124
Views
0
CrossRef citations to date
0
Altmetric
Review

Proteolytic signaling in cancer

, &
Pages 345-355 | Received 16 Aug 2023, Accepted 17 Oct 2023, Published online: 27 Oct 2023

References

  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi: 10.1016/S0092-8674(00)81683-9
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013
  • Fortelny N, Cox JH, Kappelhoff R et al. Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol. 2014;12(5):e1001869. doi: 10.1371/journal.pbio.1001869
  • Fortelny N, Pavlidis P, Overall CM. The path of no return—truncated protein N‐termini and current ignorance of their genesis. Proteomics. 2015;15(14):2547–2552. doi: 10.1002/pmic.201500043
  • Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opinion Cell Biol. 1995;7(5):728–735. doi: 10.1016/0955-0674(95)80116-2
  • Costanza B, Umelo IA, Bellier J, et al. Stromal modulators of TGF-β in cancer. J Clin Med. 2017;6(1):7. doi: 10.3390/jcm6010007
  • Dzobo K, Senthebane DA, Dandara C. The tumor microenvironment in tumorigenesis and therapy resistance revisited. Cancers. 2023;15(2):376. doi: 10.3390/cancers15020376
  • Gnosa SP, Blasco LP, Piotrowski KB, et al. ADAM17-mediated EGFR ligand shedding directs macrophage-promoted cancer cell invasion. JCI Insight. 2022;7(18). doi: 10.1172/jci.insight.155296
  • Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982;99(1):31–68. doi: 10.1016/0022-5193(82)90388-5
  • Tseng Q, Duchemin-Pelletier E, Deshiere A, et al. Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc Nat Acad Sci. 2012;109(5):1506–1511. doi: 10.1073/pnas.1106377109
  • Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biology. 2010;341(1):126–140. doi: 10.1016/j.ydbio.2009.10.026
  • Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21(4):217–238. doi: 10.1038/s41568-020-00329-7
  • Jacobs TW, Byrne C, Colditz G, et al. Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N Engl J Med. 1999;340(6):430–436. doi: 10.1056/NEJM199902113400604
  • Radisky DC, Przybylo JA. Matrix metalloproteinase–induced fibrosis and malignancy in breast and lung. Proc Am Thorac Soc. 2008;5(3):316–322. doi: 10.1513/pats.200711-166DR
  • Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(sup1):177–183. doi: 10.3109/14756366.2016.1161620
  • Gibson SV, Madzharova E, Tan AC, et al. ADAMTS3 restricts cancer invasion in models of early breast cancer progression through enhanced fibronectin degradation. Matrix Biol. 2023;121:74–89. doi: 10.1016/j.matbio.2023.06.005
  • Zhang K, Chen J. The regulation of integrin function by divalent cations. Cell Adh Migr. 2012;6(1):20–29. doi: 10.4161/cam.18702
  • Vasquez-Montes V, Gerhart J, Thévenin D, et al. Divalent cations and lipid composition modulate membrane insertion and cancer-targeting action of pHLIP. J Mol Biol. 2019;431(24):5004–5018. doi: 10.1016/j.jmb.2019.10.016
  • Vitale D, Kumar Katakam S, Greve B, et al. Proteoglycans and glycosaminoglycans as regulators of cancer stem cell function and therapeutic resistance. FEBS J. 2019;286(15):2870–2882. doi: 10.1111/febs.14967
  • Theocharis AD, Skandalis SS, Tzanakakis GN, et al. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010;277(19):3904–3923. doi: 10.1111/j.1742-4658.2010.07800.x
  • Barbareschi M, Maisonneuve P, Aldovini D, et al. High syndecan‐1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer: Interdiscip Int J Am Cancer Soc. 2003;98(3):474–483. doi: 10.1002/cncr.11515
  • Chen D, Adenekan B, Chen L, et al. Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology. 2004;63(2):402–407. doi: 10.1016/j.urology.2003.08.036
  • Anttonen A, Heikkilä P, Kajanti M, et al. High syndecan-1 expression is associated with favourable outcome in squamous cell lung carcinoma treated with radical surgery. Lung Cancer. 2001;32(3):297–305. doi: 10.1016/S0169-5002(00)00230-0
  • Lundin M, Nordling S, Lundin J, et al. Epithelial syndecan-1 expression is associated with stage and grade in colorectal cancer. Oncology. 2005;68(4–6):306–313. doi: 10.1159/000086969
  • Shinyo Y, Kodama J, Kusumoto T, et al. Loss of cell-surface heparan sulfate expression in both cervical intraepithelial neoplasm and invasive cervical cancer. Gynecol Oncol. 2005;96(3):776–783. doi: 10.1016/j.ygyno.2004.11.004
  • Juuti A, Nordling S, Lundin J, et al. Syndecan-1 expression–a novel prognostic marker in pancreatic cancer. Oncology. 2005;68(2–3):97–106. doi: 10.1159/000085702
  • Barbareschi M, Maisonneuve P, Aldovini D, et al. High syndecan‐1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer: Interdiscip Int J Am Cancer Soc. 2003;98(3):474–483. doi: 10.1002/cncr.11515
  • Pasqualon T, Pruessmeyer J, Weidenfeld S, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72(19):3783–3801. doi: 10.1007/s00018-015-1912-4
  • Golde TE, Koo EH, Felsenstein KM, et al. γ-secretase inhibitors and modulators. Biochimi Biophys Acta (BBA) Biomembr. 2013;1828(12):2898–2907. doi: 10.1016/j.bbamem.2013.06.005
  • Wu YJ, PIERRE DPL, Wu J, et al. The interaction of versican with its binding partners. Cell Res. 2005;15(7):483–494. doi: 10.1038/sj.cr.7290318
  • Du WW, Yang W, Yee AJ. Roles of versican in cancer biology-tumorigenesis, progression and metastasis. Histol. Histopathol. 2013;28(6): 701–13. doi: 10.14670/HH-28.701
  • Hope C, Foulcer S, Jagodinsky J, et al. Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. Blood J Am Soc Hematology. 2016;128(5):680–685. doi: 10.1182/blood-2016-03-705780
  • Fu Y, Nagy JA, Brown LF, et al. Proteolytic cleavage of versican and involvement of ADAMTS-1 in VEGF-A/VPF-induced pathological angiogenesis. J Histochem Cytochem. 2011;59(5):463–473. doi: 10.1369/0022155411401748
  • Hope C, Emmerich PB, Papadas A, et al. Versican-derived matrikines regulate Batf3–dendritic cell differentiation and promote T cell infiltration in colorectal cancer. J Immunol. 2017;199(5):1933–1941. doi: 10.4049/jimmunol.1700529
  • Gupta N, Kumar R, Sharma A. Versikine, a proteolysis product of versican: novel therapeutics for multiple myeloma. Transl Cancer Res. 2016;5(7):S1437–S1439. doi: 10.21037/tcr.2016.12.67
  • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. doi: 10.1016/j.cell.2010.03.015
  • Borgoño CA, Diamandis EP. The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer. 2004;4(11):876–890. doi: 10.1038/nrc1474
  • Liang SL, Chan DW. Enzymes and related proteins as cancer biomarkers: a proteomic approach. Clinica Chimica Acta. 2007;381(1):93–97. doi: 10.1016/j.cca.2007.02.017
  • Berchem G, Glondu M, Gleizes M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21(38):5951–5955. doi: 10.1038/sj.onc.1205745
  • Zhang C, Zhang M, Song S. Cathepsin D enhances breast cancer invasion and metastasis through promoting hepsin ubiquitin-proteasome degradation. Cancer Lett. 2018;438:105–115. doi: 10.1016/j.canlet.2018.09.021
  • Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. PROTEOMICS–Clinical Appl. 2014;8(5–6):427–437. doi: 10.1002/prca.201300105
  • Gondi CS, Rao JS. Cathepsin B as a cancer target. Exp Opin Ther Targe. 2013;17(3):281–291. doi: 10.1517/14728222.2013.740461
  • Sudhan DR, Siemann DW. Cathepsin L targeting in cancer treatment. Pharmacol Ther. 2015;155:105–116. doi: 10.1016/j.pharmthera.2015.08.007
  • Rudzińska M, Parodi A, Soond SM, et al. The role of cysteine cathepsins in cancer progression and drug resistance. IJMS. 2019;20(14):3602. doi: 10.3390/ijms20143602
  • Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression. Seminars in cancer biology, Vol. 35; 2015. p. 71–84. doi: 10.1016/j.semcancer.2015.08.010
  • McDowell SH, Gallaher SA, Burden RE, et al. Leading the invasion: the role of Cathepsin S in the tumour microenvironment. Biochim Biophys Acta-Mol Cell Res. 2020;1867(10):118781. doi: 10.1016/j.bbamcr.2020.118781
  • Otero JR, Gomez BG, Juanatey FC, et al. Prostate cancer biomarkers: An update. Urologic oncology: seminars and original investigations. Vol. 32; 2014. p. 252–260. doi: 10.1016/j.urolonc.2013.09.017
  • Olsson M, Zhivotovsky B. Caspases and cancer. Cell Death Diff. 2011;18(9):1441–1449. doi: 10.1038/cdd.2011.30
  • Golubkov VS, Strongin AY. Downstream signaling and genome-wide regulatory effects of PTK7 pseudokinase and its proteolytic fragments in cancer cells. Cell Commun Signaling. 2014;12(1):1–12. doi: 10.1186/1478-811X-12-15
  • Chunthapong J, Seftor EA, Khalkhali‐Ellis Z, et al. Dual roles of E‐cadherin in prostate cancer invasion. J Cell Biochem. 2004;91(4):649–661. doi: 10.1002/jcb.20032
  • David JM, Rajasekaran AK. Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res. 2012;72(12):2917–2923. doi: 10.1158/0008-5472.CAN-11-3498
  • Mongiat M, Sweeney SM, San Antonio JD, et al. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem. 2003;278(6):4238–4249. doi: 10.1074/jbc.M210445200
  • Kuratomi Y, Nomizu M, Tanaka K, et al. Laminin γ1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16–F10 mouse melanoma cells. Br J Cancer. 2002;86(7):1169–1173. doi: 10.1038/sj.bjc.6600187
  • Lee HN, Jeong MS, Jang SB. Molecular characteristics of amyloid precursor protein (APP) and its effects in cancer. Int J Mol Sci. 2021;22(9):4999. doi: 10.3390/ijms22094999
  • Sobol A, Galluzzo P, Liang S, et al. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells. J Cell Physiol. 2015;230(5):1064–1074. doi: 10.1002/jcp.24835
  • Okamoto I, Tsuiki H, Kenyon LC, et al. Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. Am J Pathol. 2002;160(2):441–447. doi: 10.1016/S0002-9440(10)64863-8
  • Okamoto I, Kawano Y, Tsuiki H, et al. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene. 1999;18(7):1435–1446. doi: 10.1038/sj.onc.1202447
  • Yu Q. Cell surface-localized matrix metalloproteinase 9 proteolytically activates TGF-β and promotes tumor invasion. Genes Dev. 1999;13:35. doi: 10.1101/gad.13.1.35
  • Ueki N, Someya K, Matsuo Y, et al. Cryptides: functional cryptic peptides hidden in protein structures. Pept Sci Original Res Biomolecules. 2007;88(2):190–198. doi: 10.1002/bip.20687
  • Autelitano DJ, Rajic A, Smith AI et al. The cryptome: a subset of the proteome, comprising cryptic peptides with distinct bioactivities. Drug Discovery Today. 2006;11(7–8):306–314. doi: 10.1016/j.drudis.2006.02.003
  • Baker AM, Batchelor DC, Thomas GB, et al. Central penetration and stability of N-terminal tripeptide of insulin-like growth factor-I, glycine-proline-glutamate in adult rat. Neuropeptides. 2005;39(2):81–87. doi: 10.1016/j.npep.2004.11.001
  • Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12(1):697–715. doi: 10.1146/annurev.cellbio.12.1.697
  • Raffin-Sanson ML, De Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol. 2003;149(2):79–90. doi: 10.1530/eje.0.1490079
  • Benjannet S, Rondeau N, Day R, et al. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Nat Acad Sci. 1991;88(9):3564–3568. doi: 10.1073/pnas.88.9.3564
  • Benoit R, Esch F, Bennett HP, et al. Processing of prosomatostatin. Metabolism. 1990;39(9):22–25. doi: 10.1016/0026-0495(90)90202-N
  • Seidah NG, Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999;848(1–2):45–62. doi: 10.1016/S0006-8993(99)01909-5
  • Davis GE, Bayless KJ, Davis MJ, et al. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol. 2000;156(5):1489–1498. doi: 10.1016/S0002-9440(10)65020-1
  • Schenk S, Quaranta V. Tales from the crypt [ic] sites of the extracellular matrix. Trends Cell Biol. 2003;13(7):366–375. doi: 10.1016/S0962-8924(03)00129-6
  • Xu J, Rodriguez D, Petitclerc E, et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Bio. 2001;154(5):1069–1080. doi: 10.1083/jcb.200103111
  • Koshikawa N, Giannelli G, Cirulli V, et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Bio. 2000;148(3):615–624. doi: 10.1083/jcb.148.3.615
  • Giannelli G, Falk-Marzillier J, Schiraldi O, et al. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277(5323):225–228. doi: 10.1126/science.277.5323.225
  • Adair-Kirk TL, Atkinson JJ, Broekelmann TJ, et al. A site on laminin α5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J Immunol. 2003;171(1):398–406. doi: 10.4049/jimmunol.171.1.398
  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463. doi: 10.1097/COH.0b013e32833ed177
  • Califf RM. Biomarker definitions and their applications. Exp Biol Med. 2018;243(3):213–221. doi: 10.1177/1535370217750088
  • Berchem G, Glondu M, Gleizes M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21(38):5951–5955. doi: 10.1038/sj.onc.1205745
  • Brouillet JP, Dufour F, Lemamy G, et al. Increased cathepsin D level in the serum of patients with metastatic breast carcinoma detected with a specific pro‐cathepsin D immunoassay. Cancer: Interdiscip Int J Am Cancer Soc. 1997;79(11):2132–2136. doi: 10.1002/(SICI)1097-0142(19970601)79:11<2132:AID-CNCR10>3.0.CO;2-X
  • Uno K, Azuma T, Nakajima M, et al. Clinical significance of cathepsin E in pancreatic juice in the diagnosis of pancreatic ductal adenocarcinoma. J Gastroenterol Hepatol. 2000;15(11):1333–1338. doi: 10.1046/j.1440-1746.2000.2351.x
  • Dudani JS, Warren AD, Bhatia SN. Harnessing protease activity to improve cancer care. Annu Rev Cancer Biol. 2018;2(1):353–376. doi: 10.1146/annurev-cancerbio-030617-050549
  • Li WM, Wei YC, Huang CN, et al. Matrix metalloproteinase‐11 as a marker of metastasis and predictor of poor survival in urothelial carcinomas. J Surg Oncol. 2016;113(6):700–707. doi: 10.1002/jso.24195
  • Björk T, Nilsson O, Dahlén U, et al. Serum prostate specific antigen complexed to α1-antichymotrypsin as an indicator of prostate cancer. J Urol. 1993;150(1):100–105. doi: 10.1016/S0022-5347(17)35408-3
  • Catalona WJ, Partin AW, Slawin KM, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA. 1998;279(19):1542–1547. doi: 10.1001/jama.279.19.1542
  • Li XY, Meng HL, Li KG, et al. amyloid beta (A4) precursor protein: a potential biomarker for recurrent nasopharyngeal carcinoma. Cancer Manage Res. 2019;Volume 11:10651–10656. doi: 10.2147/CMAR.S218030
  • Meng JY, Kataoka H, Itoh H, et al. Amyloid β protein precursor is involved in the growth of human colon carcinoma cell in vitro and in vivo. Int J Cancer. 2001;92(1):31–39. doi: 10.1002/1097-0215(200102)9999:9999<:AID-IJC1155>3.0.CO;2-H
  • TSANG JY, Lee MA, Chan T-H et al. Proteolytic cleavage of amyloid precursor protein by ADAM10 mediates proliferation and migration in breast cancer. EBioMedicine. 2018;38:89–99. doi: 10.1016/j.ebiom.2018.11.012
  • Harbeck N, Schmitt M, Kates RE, et al. Clinical utility of urokinase-type plasminogen activator and plasminogen activator inhibitor—1 determination in primary breast cancer tissue for individualized therapy concepts. Clin Breast Cancer. 2002;3(3):196–200. doi: 10.3816/CBC.2002.n.023
  • Harbeck N, Schmitt M, Meisner C, et al. Ten-year analysis of the prospective multicentre chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer. 2013;49(8):1825–1835. doi: 10.1016/j.ejca.2013.01.007
  • Yousef GM, Kyriakopoulou LG, Scorilas A, et al. Quantitative expression of the human kallikrein gene 9 (KLK9) in ovarian cancer: a new independent and favorable prognostic marker. Cancer Res. 2001;61(21):7811–7818.
  • White N, Mathews M, Yousef GM, et al. Human kallikrein related peptidases 6 and 13 in combination with CA125 is a more sensitive test for ovarian cancer than CA125 alone. Cancer Biomarkers. 2009;5(6):279–287. doi: 10.3233/CBM-2009-0113
  • Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data. Mol & Cell Proteomics. 2005;4(10):1419–1440. doi: 10.1074/mcp.R500012-MCP200
  • Kaushal P, Lee C. N-terminomics–its past and recent advancements. J Proteomics. 2021;233:104089. doi: 10.1016/j.jprot.2020.104089
  • Griswold AR, Cifani P, Rao SD et al. A chemical strategy for protease substrate profiling. Cell Chem Biol. 2019;26(6):901–907. doi: 10.1016/j.chembiol.2019.03.007
  • Gevaert K, Van Damme J, Goethals M et al. Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis: identification of more than 800 Escherichia Coli proteins* S. Mol & Cell Proteomics. 2002;1(11):896–903. doi: 10.1074/mcp.M200061-MCP200
  • Kleifeld O, Doucet A, PrudovaA et al. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc. 2011;6(10):1578–1611. doi: 10.1038/nprot.2011.382
  • Mahrus S, Trinidad JC, Barkan DT, et al. Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell. 2008;134(5):866–876. doi: 10.1016/j.cell.2008.08.012
  • Hanna R, Rozenberg A, Saied L, et al. In-depth characterization of apoptosis N-Terminome reveals a link between Caspase-3 cleavage and posttranslational N-Terminal acetylation. Mol & Cell Proteomics. 2023;22(7):100584. doi: 10.1016/j.mcpro.2023.100584
  • Gauthier MS, Pérusse JR, Awan Z, et al. A semi-automated mass spectrometric immunoassay coupled to selected reaction monitoring (MSIA–SRM) reveals novel relationships between circulating PCSK9 and metabolic phenotypes in patient cohorts. Methods. 2015;81:66–73. doi: 10.1016/j.ymeth.2015.03.003
  • Wiita AP, Hsu GW, Lu CM et al. Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling. Proc Nat Acad Sci. 2014;111(21):7594–7599. doi: 10.1073/pnas.1405987111
  • Huffman RG, Leduc A, Wichmann C et al. Prioritized mass spectrometry increases the depth, sensitivity and data completeness of single-cell proteomics. Nat Methods. 2023;20(5):714–722. doi: 10.1038/s41592-023-01830-1
  • Rawlings ND, Barrett AJ, Thomas PD, et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46(D1):D624–D632. doi: 10.1093/nar/gkx1134
  • Salardani M, Barcick U, Zelanis A. Assessing proteolytic events in bioinformatic reanalysis of public secretome data from melanoma cell lines. Biochem Biophys Rep. 2022;30:101259. doi: 10.1016/j.bbrep.2022.101259
  • Bell PA, Overall CM. No substrate left behind—mining of shotgun proteomics datasets rescues evidence of proteolysis by SARS-CoV-2 3CLpro main protease. Int J Mol Sci. 2023;24(10):8723. doi: 10.3390/ijms24108723
  • Fortelny N, Yang S, Pavlidis P et al. Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre-and post-translational events. Nucleic Acids Res. 2015;43(D1):D290–D297. doi: 10.1093/nar/gku1012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.