93
Views
0
CrossRef citations to date
0
Altmetric
Original Research

A computational method for the prediction and functional analysis of potential Mycobacterium tuberculosis adhesin-related proteins

, &
Pages 483-493 | Received 04 Aug 2023, Accepted 20 Oct 2023, Published online: 30 Oct 2023

References

  • Squeglia F, Ruggiero A, De Simone A, et al. A structural overview of mycobacterial adhesins: key biomarkers for diagnostics and therapeutics. Protein Sci. 2018;27(2):369–380. doi: 10.1002/pro.3346
  • Chaudhuri R, Ramachandran S. Prediction of virulence factors using bioinformatics approaches. Methods Mol Biol. 2014;1184:389–400. doi: 10.1007/978-1-4939-1115-8_22
  • Ryndak MB, Laal S. Mycobacterium tuberculosis primary infection and dissemination: a critical role for alveolar epithelial cells [hypothesis and theory]. Front Cell Infect Microbiol. 2019;9:299. doi: 10.3389/fcimb.2019.00299
  • Bisht D, Meena LS. Adhesion molecules facilitate host-pathogen interaction & mediate Mycobacterium tuberculosis pathogenesis. Indian J Med Res. 2019;150(1):23–32. doi: 10.4103/ijmr.IJMR_2055_16
  • Viljoen A, Dufrêne YF, Nigou J. Mycobacterial adhesion: from hydrophobic to receptor-ligand interactions. Microorganisms. 2022;10(2):454. doi: 10.3390/microorganisms10020454
  • Kevlani N, Meena L. Prominent role of FnBPs of Mycobacterium tuberculosis in cell adhesion, immune invasion and pathogenesis. Open J Bac. 2017;1(1):007–012. doi: 10.17352/ojb.000002
  • Vinod V, Vijayrajratnam S, Vasudevan AK, et al. The cell surface adhesins of Mycobacterium tuberculosis. Microbiol Res. 2020;232:126392. 2020/Feb/1/. doi: 10.1016/j.micres.2019.126392
  • Kim H, Choi H-G, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front immunolVol. 14. English. 2023. doi: 10.3389/fimmu.2023.1193058
  • Govender VS, Ramsugit S, Pillay MJM. Mycobacterium tuberculosis adhesins: potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets. Microbiology. 2014;160(9):1821–1831. doi: 10.1099/mic.0.082206-0
  • Attallah AM, Abdel Malak CA, Ismail H, et al. Rapid and simple detection of a Mycobacterium tuberculosis circulating antigen in serum using dot-ELISA for field diagnosis of pulmonary tuberculosis. J Immunoassay Immunochem. 2003 [2003/Jan/4];24(1):73–87. doi: 10.1081/IAS-120018470
  • O’Rourke KF, Gorman SD, Boehr DD. Biophysical and computational methods to analyze amino acid interaction networks in proteins. Comput Struct Biotechnol J. 2016;14:245–251. doi: 10.1016/j.csbj.2016.06.002
  • Sachdeva G, Kumar K, Jain P, et al. SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics. 2005;21(4):483–491. doi: 10.1093/bioinformatics/bti028
  • Kumar S, Puniya BL, Parween S, et al. Identification of novel adhesins of M. tuberculosis H37Rv using integrated approach of multiple computational algorithms and experimental analysis. PLoS One. 2013;8(7):e69790. doi: 10.1371/journal.pone.0069790
  • Kumari B, Saini V, Kaur J, et al. Rv2037c, a stress induced conserved hypothetical protein of Mycobacterium tuberculosis, is a phospholipase: role in cell wall modulation and intracellular survival. Int j biol macromol. 2020;153:817–835. doi: 10.1016/j.ijbiomac.2020.03.037
  • Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015 [2015/Jun/1];10(6):845–858. doi: 10.1038/nprot.2015.053
  • Mistry J, Chuguransky S, Williams L, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412–D419. doi: 10.1093/nar/gkaa913
  • Yu NY, Wagner JR, Laird MR, et al. Psortb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes bioinformatics. Bioinformatics. 2010;26(13):1608–1615. doi: 10.1093/bioinformatics/btq249
  • Bendtsen JD, Kiemer L, Fausbøll A, et al. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5(1):58. doi: 10.1186/1471-2180-5-58
  • Ramsugit S, Pillay M. Identification of Mycobacterium tuberculosis adherence-mediating components: a review of key methods to confirm adhesin function. Iran J Basic Med Sci. 2016;19(6):579.
  • Xolalpa W, Vallecillo AJ, Lara M, et al. Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics. 2007;7(18):3332–3341. doi: 10.1002/pmic.200600876
  • Ayón-Núñez DA, Fragoso G, Bobes RJ, et al. Plasminogen-binding proteins as an evasion mechanism of the host’s innate immunity in infectious diseases. Biosci Rep. 2018;38(5). doi: 10.1042/BSR20180705
  • Jeffery C. Intracellular proteins moonlighting as bacterial adhesion factors. AIMS Microbiol. 2018;4(2):362–376. doi: 10.3934/microbiol.2018.2.362
  • De Marothy MT, Elofsson A. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding. Protein Sci. 2015 Jul;24(7):1057–1074. doi: 10.1002/pro.2698
  • Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol. 2014;4: doi: 10.3389/fcimb.2014.00112
  • Zhao D, Lin D, Xu C. A protein fragment of Rv3194c located on mycobacterial cell surface efficiently prevents adhesion of recombinant Mycobacterium smegmatis, and promises a new anti-adhesive drug. Microb Pathog. 2020;149:104498. doi: 10.1016/j.micpath.2020.104498
  • Meena PR, Meena LS, Meena LS. Fibronectin binding protein and Ca2+ play an access key role to mediate pathogenesis in Mycobacterium tuberculosis: an overview. Biotechnol Appl Biochem. 2016;63(6):820–826. doi: 10.1002/bab.1434
  • Mukhopadhyay S, Balaji KN. The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis. 2011;91(5):441–447. doi: 10.1016/j.tube.2011.04.004
  • Qian J, Chen R, Wang H, et al. Role of the PE/PPE family in host–pathogen interactions and prospects for anti-tuberculosis vaccine and diagnostic tool design. Front Cell Infect Microbiol. 2020;10:743. doi: 10.3389/fcimb.2020.594288
  • Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537–544. doi: 10.1038/31159
  • Abdallah AM, Verboom T, Weerdenburg EM, et al. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol. 2009;73(3):329–340. doi: 10.1111/j.1365-2958.2009.06783.x
  • Daleke MH, Ummels R, Bawono P, et al. General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci. 2012;109(28):11342–11347. doi: 10.1073/pnas.1119453109
  • Chen X, H-F C, Zhou J, et al. Structural basis of the PE–PPE protein interaction in Mycobacterium tuberculosis. J Biol Chem. 2017 [2017/Oct/13/];292(41):16880–16890. doi: 10.1074/jbc.M117.802645
  • Damen MPM, Phan TH, Ummels R, et al. Modification of a PE/PPE substrate pair reroutes an esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system. J Biol Chem. 2020;295(18):5960–5969. doi: 10.1074/jbc.RA119.011682
  • Espitia C, Laclette JP, Mondragón- Palomino M, et al. The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins?The GenBank accession number for the sequence reported in this paper is AF071081. Microbiol. 1999;145(12):3487–3495. doi: 10.1099/00221287-145-12-3487
  • Brennan MJ, Delogu G, Chen Y, et al. Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun. 2001;69(12):7326–7333. doi: 10.1128/IAI.69.12.7326-7333.2001
  • Tsirigotaki A, De Geyter J, Šoštaric N, et al. Protein export through the bacterial Sec pathway. Nat Rev Microbiol. 2017;15(1):21–36. doi: 10.1038/nrmicro.2016.161
  • Kuo C-J, Bell H, Hsieh C-L, et al. Novel mycobacteria antigen 85 complex binding motif on fibronectin. J Biol Chem. 2012;287(3):1892–1902. doi: 10.1074/jbc.M111.298687
  • Kuo C-J, Ptak CP, Hsieh C-L, et al. Elastin, a novel extracellular matrix protein adhering to mycobacterial antigen 85 complex. J Biol Chem. 2013;288(6):3886–3896. doi: 10.1074/jbc.M112.415679
  • Be NA, Bishai WR, Jain SK. Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis. BMC Microbiol. 2012;12(1):1–7. doi: 10.1186/1471-2180-12-7
  • Kalra P, Mishra SK, Kaur S, et al. G-Quadruplex-forming DNA aptamers inhibit the DNA-Binding function of HupB and Mycobacterium tuberculosis entry into host cells. Mol Ther Nucleic Acids. 2018;13:99–109. doi: 10.1016/j.omtn.2018.08.011
  • Chitale S, Ehrt S, Kawamura I, et al. Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol. 2001;3(4):247–254. doi: 10.1046/j.1462-5822.2001.00110.x
  • Hickey TB, Ziltener HJ, Speert DP, et al. Mycobacterium tuberculosis employs Cpn60. 2 as an adhesin that binds CD43 on the macrophage surface. Cell Microbiol. 2010;12(11):1634–1647. doi: 10.1111/j.1462-5822.2010.01496.x
  • Alteri CJ. Novel pili of Mycobacterium tuberculosis. Tucson, USA: The University of Arizona; 2005.
  • Vermassen A, Leroy S, Talon R, et al. Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front Microbiol. 2019;10:331–331. doi: 10.3389/fmicb.2019.00331
  • Ramírez-Larrota JS, Eckhard U. An introduction to bacterial biofilms and their proteases, and their roles in host infection and immune evasion. Biomolecules. 2022;12(2):306. doi: 10.3390/biom12020306
  • Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev. 2019;43(3):304–339. doi: 10.1093/femsre/fuz001
  • Mullen LM, Bossé JT, Nair SP, et al. Pasteurellaceae ComE1 proteins combine the properties of fibronectin adhesins and DNA binding competence proteins. PLoS One. 2008;3(12):e3991. doi: 10.1371/journal.pone.0003991
  • Metri R, Hariharaputran S, Ramakrishnan G, et al. SInCRe—structural interactome computational resource for Mycobacterium tuberculosis. Database. 2015;2015: doi: 10.1093/database/bav060
  • Moreno‐Brito V, Yáñez‐Gómez C, Meza‐Cervantez P, et al. A trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate: ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell Microbiol. 2005;7(2):245–258. doi: 10.1111/j.1462-5822.2004.00455.x
  • Tan S, Tan HT, Chung MC. Membrane proteins and membrane proteomics. Proteomics. 2008;8(19):3924–3932. doi: 10.1002/pmic.200800597
  • Cifuentes DP, Ocampo M, Curtidor H, et al. Mycobacterium tuberculosis Rv0679c protein sequences involved in host-cell infection: potential TB vaccine candidate antigen. BMC Microbiol. 2010;10(1):109. doi: 10.1186/1471-2180-10-109
  • Vo JL, Martínez Ortiz GC, Subedi P, et al. Autotransporter adhesins in Escherichia coli pathogenesis. Proteomics. 2017;17(23–24):1600431. doi: 10.1002/pmic.201600431
  • Sinha S, Kosalai K, Arora S, et al. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. Microbiol. 2005;151(7):2411–2419. doi: 10.1099/mic.0.27799-0
  • Xiong Y, Chalmers MJ, Gao FP, et al. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by One-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. J Proteome Res. 2005;4(3):855–861. doi: 10.1021/pr0500049
  • Ptak CP, Kuo CJ, Chang YF. Mycobacterium tuberculosis antigen 85 family proteins: mycolyl transferases and matrix‐binding adhesins. Moonlighting Proteins. 2017;357–369. doi: 10.1002/9781118951149.ch20
  • Shi W-W, Jiang Y-L, Zhu F, et al. Structure of a novel O-Linked N-acetyl-D-glucosamine (O-GlcNAc) transferase, GtfA, reveals insights into the glycosylation of pneumococcal serine-rich repeat adhesins. J Biol Chem. 2014;289(30):20898–20907. doi: 10.1074/jbc.M114.581934
  • Peabody MA, Laird MR, Vlasschaert C, et al. Psortdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 2015;44(D1):D663–D668. doi: 10.1093/nar/gkv1271
  • Tang S-N, Sun J-M, Xiong W-W, et al. Identification of the subcellular localization of mycobacterial proteins using localization motifs. Biochimie. 2012;94(3):847–853. doi: 10.1016/j.biochi.2011.12.003
  • Cornejo-Granados F, Zatarain-Barrón ZL, Cantu-Robles VA, et al. Secretome prediction of two M. tuberculosis clinical isolates reveals their high antigenic density and potential drug targets. Front Microbiol. 2017;8:128–128. doi: 10.3389/fmicb.2017.00128
  • Gomez M, Johnson S, Gennaro ML, et al. Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect Immun. 2000;68(4):2323–2327. doi: 10.1128/IAI.68.4.2323-2327.2000
  • Kang Q, Zhang D. Principle and potential applications of the non-classical protein secretory pathway in bacteria. Appl Microbiol Biotechnol. 2020;104(3):953–965. doi: 10.1007/s00253-019-10285-4
  • Harth G, Horwitz MA. Export of recombinant Mycobacterium tuberculosis superoxide dismutase is dependent upon both information in the protein and mycobacterial export machinery. a model for studying export of leaderless proteins by pathogenic mycobacteria. J Biol Chem. 1999;274(7):4281–4292. doi: 10.1074/jbc.274.7.4281
  • Wang G, Xia Y, Song X, et al. Common non-classically secreted bacterial proteins with experimental evidence. Curr Microbiol. 2016;72(1):102–111. doi: 10.1007/s00284-015-0915-6
  • Gupta D, Banerjee S, Pailan S, et al. In silico identification and characterization of a hypothetical protein of Mycobacterium tuberculosis EAI5 as a potential virulent factor. Bioinformation. 2016;12(3):182–191. doi: 10.6026/97320630012182
  • Owji H, Nezafat N, Negahdaripour M, et al. A comprehensive review of signal peptides: structure, roles, and applications. Eur J Cell Biol. 2018;97(6):422–441. doi: 10.1016/j.ejcb.2018.06.003
  • Hajishengallis G, Martin M, Sojar HT, et al. Dependence of bacterial protein adhesins on toll-like receptors for proinflammatory cytokine induction. Clin Diagn Lab Immunol. 2002;9(2):403–411. doi: 10.1128/cdli.9.2.403-411.2002
  • O’Toole RF, Gautam SS. Limitations of the Mycobacterium tuberculosis reference genome H37Rv in the detection of virulence-related loci. Genomics. 2017;109(5):471–474. doi: 10.1016/j.ygeno.2017.07.004
  • World Health Organization. Global tuberculosis report 2015. World Health Org. 2015.
  • Cobelens F, Suri RK, Helinski M, et al. Accelerating research and development of new vaccines against tuberculosis: a global roadmap. Lancet Infect Dis. 2022;22(4):e108–e120. doi: 10.1016/S1473-3099(21)00810-0
  • Moliva JI, Turner J, Torrelles JB. Immune responses to bacillus Calmette–Guerin vaccination: why do they fail to protect against Mycobacterium tuberculosis? J Frontiers In Immunology. 2017;8:407. doi: 10.3389/fimmu.2017.00407
  • Kaufmann SHE, Weiner J, von Reyn CF. Novel approaches to tuberculosis vaccine development. Inter J Infect Dis. 2017 [2017/Mar/1/];56:263–267. doi: 10.1016/j.ijid.2016.10.018
  • Khademi F, Yousefi-Avarvand A, Derakhshan M, et al. Mycobacterium tuberculosis HspX/EsxS fusion protein: gene cloning, protein expression, and purification in Escherichia coli. Rep Biochem Mol Biol. 2017;6(1):15–21.
  • Arif S, Akhter M, Khaliq A, et al. Fusion peptide constructs from antigens of M. tuberculosis producing high T-cell mediated immune response. PLoS One. 2022;17(9):e0271126. doi: 10.1371/journal.pone.0271126

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.