110
Views
0
CrossRef citations to date
0
Altmetric
Review

Improving management of febrile neutropenia in oncology patients: the role of artificial intelligence and machine learning

ORCID Icon, , , , , , , , & show all
Pages 179-187 | Received 26 Jul 2023, Accepted 20 Feb 2024, Published online: 08 Mar 2024

References

  • Lin B, Wu S. Digital transformation in personalized medicine with artificial intelligence and the internet of medical things. OMICS. 2022;26(2):77–81. doi: 10.1089/omi.2021.0037
  • Handelman GS, Kok HK, Chandra RV, et al. eDoctor: machine learning and the future of medicine. J Intern Med. 2018;284(6):603–619. doi: 10.1111/joim.12822
  • Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–1930. doi: 10.1161/CIRCULATIONAHA.115.001593
  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. doi: 10.1038/s41591-018-0300-7
  • Obermeyer Z, Emanuel EJ. Predicting the future — big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–1219. doi: 10.1056/NEJMp1606181
  • Garcia-Vidal C, Sanjuan G, Puerta-Alcalde P, et al. Artificial intelligence to support clinical decision-making processes. EBioMedicine. 2019;46:27–29. doi: 10.1016/j.ebiom.2019.07.019
  • Toh TS, Dondelinger F, Wang D. Looking beyond the hype: applied AI and machine learning in translational medicine. EBioMedicine. 2019;47:607–615. doi: 10.1016/j.ebiom.2019.08.027
  • Cirillo D, Valencia A. Big data analytics for personalized medicine. Curr Opin Biotechnol. 2019;58:161–167. doi: 10.1016/j.copbio.2019.03.004
  • López Pineda A, Ye Y, Visweswaran S, et al. Comparison of machine learning classifiers for influenza detection from emergency department free-text reports. J Biomed Inform. 2015;58:60–69. doi: 10.1016/j.jbi.2015.08.019
  • Li BY, Oh J, Young VB, et al. Using machine learning and the electronic health record to predict complicated clostridium difficile infection. Open Forum Infect Dis. 2019;6(5):ofz186. doi: 10.1093/ofid/ofz186
  • Hersh WR, Weiner MG, Embi PJ, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med care. 2013;51(Supplement 8Suppl 3):S30–7. doi: 10.1097/MLR.0b013e31829b1dbd
  • Alqaissi EY, Alotaibi FS, Ramzan MS, et al. Modern machine-learning predictive models for diagnosing infectious diseases. Computational and mathematical methods in medicine. Comput Math Methods Med. 2022;2022:1–13.
  • Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020;26(5):584–595. doi: 10.1016/j.cmi.2019.09.009
  • Teno JM. Garbage in, garbage out—words of caution on big data and machine learning in medical practice. JAMA Health Forum. 2023;4(2):e230397. doi: 10.1001/jamahealthforum.2023.0397
  • Wagholikar KB, Zelle D, Ainsworth L, et al. Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis. Inform Med Unlocked. 2022;31:100996. doi: 10.1016/j.imu.2022.100996
  • Basu S, Faghmous JH, Doupe P. Machine learning methods for precision medicine research designed to reduce health disparities: a structured tutorial. Ethn Dis. 2020;30(Suppl 1):217–228. doi: 10.18865/ed.30.S1.217
  • Leenings R, Winter NR, Plagwitz L, et al. PHOTONAI—A python API for rapid machine learning model development. PLoS One. 2021;16(7):e0254062. doi: 10.1371/journal.pone.0254062
  • Padmanabhan R, Elomri A, Taha RY, et al. Prediction of multiple clinical complications in cancer patients to ensure hospital preparedness and improved cancer care. IJERPH. 2022;20(1):526. doi: 10.3390/ijerph20010526
  • Garcia-Vidal C, Puerta-Alcalde P, Cardozo C, et al. Machine learning to assess the risk of multidrug-resistant gram-negative bacilli infections in febrile neutropenic hematological patients. Infect Dis Ther. 2021;10(2):971–983. doi: 10.1007/s40121-021-00438-2
  • Verma N, Haji-Abolhassani I, Ganesh S, et al. A novel wearable device for continuous temperature monitoring & fever detection. IEEE J Transl Eng Health Med. 2021;9:1–7. doi: 10.1109/JTEHM.2021.3098127
  • Nesher L, Rolston KVI. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection. 2014;42(1):5–13. doi: 10.1007/s15010-013-0525-9
  • Zimmer AJ, Freifeld AG. Optimal management of neutropenic fever in patients with cancer. J Oncol Pract. 2019;15(1):19–24. doi: 10.1200/JOP.18.00269
  • Chumbita M, Cillóniz C, Puerta-Alcalde P, et al. Can artificial intelligence improve the management of pneumonia. J Clin Med. 2020;9(1):248. doi: 10.3390/jcm9010248
  • Heussel CP. Importance of pulmonary imaging diagnostics in the management of febrile neutropenic patients: lung imaging in febrile neutropenia. Mycoses. 2011;54(s1):17–26. doi: 10.1111/j.1439-0507.2010.01982.x
  • Hwang EJ, Park S, Jin K-N, et al. Development and validation of a deep learning–based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2(3):e191095. doi: 10.1001/jamanetworkopen.2019.1095
  • Hwang EJ, Lee JH, Kim JH, et al. Deep learning computer-aided detection system for pneumonia in febrile neutropenia patients: a diagnostic cohort study. BMC Pulm Med. 2021;21(1):406. doi: 10.1186/s12890-021-01768-0
  • Castelvecchi D. Can we open the black box of AI? Nature. 2016;538(7623):20–23. doi: 10.1038/538020a
  • Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. Am J Roentgenol. 2019;212(1):38–43. doi: 10.2214/AJR.18.20224
  • McCoy LG, Brenna CTA, Chen SS, et al. Believing in black boxes: machine learning for healthcare does not need explainability to be evidence-based. J Clin Epidemiol. 2022;142:252–257. doi: 10.1016/j.jclinepi.2021.11.001
  • Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ. 2021;375:n2281. doi: 10.1136/bmj.n2281
  • An Q, Rahman S, Zhou J, et al. A comprehensive review on machine learning in healthcare industry: classification, restrictions, opportunities and challenges. Sens (Basel). 2023;23(9):4178. doi: 10.3390/s23094178
  • Jovel J, Greiner R. An introduction to machine learning approaches for biomedical research. Front Med. 2021;8:771607. doi: 10.3389/fmed.2021.771607
  • Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 2nd ed. New York (NY): Springer; 2009.
  • Emani S, Swaminathan A, Grobman B, et al. Critically reading machine learning literature in neurosurgery: a reader’s guide and checklist for appraising prediction models. Neurosurg Focus. 2023;54(6):E3. doi: 10.3171/2023.3.FOCUS2352
  • Cho B-J, Kim KM, Bilegsaikhan S-E, et al. Machine learning improves the prediction of febrile neutropenia in Korean inpatients undergoing chemotherapy for breast cancer. Sci Rep. 2020;10(1):14803. doi: 10.1038/s41598-020-71927-6
  • Wiberg H, Yu P, Montanaro P, et al. Prediction of neutropenic events in chemotherapy patients: a machine learning approach. JCO Clin Cancer Inform. 2021;(5):904–911. doi: 10.1200/CCI.21.00046
  • Sung L, Corbin C, Steinberg E, et al. Development and utility assessment of a machine learning bloodstream infection classifier in pediatric patients receiving cancer treatments. BMC Cancer. 2020;20(1):1103. doi: 10.1186/s12885-020-07618-2
  • Alali M, Mayampurath A, Dai Y, et al. A prediction model for bacteremia and transfer to intensive care in pediatric and adolescent cancer patients with febrile neutropenia. Sci Rep. 2022;12(1):7429. doi: 10.1038/s41598-022-11576-z
  • Du X, Min J, Shah CP, et al. Predicting in-hospital mortality of patients with febrile neutropenia using machine learning models. Int J Med Inform. 2020;139:104140. doi: 10.1016/j.ijmedinf.2020.104140
  • Xiang L, Wang H, Fan S, et al. Machine learning for early warning of septic shock in children with hematological malignancies accompanied by fever or neutropenia: a single center retrospective study. Front Oncol. 2021;11:678743. doi: 10.3389/fonc.2021.678743
  • Zhan M, Chen Z-B, Ding C-C, et al. Machine learning to predict high-dose methotrexate-related neutropenia and fever in children with B-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2021;62(10):2502–2513. doi: 10.1080/10428194.2021.1913140
  • Jakob C, Classen A, Stecher M, et al. 2187. Prediction of Patient Outcome During Febrile Neutropenia Despite Anti-infective Treatment Using Machine Learning Algorithms. Open Forum Infect Dis. 2019;6(Supplement_2):S744. doi: 10.1093/ofid/ofz360.1867
  • Doupe P, Faghmous J, Basu S. Machine learning for health services researchers. Value Health. 2019;22(7):808–815. doi: 10.1016/j.jval.2019.02.012
  • Hui EP, Leung LKS, Poon TCW, et al. Prediction of outcome in cancer patients with febrile neutropenia: a prospective validation of the multinational association for supportive care in cancer risk index in a Chinese population and comparison with the Talcott model and artificial neural network. Support Care Cancer. 2011;19(10):1625–1635. doi: 10.1007/s00520-010-0993-8
  • Liu Y, Zhou Y, Wen S, et al. A strategy on selecting performance metrics for classifier evaluation. Int J Mob Comput Multim Commun. 2014;6(4):20–35. doi: 10.4018/IJMCMC.2014100102
  • Dankers FJWM, Traverso A, Wee L, et al. Prediction modeling methodology. In: Kubben P, Dumontier M, and Dekker A, editors. Fundamentals of clinical data science. Cham (CH): Springer; 2019. p. 109–114.
  • Kernbach JM, Staartjes VE. Foundations of machine learning-based clinical prediction modeling: part II-Generalization and overfitting. Acta Neurochir Suppl. 2022;134:15–21.
  • Koçak B. Key concepts, common pitfalls, and best practices in artificial intelligence and machine learning: focus on radiomics. Diagn Interv Radiol. 2022;28(5):450–462. doi: 10.5152/dir.2022.211297
  • Klastersky J, Paesmans M, Rubenstein EB, et al. The multinational association for supportive care in cancer risk index: a multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol. 2000;18(16):3038–3051. doi: 10.1200/JCO.2000.18.16.3038
  • Carmona-Bayonas A, Jiménez-Fonseca P, Virizuela Echaburu J, et al. Prediction of serious complications in patients with seemingly stable febrile neutropenia: validation of the clinical index of stable febrile neutropenia in a prospective cohort of patients from the FINITE study. J Clin Oncol. 2015;33(5):465–471. doi: 10.1200/JCO.2014.57.2347
  • Venäläinen MS, Heervä E, Hirvonen O, et al. Improved risk prediction of chemotherapy‐induced neutropenia—model development and validation with real‐world data. Cancer Med. 2022;11(3):654–663. doi: 10.1002/cam4.4465
  • Lind ML, Mooney SJ, Carone M, et al. Development and validation of a machine learning model to estimate bacterial sepsis among immunocompromised recipients of stem cell transplant. JAMA Netw Open. 2021;4(4):e214514. doi: 10.1001/jamanetworkopen.2021.4514
  • Wisplinghoff H, Seifert H, Wenzel RP, et al. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clinl Infect Dis. 2003;36(9):1103–1110. doi: 10.1086/374339
  • Klastersky J, Ameye L, Maertens J, et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007;30:51–59. doi: 10.1016/j.ijantimicag.2007.06.012
  • Chumbita M, Puerta-Alcalde P, Gudiol C, et al. Impact of empirical antibiotic regimens on mortality in neutropenic patients with bloodstream infection presenting with septic shock. Antimicrob Agents Chemother. 2022;66(2):e01744–21. doi: 10.1128/AAC.01744-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.