.
  • Castanheira M, Doyle TB, Kantro V, et al. Meropenem-vaborbactam activity against carbapenem-resistant enterobacterales isolates collected in U.S. Hospitals during 2016 to 2018. Antimicrob Agents Chemother. 2020 Jan 27;64(2). doi: 10.1128/AAC.01951-19
  • Shortridge D, Deshpande LM, Streit JM, et al. Activity of meropenem/vaborbactam and comparators against non-carbapenemase-producing carbapenem-resistant enterobacterales isolates from Europe. JAC Antimicrob Resist. 2022 Oct;4(5):dlac097.
  • Shortridge D, Kantro V, Castanheira M, et al. Meropenem-Vaborbactam Activity against U.S. multidrug-resistant enterobacterales strains, including carbapenem-resistant isolates. Microbiol Spectr. 2023 Feb 14;11(1):e0450722. doi: 10.1128/spectrum.04507-22
  • Tiseo G, Suardi LR, Leonildi A, et al. Meropenem/Vaborbactam plus aztreonam for the treatment of New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae infections. J Antimicrob Chemother. 2023 Jul 1;78(9):2377–2379. doi: 10.1093/jac/dkad206
  • O’Donnell JN, Lodise TP. New perspectives on antimicrobial agents: imipenem-relebactam. Antimicrob Agents Chemother. 2022 Jul 19;66(7):e0025622. doi: 10.1128/aac.00256-22
  • Kaye KS, Boucher HW, Brown ML, et al. Comparison of treatment outcomes between analysis populations in the RESTORE-IMI 1 phase 3 trial of imipenem-cilastatin-relebactam versus colistin plus imipenem-cilastatin in patients with imipenem-nonsusceptible bacterial infections. Antimicrob Agents Chemother. 2020 Apr 21;64(5). doi: 10.1128/AAC.02203-19
  • Motsch J, Murta de Oliveira C, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2020 Apr 15;70(9):1799–1808. doi: 10.1093/cid/ciz530
  • Titov I, Wunderink RG, Roquilly A, et al. A randomized, double-blind, multicenter trial comparing efficacy and safety of imipenem/cilastatin/relebactam versus piperacillin/tazobactam in adults with hospital-acquired or ventilator-associated bacterial pneumonia (RESTORE-IMI 2 study). Clin Infect Dis. 2021 Dec 6;73(11):e4539–e4548. doi: 10.1093/cid/ciaa803
  • Sims M, Mariyanovski V, McLeroth P, et al. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017 Sep 1;72(9):2616–2626. doi: 10.1093/jac/dkx139
  • Martin-Loeches I, Shorr AF, Kollef MH, et al. Participant- and disease-related factors as Independent predictors of treatment outcomes in the RESTORE-IMI 2 clinical trial: a multivariable regression analysis. Open Forum Infect Dis. 2023 Jun;10(6):ofad225.
  • Karlowsky JA, Lob SH, Akrich B, et al. In vitro activity of imipenem/relebactam against piperacillin/tazobactam-resistant and meropenem-resistant non-morganellaceae enterobacterales and Pseudomonas aeruginosa collected from patients with lower respiratory tract infections in Western Europe: SMART 2018-20. JAC Antimicrob Resist. 2023 Feb;5(1):dlad003.
  • Young K, Painter RE, Raghoobar SL, et al. In vitro studies evaluating the activity of imipenem in combination with relebactam against Pseudomonas aeruginosa. BMC Microbiol. 2019 Jul 4;19(1):150. doi: 10.1186/s12866-019-1522-7
  • Findlay J, Rens C, Poirel L, et al. In vitro mechanisms of resistance development to imipenem-relebactam in KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0091822. doi: 10.1128/aac.00918-22
  • Hujer AM, Bethel CR, Taracila MA, et al. Imipenem/relebactam resistance in clinical isolates of extensively drug resistant pseudomonas aeruginosa: inhibitor-resistant beta-lactamases and their increasing importance. Antimicrob Agents Chemother. 2022 May 17;66(5):e0179021. doi: 10.1128/aac.01790-21
  • Sato T, Yamawaki K. Cefiderocol. Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 2019 Nov 13;69(Suppl 7):S538–S543. doi: 10.1093/cid/ciz826
  • Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob Agents Chemother. 2018 Jan;62(1). doi: 10.1128/AAC.01454-17
  • Kaye KS, Naas T, Pogue JM, et al. Cefiderocol, a siderophore cephalosporin, as a treatment option for infections caused by Carbapenem-Resistant Enterobacterales. Infect Dis Ther. 2023 Mar;12(3):777–806.
  • Hackel MA, Tsuji M, Yamano Y, et al. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant gram-negative bacilli from north America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 study). Antimicrob Agents Chemother. 2017 Sep;61(9). doi: 10.1128/AAC.00093-17
  • Karlowsky JA, Hackel MA, Tsuji M, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against gram-negative bacilli isolated by clinical laboratories in North America and Europe in 2015-2016: SIDERO-WT-2015. Int J Antimicrob Agents. 2019 Apr;53(4):456–466.
  • Longshaw C, Manissero D, Tsuji M, et al. In vitro activity of the siderophore cephalosporin, cefiderocol, against molecularly characterized, carbapenem-non-susceptible Gram-negative bacteria from Europe. JAC Antimicrob Resist. 2020 Sep;2(3):dlaa060.
  • Takemura M, Wise MG, Hackel MA, et al. In vitro activity of cefiderocol against MBL-producing Gram-negative bacteria collected in North America and Europe in five consecutive annual multinational SIDERO-WT surveillance studies (2014–2019). J Antimicrob Chemother. 2023 Jun 30;78(8):2019–2027. doi: 10.1093/jac/dkad200
  • Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018 Dec;18(12):1319–1328.
  • Wunderink RG, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2021 Feb;21(2):213–225.
  • Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021 Feb;21(2):226–240. doi: 10.1016/S1473-3099(20)30796-9
  • Kazmierczak KM, Tsuji M, Wise MG, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-beta-lactamase-producing isolates (SIDERO-WT-2014 Study). Int J Antimicrob Agents. 2019 Feb;53(2):177–184.
  • Timsit JF, Paul M, Shields RK, et al. Cefiderocol for the treatment of infections due to metallo-B-lactamase-producing pathogens in the CREDIBLE-CR and APEKS-NP phase 3 randomized studies. Clin Infect Dis. 2022 Sep 29;75(6):1081–1084. doi: 10.1093/cid/ciac078
  • Karakonstantis S, Rousaki M, Kritsotakis EI. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance. Antibiotics. 2022 May 27;11(6):723. doi: 10.3390/antibiotics11060723
  • Asempa TE, Izmailyan S, Lawrence K, et al. Efficacy and safety of eravacycline in obese patients: a post hoc analysis of pooled data from the IGNITE1 and IGNITE4 clinical trials. Open Forum Infect Dis. 2020 Dec;7(12):ofaa548.
  • Felice VG, Efimova E, Izmailyan S, et al. Efficacy and tolerability of eravacycline in bacteremic patients with complicated intra-abdominal infection: a pooled analysis from the IGNITE1 and IGNITE4 studies. Surg Infect (Larchmt). 2021 Jun;22(5):556–561.
  • Solomkin J, Evans D, Slepavicius A, et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating gram-negative infections treated with eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017 Mar 1;152(3):224–232. doi: 10.1001/jamasurg.2016.4237
  • Solomkin JS, Gardovskis J, Lawrence K, et al. IGNITE4: results of a phase 3, randomized, multicenter, prospective trial of eravacycline vs meropenem in the treatment of complicated intraabdominal infections. Clin Infect Dis. 2019 Aug 30;69(6):921–929. doi: 10.1093/cid/ciy1029
  • Alosaimy S, Molina KC, Claeys KC, et al. Early experience with eravacycline for complicated infections. Open Forum Infect Dis. 2020 May;7(5):ofaa071.
  • Dixit D, Madduri RP, Sharma R. The role of tigecycline in the treatment of infections in light of the new black box warning. Expert Rev Anti Infect Ther. 2014 Apr;12(4):397–400. doi: 10.1586/14787210.2014.894882
  • Rausch E, Vemuri K, Anderman TM, et al. Eravacycline associated hypofibrinogenemia: a case series of transplant patients with Mycobacterium abscessus infections and review of literature. Open Forum Infect Dis. 2022 Dec;9(12):ofac591.
  • Sader HS, Mendes RE, Kimbrough JH, et al. Impact of the recent clinical and laboratory standards institute breakpoint changes on the antimicrobial spectrum of aminoglycosides and the activity of plazomicin against multidrug-resistant and carbapenem-resistant enterobacterales from United States medical centers. Open Forum Infect Dis. 2023 Feb;10(2):ofad058.
  • Aggen JB, Armstrong ES, Goldblum AA, et al. Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob Agents Chemother. 2010 Nov;54(11):4636–4642.
  • Eljaaly K, Alharbi A, Alshehri S, et al. Plazomicin: a novel aminoglycoside for the treatment of resistant gram-negative bacterial infections. Drugs. 2019 Feb;79(3):243–269.
  • Ince G, Mirza HC, Uskudar Guclu A, et al. Comparison of in vitro activities of plazomicin and other aminoglycosides against clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Antimicrob Chemother. 2021 Nov 12;76(12):3192–3196. doi: 10.1093/jac/dkab331
  • Johnston BD, Thuras P, Porter SB, et al. Activity of plazomicin against carbapenem-intermediate or -resistant Escherichia coli isolates from the United States and international sites in relation to clonal background, resistance genes, co-resistance, and region. J Antimicrob Chemother. 2021 Jul 15;76(8):2061–2070. doi: 10.1093/jac/dkab150
  • Jacobs MR, Good CE, Hujer AM, et al. ARGONAUT II study of the in vitro activity of plazomicin against carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020 Apr 21;64(5). doi: 10.1128/AAC.00012-20
  • Yan K, Liang B, Zhang G, et al. Efficacy and safety of plazomicin in the treatment of enterobacterales infections: a meta-analysis of randomized controlled trials. Open Forum Infect Dis. 2022 Sep;9(9):ofac429.
  • Wagenlehner FME, Cloutier DJ, Komirenko AS, et al. Once-daily plazomicin for complicated urinary tract infections. N Engl J Med. 2019 Feb 21;380(8):729–740. doi: 10.1056/NEJMoa1801467
  • Connolly LE, Riddle V, Cebrik D, et al. A multicenter, randomized, double-blind, phase 2 study of the efficacy and safety of plazomicin compared with levofloxacin in the treatment of complicated urinary tract infection and acute pyelonephritis. Antimicrob Agents Chemother. 2018 Apr;62(4). doi: 10.1128/AAC.01989-17
  • McKinnell JA, Dwyer JP, Talbot GH, et al. Plazomicin for infections caused by carbapenem-resistant Enterobacteriaceae. N Engl J Med. 2019 Feb 21;380(8):791–793. doi: 10.1056/NEJMc1807634
  • Clark JA, Burgess DS. Plazomicin: a new aminoglycoside in the fight against antimicrobial resistance. Ther Adv Infect Dis. 2020 Jan;7:2049936120952604. doi: 10.1177/2049936120952604
  • Hamrick JC, Docquier JD, Uehara T, et al. VNRX-5133 (taniborbactam), a broad-spectrum inhibitor of serine-and metallo-β-lactamases, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2020 Feb 21;64(3). doi: 10.1128/AAC.01963-19
  • Le Terrier C, Gruenig V, Fournier C, et al. NDM-9 resistance to taniborbactam. Lancet Infect Dis. 2023 Apr;23(4):401–402.
  • Le Terrier C, Nordmann P, Sadek M, et al. In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates. J Antimicrob Chemother. 2023 May 3;78(5):1191–1194. doi: 10.1093/jac/dkad061
  • Karlowsky JA, Hackel MA, Wise MG, et al. In vitro activity of cefepime-taniborbactam and comparators against clinical isolates of gram-negative bacilli from 2018 to 2020: results from the global evaluation of antimicrobial resistance via surveillance (GEARS) program. Antimicrob Agents Chemother. 2023 Jan 24;67(1):e0128122. doi: 10.1128/aac.01281-22
  • McGovern PC, Wagenlehner F, Gasink L, et al. 731. CERTAIN-1: a phase 3 study of cefepime-taniborbactam efficacy and safety in the treatment of complicated urinary tract infections (cUTI), including acute pyelonephritis (AP). Open Forum Infect Dis. 2022;9(Supplement_2). doi: 10.1093/ofid/ofac492.022
  • Le Terrier C, Nordmann P, Buchs C, et al. Wide dissemination of Gram-negative bacteria producing the taniborbactam-resistant NDM-9 variant: a one health concern. J Antimicrob Chemother. 2023 Sep 5;78(9):2382–2384. doi: 10.1093/jac/dkad210
  • Papp-Wallace KM, Nguyen NQ, Jacobs MR, et al. Strategic approaches to overcome resistance against gram-negative pathogens using beta-lactamase inhibitors and beta-lactam Enhancers: activity of three novel diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234. J Med Chem. 2018 May 10;61(9):4067–4086. doi: 10.1021/acs.jmedchem.8b00091
  • Moya B, Barcelo IM, Bhagwat S, et al. WCK 5107 (zidebactam) and WCK 5153 are novel inhibitors of PBP2 showing potent “beta-lactam enhancer” activity against Pseudomonas aeruginosa, including multidrug-resistant metallo-beta-lactamase-producing high-risk clones. Antimicrob Agents Chemother. 2017 Jun;61(6). doi: 10.1128/AAC.02529-16
  • Moya B, Barcelo IM, Cabot G, et al. In vitro and in vivo activities of beta-lactams in combination with the novel beta-lactam enhancers Zidebactam and WCK 5153 against multidrug-resistant metallo-beta-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2019 May;63(5). doi: 10.1128/AAC.00128-19
  • Karlowsky JA, Hackel MA, Bouchillon SK, et al. In vitro activity of WCK 5222 (cefepime-zidebactam) against worldwide collected gram-negative bacilli not susceptible to carbapenems. Antimicrob Agents Chemother. 2020 Nov 17;64(12). doi: 10.1128/AAC.01432-20
  • Mushtaq S, Garello P, Vickers A, et al. Activity of ertapenem/zidebactam (WCK 6777) against problem Enterobacterales. J Antimicrob Chemother. 2022 Sep 30;77(10):2772–2778. doi: 10.1093/jac/dkac280
  • Mallalieu NL, Winter E, Fettner S, et al. Safety And pharmacokinetic characterization of nacubactam, a novel beta-lactamase inhibitor, alone and in combination with meropenem, in healthy volunteers. Antimicrob Agents Chemother. 2020 Apr 21;64(5). doi: 10.1128/AAC.02229-19
  • Barnes MD, Taracila MA, Good CE, et al. Nacubactam enhances meropenem activity against carbapenem-resistant Klebsiella pneumoniae producing KPC. Antimicrob Agents Chemother. 2019 Aug;63(8). doi: 10.1128/AAC.00432-19
  • Mushtaq S, Vickers A, Woodford N, et al. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing enterobacteriaceae. J Antimicrob Chemother. 2019 Apr 1;74(4):953–960. doi: 10.1093/jac/dky522
  • Sader HS, Castanheira M, Kimbrough JH, et al. Aztreonam/Avibactam activity against a large collection of carbapenem-resistant enterobacterales (CRE) collected in hospitals from Europe, Asia and Latin America (2019-21). JAC Antimicrob Resist. 2023 Apr;5(2):dlad032.
  • Rossolini GM, Stone G, Kantecki M, et al. In vitro activity of aztreonam/avibactam against isolates of enterobacterales collected globally from ATLAS in 2019. J Glob Antimicrob Resist. 2022 Sep;30:214–221.
  • Nordmann P, Yao Y, Falgenhauer L, et al. Recent emergence of aztreonam-avibactam resistance in NDM and OXA-48 carbapenemase-producing Escherichia coli in Germany. Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0109021. doi: 10.1128/AAC.01090-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.