1,413
Views
0
CrossRef citations to date
0
Altmetric
Review

Carbapenem-resistant Klebsiella pneumoniae: the role of plasmids in emergence, dissemination, and evolution of a major clinical challenge

, , , &
Pages 25-43 | Received 13 Nov 2023, Accepted 11 Jan 2024, Published online: 30 Jan 2024

References

  • Suetens C, Latour K, Kärki T, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Euro Surveill. 2018;23(46):1800516. doi: 10.2807/1560-7917.ES.2018.23.46.1800516
  • Yallew WW, Kumie A, Yehuala FM. Point prevalence of hospital-acquired infections in two teaching hospitals of Amhara region in Ethiopia. Drug Healthc Patient Saf. 2016;8:71–76. doi: 10.2147/DHPS.S107344
  • Kallel H, Bahoul M, Ksibi H, et al. Prevalence of hospital-acquired infection in a tunisian hospital. J Hosp Infect. 2005;59(4):343–347. doi: 10.1016/j.jhin.2004.09.015
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–1208. doi: 10.1056/NEJMoa1306801
  • Saleem Z, Godman B, Hassali MA, et al. Point prevalence surveys of health care-associated infections: a systematic review. Pathog Glob Health. 2019;113(4):191–205. doi: 10.1080/20477724.2019.1632070
  • Yang W, Ding L, Han R, et al. Current status and trends of antimicrobial resistance among clinical isolates in China: a retrospective study of CHINET from 2018 to 2022. One Health Adv. 2023;1(1):8. doi: 10.1186/s44280-023-00009-9
  • Erdem I, Kara Ali R, Ardic E, et al. Community-acquired lower urinary tract infections: etiology, antimicrobial resistance, and treatment results in female patients. J Glob Infect Dis. 2018;10(3):129–132. doi: 10.4103/jgid.jgid_86_17
  • Liu Y-N, Zhang Y-F, Xu Q, et al. Infection and co-infection patterns of community-acquired pneumonia in patients of different ages in China from 2009 to 2020: a national surveillance study. Lancet Microbe. 2023;4(5):e330–e339. doi: 10.1016/S2666-5247(23)00031-9
  • Chang C-M, Lee H-C, Lee N-Y, et al. Community-acquired Klebsiella pneumoniae complicated skin and soft-tissue infections of extremities: emphasis on cirrhotic patients and gas formation. Infection. 2008;36(4):328–334. doi: 10.1007/s15010-008-7272-3
  • Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3):e00001–19.
  • World Health Organization (WHO) GLASS report: Early implementation. 2020. https://www.who.int/publications/i/item/9789240005587
  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0.
  • Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16(1):18. doi: 10.1186/s12941-017-0191-3
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis [Internet]. 2018;18(3):318–327. doi: 10.1016/S1473-3099(17)30753-3
  • Pitout JDD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873–5884. doi: 10.1128/AAC.01019-15
  • Bonnin RA, Jousset AB, Emeraud C, et al. Genetic diversity, biochemical properties, and detection methods of minor carbapenemases in Enterobacterales. Front Med. 2021;7:616490. doi: 10.3389/fmed.2020.616490
  • Martins WMBS, Lenzi MH, Narciso AC, et al. Silent circulation of BKC-1-producing Klebsiella pneumoniae ST442: molecular and clinical characterization of an early and unreported outbreak. Int J Antimicrob Agents. 2022;59(5):106568. doi: 10.1016/j.ijantimicag.2022.106568
  • Lü Y, Zhao S, Liang H, et al. The first report of a novel incHI1B blaSIM-1-carrying megaplasmid pSIM-1-BJ01 from a clinical Klebsiella pneumoniae isolate. Infect Drug Resist. 2019;12:2103–2112. doi: 10.2147/IDR.S212333
  • Lee C-R, Lee JH, Park KS, et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895. doi: 10.3389/fmicb.2016.00895
  • Hamzaoui Z, Ocampo-Sosa A, Fernandez Martinez M, et al. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blampC genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae. Int J Antimicrob Agents. 2018;52(6):898–905. doi: 10.1016/j.ijantimicag.2018.03.020
  • Landman D, Bratu S, Quale J. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J Med Microbiol. 2009;58(10):1303–1308. doi: 10.1099/jmm.0.012575-0
  • Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–1161. doi: 10.1128/AAC.45.4.1151-1161.2001
  • Yahav D, Giske CG, Grāmatniece A, et al. New β-lactam–β-lactamase inhibitor combinations. Clin Microbiol Rev. 2020;34(1):e00115–20. doi: 10.1128/CMR.00115-20.
  • Tamma PD, Aitken SL, Bonomo RA, et al. Infectious diseases society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing enterobacterales (ESBL-E), carbapenem-resistant enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis. 2022;75(2):187–212. doi: 10.1093/cid/ciac268
  • Paul M, Carrara E, Retamar P, et al. European society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect. 2022;28(4):521–547. doi: 10.1016/j.cmi.2021.11.025
  • Carattoli A, Arcari G, Bibbolino G, et al. Evolutionary trajectories toward ceftazidime-avibactam resistance in Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2021;65(10):e0057421. doi: 10.1128/AAC.00574-21
  • Hobson CA, Pierrat G, Tenaillon O, et al. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob Agents Chemother. 2022;66(9):e0044722. doi: 10.1128/aac.00447-22.
  • Hobson CA, Cointe A, Jacquier H, et al. Cross-resistance to cefiderocol and ceftazidime–avibactam in KPC β-lactamase mutants and the inoculum effect. Clin Microbiol Infect. 2021;27(8):.e1172.7–.e1172.10. doi: 10.1016/j.cmi.2021.04.016
  • Di Pilato V, Codda G, Niccolai C, et al. Functional features of KPC-109, a novel 270-loop KPC-3 mutant mediating resistance to avibactam-based β-lactamase inhibitor combinations and cefiderocol. Int J Antimicrob Agents. 2024;63(1):107030. doi: 10.1016/j.ijantimicag.2023.107030
  • Antonelli A, Giani T, Di Pilato V, et al. KPC-31 expressed in a ceftazidime/avibactam-resistant Klebsiella pneumoniae is associated with relevant detection issues. J Antimicrob Chemother. 2019;74(8):2464–2466. doi: 10.1093/jac/dkz156
  • Chen L, Mathema B, Chavda KD, et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22(12):686–696. doi: 10.1016/j.tim.2014.09.003
  • David S, Cohen V, Reuter S, et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci USA. 2020;117(40):25043–25054. doi: 10.1073/pnas.2003407117
  • Haruta S, Yamaguchi H, Yamamoto ET, et al. Functional analysis of the active site of a metallo-β-lactamase proliferating in Japan. Antimicrob Agents Chemother. 2000;44(9):2304–2309. doi: 10.1128/AAC.44.9.2304-2309.2000
  • Senda K, Arakawa Y, Ichiyama S, et al. PCR detection of metallo-β-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum β-lactams. J Clin Microbiol. 1996;34(12):2909–2913. doi: 10.1128/jcm.34.12.2909-2913.1996
  • Kurokawa H, Yagi T, Shibata N, et al. Worldwide proliferation of carbapenem-resistant gram-negative bacteria. Lancet. 1999;354(9182):955. doi: 10.1016/S0140-6736(05)75707-X
  • Koh TH, Babini GS, Woodford N, et al. Carbapenem-hydrolysing IMP-1 β-lactamase in Klebsiella pneumoniae from Singapore. Lancet. 1999;353(9170):2162. doi: 10.1016/S0140-6736(05)75604-X
  • Giakkoupi P, Xanthaki A, Kanelopoulou M, et al. VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae strains in Greek hospitals. J Clin Microbiol. 2003;41(8):3893–3896. doi: 10.1128/JCM.41.8.3893-3896.2003
  • Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002;8(6):321–331. doi: 10.1046/j.1469-0691.2002.00401.x
  • Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from Gram-negative bacteria. Annu Rev Microbiol. 2011;65(1):455–478. doi: 10.1146/annurev-micro-090110-102911
  • Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440–458. doi: 10.1128/CMR.00001-07
  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054. doi: 10.1128/AAC.00774-09
  • Poirel L, Héritier C, Tolün V, et al. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15–22. doi: 10.1128/AAC.48.1.15-22.2004
  • Wu W, Feng Y, Tang G, et al. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32(2):e00115–18. doi: 10.1128/CMR.00115-18
  • Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-resistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics (Basel, Switzerland). 2023;12(2):234. doi: 10.3390/antibiotics12020234
  • Boyd SE, Livermore DM, Hooper DC, et al. Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother. 2020;64(10):1–20. doi: 10.1128/AAC.00397-20
  • Tan X, Kim HS, Baugh K, et al. Therapeutic options for metallo-β-lactamase-producing Enterobacterales. Infect Drug Resist. 2021 Jan 18;14:125–142. Erratum in: Infect Drug Resist. 2021;14:595 10.2147/IDR.S246174.
  • Butler MS, Henderson IR, Capon RJ, et al. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo). 2023;76(8):431–473. doi: 10.1038/s41429-023-00629-8
  • Boyd SE, Holmes A, Peck R, et al. OXA-48-like β-lactamases: global epidemiology, treatment options, and development pipeline. Antimicrob Agents Chemother. 2022;66(8):1–25. doi: 10.1128/aac.00216-22
  • Oueslati S, Nordmann P, Poirel L. Heterogeneous hydrolytic features for OXA-48-like β-lactamases. J Antimicrob Chemother. 2015;70(4):1059–1063. doi: 10.1093/jac/dku524
  • Pitout JDD, Peirano G, Kock MM, et al. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev. 2019;33(1):e00102–19. doi: 10.1128/CMR.00102-19
  • Mathers AJ, Peirano G, Pitout JDD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565–591. doi: 10.1128/CMR.00116-14
  • Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev [Internet]. 2017;41(3):252–275.
  • Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–359.
  • Villa L, García-Fernández A, Fortini D, et al. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother. 2010;65(12):2518–2529. doi: 10.1093/jac/dkq347
  • Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29–36. doi: 10.1016/j.plasmid.2019.01.003
  • Del Solar G, Alonso JC, Espinosa M, et al. Broad-host-range plasmid replication: an open question. Mol Microbiol. 1996;21(4):661–666. doi: 10.1046/j.1365-2958.1996.6611376.x
  • Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088–17. doi: 10.1128/CMR.00088-17.
  • Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae : a review. Ann NY Acad Sci. 2019;1457(1):61–91.
  • Leavitt A, Chmelnitsky I, Carmeli Y, et al. Complete nucleotide sequence of KPC-3-encoding plasmid pKpqil in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob Agents Chemother. 2010;54(10):4493–4496. doi: 10.1128/AAC.00175-10
  • Jiang Y, Yu D, Wei Z, et al. Complete nucleotide sequence of Klebsiella pneumoniae multidrug resistance plasmid pKP048, carrying blaKPC-2, blaDHA-1, qnrB4, and armA. Antimicrob Agents Chemother. 2010;54(9):3967–3969. doi: 10.1128/AAC.00137-10
  • Leavitt A, Chmelnitsky I, Ofek I, et al. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J Antimicrob Chemother. 2009;65(2):243–248. doi: 10.1093/jac/dkp417
  • Chen L, Chavda KD, Melano RG, et al. Comparative genomic analysis of KPC-encoding pKpQIL-like plasmids and their distribution in new Jersey and new York hospitals. Antimicrob Agents Chemother. 2014;58(5):2871–2877. doi: 10.1128/AAC.00120-14
  • Wright MS, Perez F, Brinkac L, et al. Population structure of KPC-Producing Klebsiella pneumoniae isolates from midwestern U.S. hospitals. Antimicrob Agents Chemother. 2014;58(8):4961–4965. doi: 10.1128/AAC.00125-14
  • Papagiannitsis CC, Di Pilato V, Giani T, et al. Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J Antimicrob Chemother [Internet]. 2016;71(10):2824–2830. doi: 10.1093/jac/dkw227
  • Wang YC, Tang HL, Liao YC, et al. Cocarriage of distinct blaKPC-2 and blaOXA-48 Plasmids in a single sequence type 11 carbapenem-resistant Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2019;63(6):e02282–18. doi: 10.1128/AAC.02282-18
  • Naas T, Cuzon G, Villegas M-V, et al. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob Agents Chemother. 2008;52(4):1257–1263. doi: 10.1128/AAC.01451-07
  • Van Duin D, Perez F, Rudin SD, et al. Surveillance of carbapenem-resistant Klebsiella pneumoniae: tracking molecular epidemiology and outcomes through a regional network. Antimicrob Agents Chemother. 2014;58(7):4035–4041. doi: 10.1128/AAC.02636-14
  • Guo L, Wang L, Zhao Q, et al. Genomic analysis of KPC-2-producing Klebsiella pneumoniae ST11 isolates at the respiratory department of a tertiary care hospital in Beijing, China. Front Microbiol. 2022;13:929826. doi: 10.3389/fmicb.2022.929826
  • Carattoli A, Seiffert SN, Schwendener S, et al. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One. 2015;10(5):e0123063. doi: 10.1371/journal.pone.0123063
  • Blackwell GA, Doughty EL, Moran RA. Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria. Plasmid. 2021;113:102528. doi: 10.1016/j.plasmid.2020.102528
  • Potron A, Poirel L, Nordmann P. Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrob Agents Chemother. 2014;58(1):467–471. doi: 10.1128/AAC.01344-13
  • Mouftah SF, Pál T, Darwish D, et al. Epidemic IncX3 plasmids spreading carbapenemase genes in the United Arab Emirates and worldwide. Infect Drug Resist. 2019;12:1729–1742. doi: 10.2147/IDR.S210554
  • Hudson CM, Bent ZW, Meagher RJ, et al. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. Hall R, editor. PLoS One. 2014;9:e99209. doi: 10.1371/journal.pone.0099209
  • Al-Baloushi AE, Pál T, Ghazawi A, et al. Genetic support of carbapenemases in double carbapenemase producer Klebsiella pneumoniae isolated in the arabian peninsula. Acta Microbiol Immunol Hung. 2018;65(2):135–150. doi: 10.1556/030.65.2018.005
  • García-Fernández A, Villa L, Carta C, et al. Klebsiella pneumoniae ST258 producing KPC-3 identified in Italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob Agents Chemother. 2012;56(4):2143–2145. doi: 10.1128/AAC.05308-11
  • Fu L, Wang S, Zhang Z, et al. Whole genome sequence of blaNDM and blaKPC co-producing Klebsiella pneumoniae isolate KSH203 with capsular serotype K25 belonging to ST11 from China. J Glob Antimicrob Resist. 2020;20:272–274. doi: 10.1016/j.jgar.2020.01.006
  • Lee H, Shin J, Chung YJ, et al. Co-introduction of plasmids harbouring the carbapenemase genes, blaNDM-1 and blaOXA-232, increases fitness and virulence of bacterial host. J Biomed Sci. 2020;27(1):1–8. doi: 10.1186/s12929-019-0603-0
  • Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011;35(5):736–755. doi: 10.1111/j.1574-6976.2011.00268.x
  • Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health. 2023;117(4):328–341. doi: 10.1080/20477724.2022.2121362
  • Wyres KL, Wick RR, Judd LM, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019;15(4):e1008114. doi: 10.1371/journal.pgen.1008114
  • David S, Reuter S, Harris SR, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919–1929. doi: 10.1038/s41564-019-0492-8
  • Peirano G, Chen L, Kreiswirth BN, et al. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob Agents Chemother. 2020;64(10):e01148–20. doi: 10.1128/AAC.01148-20
  • Villa L, Feudi C, Fortini D, et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genomics. 2017;3(4):e000110. doi: 10.1099/mgen.0.000110
  • Stoesser N, Phan HTT, Seale AC, et al. Genomic epidemiology of complex, multispecies, plasmid-borne blaKPC carbapenemase in Enterobacterales in the United Kingdom from 2009 to 2014. Antimicrob Agents Chemother. 2020;64(5):e02244–19. doi: 10.1128/AAC.02244-19
  • Di Pilato V, Errico G, Monaco M, et al. The changing epidemiology of carbapenemase-producing Klebsiella pneumoniae in Italy: toward polyclonal evolution with emergence of high-risk lineages. J Antimicrob Chemother. 2021;76(2):355–361. doi: 10.1093/jac/dkaa431
  • Giske CG, Fröding I, Hasan CM, et al. Diverse sequence types of Klebsiella pneumoniae contribute to the dissemination of blaNDM-1 in India, Sweden, and the United Kingdom. Antimicrob Agents Chemother. 2012;56(5):2735–2738. doi: 10.1128/AAC.06142-11
  • Rodrigues C, Desai S, Passet V, et al. Genomic evolution of the globally disseminated multidrug-resistant Klebsiella pneumoniae clonal group 147. Microb Genomics. 2022;8(1):000737. doi: 10.1099/mgen.0.000737
  • Biedrzycka M, Urbanowicz P, Guzek A, et al. Dissemination of Klebsiella pneumoniae ST147 NDM-1 in Poland, 2015–19. J Antimicrob Chemother. 2021;76(10):2538–2545. doi: 10.1093/jac/dkab207
  • Di Pilato V, Henrici De Angelis L, Aiezza N, et al. Resistome and virulome accretion in an NDM-1-producing ST147 sublineage of Klebsiella pneumoniae associated with an outbreak in Tuscany, Italy: a genotypic and phenotypic characterisation. Lancet Microbe. 2022;3:e224–e234. doi: 10.1016/S2666-5247(21)00268-8
  • Cañada-García JE, Moure Z, Sola-Campoy PJ, et al. CARB-ES-19 Multicenter study of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli from all spanish provinces reveals interregional spread of high-risk clones such as ST307/OXA-48 and ST512/KPC-3. Front Microbiol. 2022;13:918362. doi: 10.3389/fmicb.2022.918362
  • Al Fadhli AH, Mouftah SF, Jamal WY, et al. Cracking the code: unveiling the diversity of carbapenem-resistant Klebsiella pneumoniae clones in the arabian peninsula through genomic surveillance. Antibiotics (Basel, Switzerland). 2023;12(7):1081. doi: 10.3390/antibiotics12071081
  • Shankar C, Mathur P, Venkatesan M, et al. Rapidly disseminating blaOXA-232 carrying Klebsiella pneumoniae belonging to ST231 in India: multiple and varied mobile genetic elements. BMC Microbiol. 2019;19(1):137. doi: 10.1186/s12866-019-1513-8
  • Takeuchi D, Kerdsin A, Akeda Y, et al. Nationwide surveillance in Thailand revealed genotype-dependent dissemination of carbapenem-resistant Enterobacterales. Microb Genomics. 2022;8(4):000797. doi: 10.1099/mgen.0.000797
  • Avolio M, Vignaroli C, Crapis M, et al. Co-production of NDM-1 and OXA-232 by ST16 Klebsiella pneumoniae, Italy, 2016. Future Microbiol. 2017;12(13):1119–1122. doi: 10.2217/fmb-2017-0041
  • Naha S, Sands K, Mukherjee S, et al. OXA-181-Like Carbapenemases in Klebsiella pneumoniae ST14, ST15, ST23, ST48, and ST231 from Septicemic Neonates: Coexistence with NDM-5, Resistome, Transmissibility, and Genome Diversity. mSphere. 2021;6(1):e01156–20. doi: 10.1128/mSphere.01156-20
  • Cerón S, Salem-Bango Z, Contreras DA, et al. Clinical and genomic characterization of carbapenem-resistant Klebsiella pneumoniae with concurrent production of NDM and OXA-48-like Carbapenemases in Southern California, 2016–2022. Microorganisms. 2023;11(7):1717. doi: 10.3390/microorganisms11071717
  • Isler B, Özer B, Çınar G, et al. Characteristics and outcomes of carbapenemase harbouring carbapenem-resistant Klebsiella spp. bloodstream infections: a multicentre prospective cohort study in an OXA-48 endemic setting. Eur J Clin Microbiol Infect Dis. 2022;41(5):841–847. doi: 10.1007/s10096-022-04425-4
  • Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33(2):e00047–19.
  • Doumith M, Findlay J, Hirani H, et al. Major role of pKpQIL-like plasmids in the early dissemination of KPC-type carbapenemases in the UK. J Antimicrob Chemother. 2017;72(8):2241–2248. doi: 10.1093/jac/dkx141
  • Andrade LN, Curiao T, Ferreira JC, et al. Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother. 2011;55(7):3579–3583. doi: 10.1128/AAC.01783-10
  • Tofteland S, Naseer U, Lislevand JH, et al. A long-term low-frequency hospital outbreak of KPC-producing Klebsiella pneumoniae involving intergenus plasmid diffusion and a persisting environmental reservoir. PLoS One. 2013;8(3):1–8. doi: 10.1371/journal.pone.0059015
  • Tang HJ, Chen YT, Chiang T, et al. Identification of the first imported KPC-3 Klebsiella pneumoniae from the USA to Taiwan. Int J Antimicrob Agents. 2014;44(5):431–435. doi: 10.1016/j.ijantimicag.2014.07.009
  • Di Pilato V, Principe L, Andriani L, et al. Deciphering variable resistance to novel carbapenem-based β-lactamase inhibitor combinations in a multi-clonal outbreak caused by Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae resistant to ceftazidime/avibactam. Clin Microbiol Infect. 2023;29(4):.e537.1–.e537.8. doi: 10.1016/j.cmi.2022.11.011
  • Shropshire WC, Dinh AQ, Earley M, et al. Accessory genomes drive independent spread of carbapenem-resistant klebsiella pneumoniae clonal groups 258 and 307 in houston, TX. MBio. 2022;13(2):1–19. doi: 10.1128/mbio.00497-22
  • Di Pilato V, Aiezza N, Viaggi V, et al. KPC-53, a KPC-3 variant of clinical origin associated with reduced susceptibility to ceftazidime-avibactam. Antimicrob Agents Chemother. 2020;65(1):16–20. doi: 10.1128/AAC.01429-20
  • Farzana R, Jones LS, Rahman MA, et al. Genomic insights into the mechanism of carbapenem resistance dissemination in Enterobacterales from a tertiary public heath setting in South Asia. Clin Infect Dis. 2023;76(1):119–133. doi: 10.1093/cid/ciac287
  • Mataseje LF, Boyd DA, Lefebvre B, et al. Complete sequences of a novel blaNDM–1-harbouring plasmid from Providencia rettgeri and an FII-type plasmid from Klebsiella pneumoniae identified in Canada. J Antimicrob Chemother. 2014;69(3):637–642. doi: 10.1093/jac/dkt445
  • Abdelwahab R, Alhammadi MM, Hassan EA, et al. Antimicrobial resistance and comparative genome analysis of Klebsiella pneumoniae strains isolated in Egypt. Microorganisms. 2021;9(9):1–15. doi: 10.3390/microorganisms9091880
  • Chudejova K, Kraftova L, Mattioni Marchetti V, et al. Genetic plurality of OXA/NDM-encoding features characterized from Enterobacterales recovered from Czech hospitals. Front Microbiol. 2021;12:641415. doi: 10.3389/fmicb.2021.641415
  • Yoon EJ, Kang DY, Yang JW, et al. New Delhi metallo-β-lactamase-producing Enterobacteriaceae in South Korea between 2010 and 2015. Front Microbiol. 2018;9:571. doi: 10.3389/fmicb.2018.00571
  • Serio AW, Keepers T, Krause KM. Plazomicin is active against metallo-β-lactamase-producing Enterobacteriaceae. Open Forum Infect Dis. 2019;6(4):2–4. doi: 10.1093/ofid/ofz123
  • Ahmed MAEE, Yang Y, Yang Y, et al. Emergence of hypervirulent carbapenem-resistant Klebsiella pneumoniae coharboring a blaNDM-1-carrying virulent plasmid and a blaKPC-2-carrying plasmid in an egyptian hospital. mSphere. 2021;6(3):1–6. doi: 10.1128/mSphere.00088-21
  • Wang D, Wang M, He T, et al. Molecular epidemiology and mechanism of Klebsiella pneumoniae resistance to ertapenem but not to other carbapenems in China. Front Microbiol. 2022;13:1–8. doi: 10.3389/fmicb.2022.974990
  • Kraftova L, Finianos M, Studentova V, et al. Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals. Sci Rep. 2021;11(1):1–12. doi: 10.1038/s41598-021-95285-z
  • Frasson I, Lavezzo E, Franchin E, et al. Antimicrobial treatment and containment measures for an extremely drug-resistant Klebsiella pneumoniae ST101 isolate carrying pKPN101-IT, a novel fully sequenced blaKPC-2 plasmid. J Clin Microbiol. 2012;50(11):3768–3772. doi: 10.1128/JCM.01892-12
  • Giacobbe DR, Di Pilato V, Karaiskos I, et al. Treatment and diagnosis of severe KPC-producing Klebsiella pneumoniae infections: a perspective on what has changed over last decades. Ann Med. 2023;55(1):101–113. doi: 10.1080/07853890.2022.2152484
  • Sun D, Rubio-Aparicio D, Nelson K, et al. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2017;61(12):61. doi: 10.1128/AAC.01694-17
  • Findlay J, Poirel L, Nordmann P. In vitro-obtained meropenem-vaborbactam resistance mechanisms among clinical Klebsiella pneumoniae carbapenemase-producing K. pneumoniae isolates. J Glob Antimicrob Resist. 2023;32:66–71. doi: 10.1016/j.jgar.2022.12.009
  • Dong N, Yang X, Chan E-C, et al. Klebsiella species: taxonomy, hypervirulence and multidrug resistance. EBioMedicine. 2022;79:103998.
  • Marr CM, Russo TA. Hypervirulent Klebsiella pneumoniae: a new public health threat. Expert Rev Anti Infect Ther. 2019;17(2):71–73. doi: 10.1080/14787210.2019.1555470
  • Namikawa H, Oinuma K-I, Yamada K, et al. Predictors of hypervirulent Klebsiella pneumoniae infections: a systematic review and meta-analysis. J Hosp Infect. 2023;134:153–160. doi: 10.1016/j.jhin.2023.02.005
  • Gonzalez-Ferrer S, Peñaloza HF, Budnick JA, et al. Finding order in the chaos: outstanding questions in Klebsiella pneumoniae pathogenesis. Infect Immun. 2021;89(4):89. doi: 10.1128/IAI.00693-20
  • Liu YC, Cheng DL, Lin CL. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med. 1986;146(10):1913–1916. doi: 10.1001/archinte.1986.00360220057011
  • Han Y-L, Wen X-H, Zhao W, et al. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol. 2022;13:1003783. doi: 10.3389/fmicb.2022.1003783
  • Wu K-M, Li L-H, Yan J-J, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 2009;191(14):4492–4501. doi: 10.1128/JB.00315-09
  • Chen Y-T, Chang H-Y, Lai Y-C, et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004;337:189–198. doi: 10.1016/j.gene.2004.05.008
  • Yang X, Dong N, Chan E-C et al. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol. 2021;29(1):65–83. doi: 10.1016/j.tim.2020.04.012.
  • Zhang Y, Jin L, Ouyang P, et al. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J Antimicrob Chemother. 2020;75(2):327–336. doi: 10.1093/jac/dkz446
  • Roulston KJ, Bharucha T, Turton JF, et al. A case of NDM-carbapenemase-producing hypervirulent Klebsiella pneumoniae sequence type 23 from the UK. JMM Case Rep. 2018;5(9):e005130. doi: 10.1099/jmmcr.0.005130
  • Karlsson M, Stanton RA, Ansari U, et al. Identification of a carbapenemase-producing hypervirulent Klebsiella pneumoniae isolate in the United States. Antimicrob Agents Chemother. 2019;63(7):e00519–19. doi: 10.1128/AAC.00519-19
  • Liu C, Guo J. Characteristics of ventilator-associated pneumonia due to hypervirulent Klebsiella pneumoniae genotype in genetic background for the elderly in two tertiary hospitals in China. Antimicrob Resist Infect Control. 2018;7(1):95. doi: 10.1186/s13756-018-0371-8
  • Pajand O, Darabi N, Arab M, et al. The emergence of the hypervirulent Klebsiella pneumoniae (hvKp) strains among circulating clonal complex 147 (CC147) harbouring blaNDM/OXA-48 carbapenemases in a tertiary care center of Iran. Ann Clin Microbiol Antimicrob. 2020;19(1):12. doi: 10.1186/s12941-020-00349-z
  • Arena F, Menchinelli G, Di Pilato V, et al. Resistance and virulence features of hypermucoviscous Klebsiella pneumoniae from bloodstream infections: results of a nationwide Italian surveillance study. Front Microbiol. 2022;13:983294. doi: 10.3389/fmicb.2022.983294
  • Heiden SE, Hübner N-O, Bohnert JA, et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med. 2020;12(1):113. doi: 10.1186/s13073-020-00814-6
  • Hallal Ferreira Raro O, Nordmann P, Dominguez Pino M, et al. Emergence of carbapenemase-producing hypervirulent Klebsiella pneumoniae in Switzerland. Antimicrob Agents Chemother. 2023;67:e0142422. doi: 10.1128/aac.01424-22
  • Xia P, Yi M, Yuan Y, et al. Coexistence of multidrug resistance and virulence in a single conjugative plasmid from a hypervirulent Klebsiella pneumoniae isolate of sequence type 25. mSphere. 2022;7(6):e0047722. doi: 10.1128/msphere.00477-22
  • Xie M, Yang X, Xu Q, et al. Clinical evolution of ST11 carbapenem resistant and hypervirulent Klebsiella pneumoniae. Commun Biol. 2021;4(1):650. doi: 10.1038/s42003-021-02148-4
  • Liao W, Huang Q-S, Wei D, et al. Nosocomial transmission and rearrangement of large resistance-virulence hybrid plasmids between two bacteremic ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae strains with low fitness cost. Microb Pathog. 2022;168:105593. doi: 10.1016/j.micpath.2022.105593
  • Zhao Q, Feng Y, Zong Z. Conjugation of a hybrid plasmid encoding hypervirulence and carbapenem resistance in Klebsiella pneumoniae of sequence type 592. Front Microbiol. 2022;13:852596. doi: 10.3389/fmicb.2022.852596
  • Li R, Cheng J, Dong H, et al. Emergence of a novel conjugative hybrid virulence multidrug-resistant plasmid in extensively drug-resistant Klebsiella pneumoniae ST15. Int J Antimicrob Agents. 2020;55(6):105952. doi: 10.1016/j.ijantimicag.2020.105952
  • Turton J, Davies F, Turton J, et al. Hybrid Resistance and virulence plasmids in “high-risk” clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms. 2019;7(9):326. doi: 10.3390/microorganisms7090326
  • Starkova P, Lazareva I, Avdeeva A, et al. Emergence of hybrid resistance and virulence plasmids harboring New Delhi metallo-β-lactamase in Klebsiella pneumoniae in Russia. Antibiotics (Basel, Switzerland). 2021;10(6):691. doi: 10.3390/antibiotics10060691
  • Turton JF, Payne Z, Coward A, et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and ‘non-hypervirulent’ types ST147, ST15 and ST383. J Med Microbiol. 2018;67(1):118–128. doi: 10.1099/jmm.0.000653
  • Tsui C-M, Ben Abid F, Al Ismail K, et al. Genomic epidemiology of carbapenem-resistant Klebsiella in Qatar: emergence and dissemination of hypervirulent Klebsiella pneumoniae sequence type 383 strains. Antimicrob Agents Chemother. 2023;67(7):e0003023. doi: 10.1128/aac.00030-23
  • Karakonstantis S, Rousaki M, Vassilopoulou L, et al. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: a systematic review and meta-analysis. Clin Microbiol Infect. 2023;S1198-743X(23)00413–5. doi: 10.1016/j.cmi.2023.08.029
  • Kaye KS, Naas T, Pogue JM, et al. Cefiderocol, a siderophore cephalosporin, as a treatment option for infections caused by carbapenem-resistant Enterobacterales. Infect Dis Ther. 2023;12(3):777–806. doi: 10.1007/s40121-023-00773-6.
  • Daoud L, Al-Marzooq F, Moubareck CA, et al. Elucidating the effect of iron acquisition systems in Klebsiella pneumoniae on susceptibility to the novel siderophore-cephalosporin cefiderocol. PLoS One. 2022;17(12):e0277946. doi: 10.1371/journal.pone.0277946
  • Tang B, Yang A, Liu P, et al. Outer membrane vesicles transmitting blaNDM-1 mediate the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Antimicrob Agents Chemother. 2023;67(5):e0144422. doi: 10.1128/aac.01444-22
  • Wang Z, Wen Z, Jiang M, et al. Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: an important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Transbound Emerg Dis. 2022;69(5):e2661–e2676. doi: 10.1111/tbed.14615
  • Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13(10):605–619. doi: 10.1038/nrmicro3525
  • Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal. 2022;36(12):e24743. doi: 10.1002/jcla.24743
  • León-Sampedro R, DelaFuente J, Díaz-Agero C, et al. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat Microbiol. 2021;6(5):606–616. doi: 10.1038/s41564-021-00879-y
  • Skalova A, Chudejova K, Rotova V, et al. Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother. 2017;61(2):1–10. doi: 10.1128/AAC.01889-16
  • Potron A, Poirel L, Rondinaud E, et al. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Eurosurveillance. 2013;18(31):20549. doi: 10.2807/1560-7917.ES2013.18.31.20549
  • Pérez-Vázquez M, Sola Campoy PJ, Ortega A, et al. Emergence of NDM-producing Klebsiella pneumoniae and Escherichia coli in Spain: phylogeny, resistome, virulence and plasmids encoding blaNDM-like genes as determined by WGS. J Antimicrob Chemother. 2019;74(12):3489–3496. doi: 10.1093/jac/dkz366
  • Samuelsen TM, Hasseltvedt V, Fuursted K et al. Molecular characterization of VIM-producing Klebsiella pneumoniae from Scandinavia reveals genetic relatedness with international clonal complexes encoding transferable multidrug resistance. Clin Microbiol Infect [Internet]. 2011;17(12):1811–1816. doi: 10.1111/j.1469-0691.2011.03532.x
  • Bowers JR, Kitchel B, Driebe EM, et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One. 2015;10(7):1–24. doi: 10.1371/journal.pone.0133727
  • Sheppard AE, Stoesser N, Wilson DJ, et al. Nested russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob Agents Chemother. 2016;60(6):3767–3778. doi: 10.1128/AAC.00464-16
  • He S, Chandler M, Varani AM, et al. Mechanisms of evolution in high-consequence drug resistance plasmids. MBio. 2016;7(6):1–11. doi: 10.1128/mBio.01987-16
  • Spellberg B, Bonomo RA. Editorial commentary: ceftazidime-avibactam and carbapenem-resistant Enterobacteriaceae: “We’re Gonna Need a Bigger Boat.” Clin Infect Dis. 2016;63:1619–1621. doi: 10.1093/cid/ciw639
  • Papp-Wallace KM, Mack AR. Resistance to Novel β-Lactam–β-Lactamase Inhibitor Combinations. Infect Dis Clin North Am. 2020;34(4):773–819. doi: 10.1016/j.idc.2020.05.001
  • Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994;264(5157):375–82. doi: 10.1126/science.8153624
  • Nordmann P, Gniadkowski M, Giske CG, et al. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18(5):432–438. doi: 10.1111/j.1469-0691.2012.03815.x
  • Glupczynski Y, Huang TD, Bouchahrouf W, et al. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int J Antimicrob Agents. 2012;39(2):168–172. doi: 10.1016/j.ijantimicag.2011.10.005
  • Woodford N, Eastaway AT, Ford M, et al. Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae. J Clin Microbiol. 2010;48(8):2999–3002. doi: 10.1128/JCM.00341-10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.