112
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the age-related alterations in the testis-specific proteome

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 331-343 | Received 05 Aug 2023, Accepted 12 Oct 2023, Published online: 02 Nov 2023

References

  • Roustaei Z, Räisänen S, Gissler M, et al. Fertility rates and the postponement of first births: a descriptive study with Finnish population data. BMJ Open. 2019;9(1):e026336. doi: 10.1136/bmjopen-2018-026336
  • Matthews TJ, Hamilton BE. Delayed childbearing: more women are having their first child later in life [article]. NCHS Data Brief. 2009;21:1–8.
  • Khandwala YS, Zhang CA, Lu Y, et al. The age of fathers in the USA is rising: an analysis of 168 867 480 births from 1972 to 2015. Hum Reprod. 2017;32(10):2110–2116. doi: 10.1093/humrep/dex267
  • Bergh C, Pinborg A, Wennerholm U-B. Parental age and child outcomes.Fertil Sterility. 2019 [2019 Jun 1];111(6):1036–1046. doi: 10.1016/j.fertnstert.2019.04.026
  • Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015 Jul;21(4):411–426. doi: 10.1093/humupd/dmv016
  • Nachtigall RD. International disparities in access to infertility services. Fertil Steril. 2006 Apr;85(4):871–875. doi: 10.1016/j.fertnstert.2005.08.066
  • Novák A, Brod M, Elbers J. Andropause and quality of life: findings from patient focus groups and clinical experts.Maturitas. 2002 [2002 Dec 10];43(4):231–237. doi: 10.1016/S0378-5122(02)00274-8
  • FCW W, Tajar A, Pye SR, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European male aging study. J Clin Endocrinol Metab. 2008;93(7):2737–2745. doi: 10.1210/jc.2007-1972
  • Dudgeon MR, Inhorn MC. Gender, Masculinity, and Reproduction: Anthropological Perspectives. Int J Men’s Health. 2003;2:31–56. doi: 10.3149/jmh.0201.31
  • Merkur S, Sassi F, McDaid D. Promoting health, preventing disease: is there an economic case?; 2013.
  • Russell LB. The economics of prevention. Health Policy. 1984;4(2):85–100. doi: 10.1016/0168-8510(84)90001-0
  • Bhasin S, Kerr C, Oktay K, et al. The implications of reproductive aging for the health, vitality, and economic welfare of human societies. J Clin Endocrinol Metab. 2019;104(9):3821–3825. doi: 10.1210/jc.2019-00315
  • Beck J, Horikawa I, Harris C. Cellular senescence: mechanisms, morphology, and mouse models. Vet Pathol. 2020 Nov;57(6):747–757. doi: 10.1177/0300985820943841
  • Ma S, Chi X, Cai Y, et al. Decoding aging hallmarks at the single-cell level. Annu Rev Biomed Data Sci. 2023 Apr 26;6(1):129–152. doi: 10.1146/annurev-biodatasci-020722-120642
  • Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol. 2021 Jun;22(6):687–698. doi: 10.1038/s41590-021-00927-z.
  • Burkle A. Mechanisms of ageing. Eye (Lond). 2001 Jun;15(Pt 3):371–375. doi: 10.1038/eye.2001.139
  • Ajayi AF, Onaolapo MC, Omole AI, et al. Mechanism associated with changes in male reproductive functions during ageing process. Exp Gerontol. 2023 Jun 14;179:112232. doi: 10.1016/j.exger.2023.112232
  • Anawalt BD, Matsumoto AM. Aging and androgens: physiology and clinical implications. Rev Endocr Metab Disord. 2022 Dec;23(6):1123–1137. doi: 10.1007/s11154-022-09765-2
  • Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–598. doi: 10.1210/jcem.87.2.8201
  • Colson MH, Cuzin B, Faix A, et al. Current epidemiology of erectile dysfunction, an update. Sexologies. 2018 [2018 Jan 1];27(1):e7–e13. doi: 10.1016/j.sexol.2018.01.018
  • Feldman HA, Goldstein I, Hatzichristou DG, et al. Impotence and its Medical and psychosocial correlates: results of the Massachusetts male aging study. J Urol. 1994 [1994 Jan 1];151(1):54–61. doi: 10.1016/S0022-5347(17)34871-1
  • Organization WH. WHO laboratory manual for the examination and processing of human semen; 2010.
  • Hossain MM, Fatima P, Rahman D, et al. Semen parameters at different age groups of male partners of infertile couples. Mymensingh Med J. 2012 Apr;21(2):306–315.
  • Nikitaras V, Zander-Fox D, McPherson NO. Improving sperm oxidative stress and embryo quality in advanced paternal age using idebenone in vitro—A proof-of-concept study. Antioxidants. 2021;10(7):1079. doi: 10.3390/antiox10071079
  • Yates JR. Mass spectrometry as an emerging tool for systems biology.Biotechniques. 2004 [2004 Jun 1];36(6):917–919. doi: 10.2144/04366TE01
  • Chantada-Vázquez MDP, Bravo SB, Barbosa-Gouveia S, et al. Proteomics in inherited metabolic disorders. Int J Mol Sci. 2022 Nov 25;23(23):14744. doi: 10.3390/ijms232314744
  • Ribeiro JC, Alves MG, Amado F, et al. Insights and clinical potential of proteomics in understanding spermatogenesis. Expert Rev Proteomics. 2021 [2021 Jan 2];18(1):13–25. doi: 10.1080/14789450.2021.1889373
  • Miyazaki MA, Guilharducci RL, Intasqui P, et al. Mapping the human sperm proteome - novel insights into reproductive research. Expert Rev Proteomics. 2023 Jan;20(1–3):19–45. doi: 10.1080/14789450.2023.2210764
  • Martins AD, Agarwal A, Baskaran S, et al. Alterations of spermatozoa proteomic profile in men with Hodgkin’s disease prior to cancer therapy. World J Mens Health. 2020 Oct;38(4):521–534. doi: 10.5534/wjmh.190012
  • Nayak J, Jena SR, Kumar S, et al. Human sperm proteome reveals the effect of environmental borne seminal polyaromatic hydrocarbons exposome in etiology of idiopathic male factor infertility. Front Cell Dev Biol. 2023;11:1117155. doi: 10.3389/fcell.2023.1117155
  • Panner Selvam MK, Agarwal A, Sharma R, et al. Protein fingerprinting of seminal plasma reveals dysregulation of exosome-associated proteins in infertile men with unilateral varicocele. World J Mens Health. 2021 Apr;39(2):324–337. doi: 10.5534/wjmh.180108
  • Martins AD, Panner Selvam MK, Agarwal A, et al. Alterations in seminal plasma proteomic profile in men with primary and secondary infertility. Sci Rep. 2020;10(1):7539. doi: 10.1038/s41598-020-64434-1
  • Ye Y, Fang C, Li L, et al. Protective effect of l-theanine on cyclophosphamide-induced testicular toxicity in mice. J Agric Food Chem. 2023 May 31;71(21):8050–8060. doi: 10.1021/acs.jafc.3c01010
  • Nie X, Qian L, Sun R, et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell. 2021 Feb 4;184(3):775–791.e14. doi: 10.1016/j.cell.2021.01.004
  • Jarak I, Almeida S, Carvalho RA, et al. Senescence and declining reproductive potential: insight into molecular mechanisms through testicular metabolomics. Biochim Biophys Acta Mol Basis Dis. 2018;1864(10):3388–3396. doi: 10.1016/j.bbadis.2018.07.028
  • Eskenazi B, Wyrobek AJ, Sloter E, et al. The association of age and semen quality in healthy men. Hum Reprod. 2003;18(2):447–454. doi: 10.1093/humrep/deg107
  • Levitas E, Lunenfeld E, Weisz N, et al. Relationship between age and semen parameters in men with normal sperm concentration: analysis of 6022 semen samples. Andrologia. 2007;39(2):45–50. doi: 10.1111/j.1439-0272.2007.00761.x
  • Almeida S, Rato L, Sousa M, et al. Fertility and sperm quality in the aging male. Curr Pharm Des. 2017;23(30):4429–4437. doi: 10.2174/1381612823666170503150313
  • Rato L, Alves MG, Socorro S, et al. Metabolic regulation is important for spermatogenesis. Nat Rev Urol. 2012;9(6):330–338. doi: 10.1038/nrurol.2012.77
  • Zirkin BR, Chen H. Regulation of Leydig cell steroidogenic function during aging. Biol Reprod. 2000;63(4):977–981. doi: 10.1095/biolreprod63.4.977
  • Ge R-S, Li X, Wang Y. Leydig cell and spermatogenesis. Mol Mech Spermatogen. 2021;1381:111–129. doi: 10.1007/978-3-030-77779-1_6
  • Dufau ML. The luteinizing hormone receptor. Annual review of physiology. Annu Rev Physiol. 1998;60(1):461–496. doi: 10.1146/annurev.physiol.60.1.461
  • Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. 2011;1(2):116–120. doi: 10.4161/spmg.1.2.16956
  • Walker WH. Molecular mechanisms of testosterone action in spermatogenesis. Steroids. 2009;74(7):602–607. doi: 10.1016/j.steroids.2008.11.017
  • Zirkin BR. Spermatogenesis: its regulation by testosterone and FSH. Semin Cell Dev Biol. 1998;9(4):417–421. doi: 10.1006/scdb.1998.0253
  • Tenover JL. Testosterone and the aging male. J Andrology. 1997;18(2):103–106.
  • Vermeulen A, Goemaere S, Kaufman J. Testosterone, body composition and aging. J Endocrinol Invest. 1999;22(5 Suppl):110–116.
  • Caires K, Broady J, McLean D. Maintaining the male germline: regulation of spermatogonial stem cells. J Endocrinol. 2010;205(2):133. doi: 10.1677/JOE-09-0275
  • Beattie M, Adekola L, Papadopoulos V, et al. Leydig cell aging and hypogonadism. Exp Gerontol. 2015;68:87–91. doi: 10.1016/j.exger.2015.02.014
  • Zhou R, Wu J, Liu B, et al. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci. 2019;76(14):2681–2695. doi: 10.1007/s00018-019-03101-9
  • Richardson LL, Kleinman HK, Dym M. Basement membrane gene expression by Sertoli and peritubular myoid cells in vitro in the rat. Biol Reprod. 1995;52(2):320–330. doi: 10.1095/biolreprod52.2.320
  • Skinner M, Tung P, Fritz I. Cooperativity between Sertoli cells and testicular peritubular cells in the production and deposition of extracellular matrix components. J Cell Bio. 1985;100(6):1941–1947. doi: 10.1083/jcb.100.6.1941
  • Mayerhofer A. Human testicular peritubular cells: more than meets the eye. Reproduction. 2013;145(5):R107–R116. doi: 10.1530/REP-12-0497
  • Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol. 1998;9(4):411–416. editorElsevier. doi: 10.1006/scdb.1998.0203
  • O’Donnell L, Smith LB, Rebourcet D. Sertoli cells as key drivers of testis function. Semin Cell Dev Biol. 2022;121:2–9. doi: 10.1016/j.semcdb.2021.06.016
  • Russell LD, Ren HP, Hikim IS, et al. A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the sertoli cell. Am J Anat. 1990;(1):21–30. doi: 10.1002/aja.1001880104
  • Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocrine Reviews. 2004;25(5):747–806. doi: 10.1210/er.2003-0022
  • Russell LD, Peterson R. Sertoli cell junctions: morphological and functional correlates. Int Rev Cytol. 1985;94:177–211 doi:10.1016/s0074-7696(08)60397-6.
  • Oliveira PF, Martins AD, Moreira AC, et al. The Warburg effect revisited—lesson from the Sertoli cell. Med Res Rev. 2015;35(1):126–151. doi: 10.1002/med.21325
  • Xiong W, Wang H, Wu H, et al. Apoptotic spermatogenic cells can be energy sources for Sertoli cells. Reproduction. 2009;137(3):469. doi: 10.1530/REP-08-0343
  • Nishimura H, L’Hernault SW. Spermatogenesis. Curr Biol. 2017;27(18):R988–R994. doi: 10.1016/j.cub.2017.07.067
  • Oliveira PF, Alves MG. Sertoli Cell Metabolism and Spermatogenesis; 2015. p. 15–24. (SpringerBriefs in Cell Biology; 1).
  • Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocrine Reviews. 2015;36(5):564–591. doi: 10.1210/er.2014-1101
  • Rato L, Meneses MJ, Silva BM, et al. New insights on hormones and factors that modulate Sertoli cell metabolism. Histol Histopathol. 2016 May;31(5):499–513. doi: 10.14670/HH-11-717
  • Bellve AR, Cavicchia J, Millette CF, et al. Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization. J Cell Bio. 1977;74(1):68–85. doi: 10.1083/jcb.74.1.68
  • Hess RA, Renato de Franca L. Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol. 2008;636:1–15. doi: 10.1007/978-0-387-09597-4_1
  • Grootegoed JA, Siep M, Baarends WM. Molecular and cellular mechanisms in spermatogenesis. Best Pract Res Clin Endocrinol Metab. 2000;14(3):331–343. doi: 10.1053/beem.2000.0083
  • Schulz RW, Miura T. Spermatogenesis and its endocrine regulation. Fish Physiol Biochem. 2002;26:43–56. doi: 10.1023/A:1023303427191
  • Sprando R, Russell L. Spermiogenesis in the bluegill (Lepomis macrochirus): a study of cytoplasmic events including cell volume changes and cytoplasmic elimination. J Morphol. 1988;198(2):165–177. doi: 10.1002/jmor.1051980204
  • Cui Z, Sharma R, Agarwal A. Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men. Asian J Androl. 2016 Sep;18(5):735–746. doi: 10.4103/1008-682X.164924.
  • Intasqui P, Camargo M, Del Giudice PT, et al. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J Assist Reprod Genet. 2013 Sep;30(9):1187–1202. doi: 10.1007/s10815-013-0054-6
  • Panner Selvam MK, Agarwal A, Pushparaj PN. Altered molecular pathways in the proteome of cryopreserved sperm in testicular cancer patients before treatment. Int J Mol Sci. 2019 Feb 5;20(3):677. doi: 10.3390/ijms20030677
  • Yang L, Cao Y, Zhao J, et al. Multidimensional Proteomics identifies declines in protein homeostasis and mitochondria as early signals for normal aging and age-associated disease in Drosophila. Mol & Cell Proteomics. 2019 Oct;18(10):2078–2088. doi: 10.1074/mcp.RA119.001621
  • Helfand SL, Rogina B. Genetics of aging in the fruit fly, Drosophila melanogaster. Ann Rev Genet. 2003;37(1):329–348. doi: 10.1146/annurev.genet.37.040103.095211
  • Stöckl JB, Schmid N, Flenkenthaler F, et al. Age-Related Alterations in the Testicular Proteome of a Non-Human Primate. Cells. 2021;10(6):1306. doi: 10.3390/cells10061306
  • Li L-H, Donald JM, Golub MS. Review on testicular development, structure, function, and regulation in common marmoset [10.1002/bdrb.20057]. Birth Defects Res Part B. 2005;74(5):450–469. doi: 10.1002/bdrb.20057
  • Ross CN, Davis K, Dobek G, et al. Aging phenotypes of common marmosets (Callithrix jacchus). J Aging Res. 2012;2012:567143. doi: 10.1155/2012/567143
  • Li X, Yao J, Hu J, et al. iTRAQ-based proteomics of testicular interstitial fluid during aging in mice. Theriogenology. 2021;175:44–53. doi: 10.1016/j.theriogenology.2021.08.034
  • Shoji H, Takao K, Hattori S, et al. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain. 2016 Jan 28;9(1):11. doi: 10.1186/s13041-016-0191-9
  • Carrageta DF, Guerra-Carvalho B, Spadella MA, et al. Animal models of male reproductive ageing to study testosterone production and spermatogenesis. Rev Endocr Metab Disord. 2022;23(6):1341–1360. doi: 10.1007/s11154-022-09726-9
  • Ribeiro JC, Nogueira-Ferreira R, Amado F. Exploring the role of oxidative stress in sperm motility: a proteomic network approach. Antioxid Redox Signaling. 2022;37(7–9):501–520. doi: 10.1089/ars.2021.0241
  • Harman D. Aging: overview. Ann N Y Acad Sci. 2001 Apr;928(1):1–21. doi: 10.1111/j.1749-6632.2001.tb05631.x.
  • Muller M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal. 2009 Jan;11(1):59–98. doi: 10.1089/ars.2008.2104.
  • Warner HR. Apoptosis: a two-edged sword in aging [10.1111/j.1749-6632.1999.Tb07917.x]. Ann N Y Acad Sci. 1999;887(1):1–11. doi: 10.1111/j.1749-6632.1999.tb07917.x
  • Sagripanti A, Carpi A. Natural anticoagulants, aging, and thromboembolism. Exp Gerontol. 1998 Nov;33(7–8):891–896. doi: 10.1016/S0531-5565(98)00047-3
  • Hager K, Setzer J, Vogl T, et al. Blood coagulation factors in the elderly. Arch Gerontol Geriatr. 1989 Nov;9(3):277–282. doi: 10.1016/0167-4943(89)90047-2
  • Levinger U, Gornish M, Gat Y, et al. Is varicocele prevalence increasing with age? Andrologia. 2007 Jun;39(3):77–80. doi: 10.1111/j.1439-0272.2007.00766.x
  • Mahdavi-Zafarghandi R, Shakiba B, Keramati MR, et al. Platelet volume indices in patients with varicocele. Clin Exp Reprod Med. 2014 Jun;41(2):92–95. doi: 10.5653/cerm.2014.41.2.92
  • Altieri P, Barisione C, Lazzarini E, et al. Testosterone Antagonizes Doxorubicin-Induced Senescence of Cardiomyocytes. J Am Heart Assoc. 2016 Jan 8;5(1). doi: 10.1161/JAHA.115.002383
  • Chen Y-Q, Zhao J, Jin C-W, et al. Testosterone delays vascular smooth muscle cell senescence and inhibits collagen synthesis via the Gas6/Axl signaling pathway. Age. 2016;38(3):60. doi: 10.1007/s11357-016-9910-5
  • Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9(12):678–690. doi: 10.1038/nrurol.2012.197
  • Davalli P, Mitic T, Caporali A, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. doi: 10.1155/2016/3565127
  • Mukhopadhyay S, Panda PK, Sinha N, et al. Autophagy and apoptosis: where do they meet? Apoptosis. 2014 Apr;19(4):555–566. doi: 10.1007/s10495-014-0967-2
  • Wang E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 1995 Jun 1;55(11):2284–2292.
  • Giovannetti A, Pierdominici M, Di Iorio A, et al. Apoptosis in the homeostasis of the immune system and in human immune mediated diseases. Curr Pharm Des. 2008;14(3):253–268. doi: 10.2174/138161208783413310
  • Chaturvedi V, Qin JZ, Stennett L, et al. Resistance to UV-induced apoptosis in human keratinocytes during accelerated senescence is associated with functional inactivation of p53. J Cell Physiol. 2004 Jan;198(1):100–109. doi: 10.1002/jcp.10392
  • Nakanishi Y, Shiratsuchi A. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol Pharm Bull. 2004 Jan;27(1):13–16. doi: 10.1248/bpb.27.13.
  • Xu Y-C, Li J, Liang W-B, et al. Evaluation on changes of testicular histology in aging men. J Reprod Contracept. 2013;24(4):199–204. doi: 10.7669/j.issn.1001-7844.2013.04.0199
  • Paniagua R, Martín A, Nistal M, et al. Testicular involution in elderly men: comparison of histologic quantitative studies with hormone patterns. Fertil Steril. 1987 Apr;47(4):671–679. doi: 10.1016/S0015-0282(16)59120-1
  • Shubin AV, Demidyuk IV, Komissarov AA, et al. Cytoplasmic vacuolization in cell death and survival. Oncotarget. 2016 Aug 23;7(34):55863–55889. doi: 10.18632/oncotarget.10150
  • Mariño G, Niso-Santano M, Baehrecke EH, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81–94. doi: 10.1038/nrm3735
  • Lin ZF, Xu HB, Wang JY, et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun. 2013 Nov 8;441(1):191–195. doi: 10.1016/j.bbrc.2013.10.033
  • Wang W, Wei J, Zhang H, et al. PRDX2 promotes the proliferation of colorectal cancer cells by increasing the ubiquitinated degradation of p53. Cell Death Dis. 2021;12(6):605. doi: 10.1038/s41419-021-03888-1
  • Li Y, Chen H, Liao J, et al. Long-term copper exposure promotes apoptosis and autophagy by inducing oxidative stress in pig testis. Environ Sci Pollut Res Int. 2021 Oct;28(39):55140–55153. doi: 10.1007/s11356-021-14853-y
  • Wang S, Chen Z, Zhu S, et al. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer. Redox Biol. 2020 Jan;28:101319. doi: 10.1016/j.redox.2019.101319
  • Chen Y, Yang S, Zhou H, et al. PRDX2 promotes the proliferation and metastasis of non-small cell lung cancer in vitro and in vivo. Biomed Res Int. 2020;2020:8359860. doi: 10.1155/2020/8359860
  • Murao N, Yokoi N, Takahashi H, et al. Increased glycolysis affects β-cell function and identity in aging and diabetes. Mol Metabol. 2022;55:101414. doi: 10.1016/j.molmet.2021.101414
  • Poisa-Beiro L, Thoma J, Landry J, et al. Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells. Sci Rep. 2020;10(1):11597. doi: 10.1038/s41598-020-68396-2
  • Sabbatinelli J, Prattichizzo F, Olivieri F, et al. Where metabolism meets senescence: focus on endothelial cells. Front Physiol. 2019;10:1523. doi: 10.3389/fphys.2019.01523
  • Barzilai N, Huffman DM, Muzumdar RH, et al. The critical role of metabolic pathways in aging. Diabetes. 2012;61(6):1315–1322. doi: 10.2337/db11-1300
  • Esposito G, Vitagliano L, Costanzo P, et al. Human aldolase a natural mutants: relationship between flexibility of the C-terminal region and enzyme function. Biochem J. 2004 May 15;380(Pt 1):51–56. doi: 10.1042/bj20031941
  • Ercolani L, Florence B, Denaro M, et al. Isolation and complete sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem. 1988 Oct 25;263(30):15335–15341. doi: 10.1016/S0021-9258(19)37593-3
  • Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota/lambda and plays a role in microtubule dynamics in the early secretory pathway. J Biol Chem. 2002 Feb 1;277(5):3334–3341. doi: 10.1074/jbc.M109744200
  • Vander Heiden MG, Locasale JW, Swanson KD, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010 Sep 17;329(5998):1492–1499. doi: 10.1126/science.1188015
  • Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry. 2005 Jul 12;44(27):9417–9429. doi: 10.1021/bi0474923
  • Ashizawa K, McPhie P, Lin KH, et al. An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1, 6-bisphosphate. Biochemistry. 1991 Jul 23;30(29):7105–7111. doi: 10.1021/bi00243a010
  • Keller A, Rouzeau JD, Farhadian F, et al. Differential expression of alpha- and beta-enolase genes during rat heart development and hypertrophy. Am J Physiol. 1995 Dec;269(6 Pt 2):H1843–51. doi: 10.1152/ajpheart.1995.269.6.H1843
  • Bollong MJ, Lee G, Coukos JS, et al. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature. 2018 Oct;562(7728):600–604. doi: 10.1038/s41586-018-0622-0
  • Fujii H, Krietsch WK, Yoshida A. A single amino acid substitution (asp leads to Asn) in a phosphoglycerate kinase variant (PGK münchen) associated with enzyme deficiency. J Biol Chem. 1980 Jul 10;255(13):6421–6423.
  • Rodríguez-Almazán C, Arreola R, Rodríguez-Larrea D, et al. Structural basis of human triosephosphate isomerase deficiency: mutation E104D is related to alterations of a conserved water network at the dimer interface. J Biol Chem. 2008 Aug 22;283(34):23254–23263. doi: 10.1074/jbc.M802145200
  • Read JA, Winter VJ, Eszes CM, et al. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins. 2001 May 1;43(2):175–185. doi: 10.1002/1097-0134(20010501)43:2<175::aid-prot1029>3.0.co;2-#
  • Trubitsyn AG. Bioenergetics Theory of Aging. In: Clark K, editor. Bioenergetics. Rijeka: In Tech; 2012. doi: 10.5772/31410
  • Tower J. Hsps and aging. Trends Endocrinol Metab. 2009;20(5):216–222. doi: 10.1016/j.tem.2008.12.005
  • Altieri DC, Stein GS, Lian JB, et al. TRAP-1, the mitochondrial Hsp90. Biochim Biophys Acta-Mol Cell Res. 2012;1823(3):767–773. doi: 10.1016/j.bbamcr.2011.08.007
  • Johnson MH. An immunological barrier in the guinea-pig testis. J Pathol. 1970;101(2):129–139. doi: 10.1002/path.1711010208
  • Pelletier R-M, Yoon SR, Akpovi CD, et al. Defects in the regulatory clearance mechanisms favor the breakdown of self-tolerance during spontaneous autoimmune orchitis. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R743. doi: 10.1152/ajpregu.90751.2008
  • Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13(12):875–887. doi: 10.1038/nri3547
  • Shan N, Zhang X, Xiao X, et al. Laminin α4 (LAMA4) expression promotes trophoblast cell invasion, migration, and angiogenesis, and is lowered in preeclamptic placentas. Placenta. 2015 Aug;36(8):809–820. doi: 10.1016/j.placenta.2015.04.008
  • Siala O, Louhichi N, Triki C, et al. LAMA2 mRNA processing alterations generate a complete deficiency of laminin-α2 protein and a severe congenital muscular dystrophy. Neuromuscular Disorders. 2008 Feb;18(2):137–145. doi: 10.1016/j.nmd.2007.09.003
  • Radmanesh F, Caglayan AO, Silhavy JL, et al. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am J Hum Genet. 2013 Mar 7;92(3):468–474. doi: 10.1016/j.ajhg.2013.02.005
  • Smyth N, Vatansever HS, Meyer M, et al. The targeted deletion of the LAMC1 gene. Ann N Y Acad Sci. 1998;857:283–286. doi: 10.1111/j.1749-6632.1998.tb10133.x
  • Ulazzi L, Sabbioni S, Miotto E, et al. Nidogen 1 and 2 gene promoters are aberrantly methylated in human gastrointestinal cancer. Mol Cancer. 2007;6(1):17. doi: 10.1186/1476-4598-6-17
  • Sakai LY, Keene DR, Glanville RW, et al. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem. 1991 Aug 5;266(22):14763–14770. doi: 10.1016/S0021-9258(18)98752-1
  • Danussi C, Spessotto P, Petrucco A, et al. Emilin1 deficiency causes structural and functional Defects of lymphatic vasculature. Mol Cell Biol. 2008;28(12):4026–4039. doi: 10.1128/MCB.02062-07
  • Pilecki B, Holm AT, Schlosser A, et al. Characterization of microfibrillar-associated protein 4 (MFAP4) as a Tropoelastin- and fibrillin-binding protein involved in elastic fiber formation. J Biol Chem. 2016 Jan 15;291(3):1103–1114. doi: 10.1074/jbc.M115.681775
  • Li X, Liu Y, Cheng J, et al. Identification and expression analysis of a fibrinogen alpha chain-like gene in Atlantic salmon (Salmo salar). Aquac Rep. 2022;22:100919. doi: 10.1016/j.aqrep.2021.100919
  • Hwang SJ, Ha GH, Seo WY, et al. Human collagen alpha-2 type I stimulates collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). BMB Rep. 2020 Nov;53(10):539–544. doi: 10.5483/BMBRep.2020.53.10.120
  • Vandooren J, Itoh Y. Alpha-2-Macroglobulin in Inflammation, Immunity and Infections [Review]. Front Immunol. 2021 Dec 14;12:12. doi: 10.3389/fimmu.2021.803244
  • Yin W, Kim H-T, Wang S, et al. Fibrillin-2 is a key mediator of smooth muscle extracellular matrix homeostasis during mouse tracheal tubulogenesis. Eur Respir J. 2019;53(3):1800840. doi: 10.1183/13993003.00840-2018
  • Chakravarti S, Stallings RL, SundarRaj N, et al. Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the Gene (LUM) to chromosome 12q21.3-q22. Genomics. 1995;27(3):481–488. doi: 10.1006/geno.1995.1080
  • Li Z, Li L, Zielke HR, et al. Increased expression of 72-kd type IV collagenase (MMP-2) in human aortic atherosclerotic lesions. Am J Pathol. 1996 Jan;148(1):121–128.
  • Royer-Zemmour B, Ponsole-Lenfant M, Gara H, et al. Epileptic and developmental disorders of the speech cortex: ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR. Hum Mol Genet. 2008 Dec 1;17(23):3617–3630. doi: 10.1093/hmg/ddn256
  • Tanaka K, Arao T, Maegawa M, et al. SRPX2 is overexpressed in gastric cancer and promotes cellular migration and adhesion. Int J Cancer. 2009 Mar 1;124(5):1072–1080. doi: 10.1002/ijc.24065
  • Nath D, Slocombe PM, Webster A, et al. Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(1)integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci. 2000 Jun;113(Pt 12):2319–2328. doi: 10.1242/jcs.113.12.2319
  • Kim HP, Han SW, Song SH, et al. Testican-1-mediated epithelial–mesenchymal transition signaling confers acquired resistance to lapatinib in HER2-positive gastric cancer. Oncogene. 2014;33(25):3334–3341. doi: 10.1038/onc.2013.285
  • Welcker D, Stein C, Feitosa NM, et al. Hemicentin-1 is an essential extracellular matrix component of the dermal–epidermal and myotendinous junctions. Sci Rep. 2021;11(1):17926. doi: 10.1038/s41598-021-96824-4
  • Sasaki T, Brakebusch C, Engel J, et al. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin. EMBO J. 1998 Mar 16;17(6):1606–1613. doi: 10.1093/emboj/17.6.1606
  • Koch M, Hussein F, Woeste A, et al. CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits breast cancer growth and metastasis in vivo. Breast Cancer Res Treat. 2011 Jul;128(2):337–346. doi: 10.1007/s10549-010-1085-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.