226
Views
0
CrossRef citations to date
0
Altmetric
Review

A proteome-level view of brain tumors for a better understanding of novel diagnosis, prognosis, and therapy

, , &
Pages 381-395 | Received 07 Jul 2023, Accepted 01 Nov 2023, Published online: 28 Nov 2023

References

  • Perkins A, G Liu. Primary brain tumors in adults: diagnosis and treatment. Am Fam Physician [Internet]. 2016;93:211–217B. [cited 2023 Jun 30]. Available from: https://www.aafp.org/pubs/afp/issues/2016/0201/p211.html
  • McFaline-Figueroa JR, Lee EQ. Brain tumors. Am J Med. 2018;131(8):874–882. doi: 10.1016/j.amjmed.2017.12.039
  • Strowd RE, Blakeley JO. Common histologically benign tumors of the brain. Continuum (Minneap Minn) [Internet]. 2017;23(6):1680–1708. [cited 2023 Jun 30]. doi: 10.1212/CON.0000000000000541.
  • Aghi M, Barker FG. Benign adult brain tumors: an evidence-based medicine review. Prog Neurol Surg [Internet]. 2006;19:80–96. [cited 2023 Jul 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/17033148/
  • Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31(3):326–341. doi: 10.1016/j.ccell.2017.02.009
  • Lah TT, Novak M, Breznik B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol [Internet]. 2020;60:262–273. [cited 2023 Jun 30]. doi: 10.1016/j.semcancer.2019.10.010.
  • Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer [Internet]. 2020;20(1):26–41. [cited 2023 Jun 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/31601988/.
  • Boire A, Brastianos PK, Garzia L, et al. Brain metastasis. Nat Rev Cancer [Internet]. 2020;20(1):4–11. [cited 2023 Jun 30]. doi: 10.1038/s41568-019-0220-y
  • Amoo M, Henry J, Farrell M, et al. Meningioma in the elderly. Neurooncol Adv [Internet]. 2023;5(Supplement_1):I13–I25. [cited 2023 Oct 27]. doi: 10.1093/noajnl/vdac107
  • Ostrom QT, Gittleman H, Truitt G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 2018;20(suppl_4):iv1–iv86. doi: 10.1093/neuonc/noy131
  • McNeill KA. Epidemiology of brain tumors. Neurol Clin [Internet]. 2016;34(4):981–998. [cited 2023 Jun 30]. doi: 10.1016/j.ncl.2016.06.014.
  • Kwon YW, Jo HS, Bae S, et al. Application of proteomics in Cancer: recent trends and approaches for biomarkers discovery. Front Med [Internet]. 2021;8. [cited 2023 Jul 1]. doi: 10.3389/fmed.2021.747333
  • Srivastava S. From proteins to proteomics: basic concepts, techniques, and applications. From proteins to proteomics: basic concepts. Tech Appl [Internet]. 2022;1–261. [cited 2023 Jul 1]. Available from: https://www.taylorfrancis.com/books/mono/10.1201/9781003098645/proteins-proteomics-sanjeeva-srivastava.
  • Khalil AA, James P. Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Sci [Internet]. 2007;98(2):201–213. [cited 2023 Jul 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/17233837/.
  • Wang LB, Karpova A, Gritsenko MA, et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell. 2021;39(4):509–528.e20. doi: 10.1016/j.ccell.2021.01.006
  • Davalieva K, Rusevski A, Velkov M, et al. Comparative proteomics analysis of human FFPE testicular tissues reveals new candidate biomarkers for distinction among azoospermia types and subtypes. J Proteomics [Internet]. 2022;267:104686. [cited 2023 Sep 22]. Available from: doi: 10.1016/j.jprot.2022.104686
  • Pujari GP, Mangalaparthi KK, Madden BJ, et al. A high-throughput workflow for FFPE tissue proteomics. J Am Soc Mass Spectrom [Internet]. 2023;34(7):1225–1229. [cited 2023 Sep 22]. doi: 10.1021/jasms.3c00099
  • Zhu Y, Weiss T, Zhang Q, et al. High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. Mol Oncol [Internet]. 2019;13(11):2305–2328. [cited 2023 Sep 22]. doi: 10.1002/1878-0261.12570
  • Coscia F, Doll S, Bech JM, et al. A streamlined mass spectrometry–based proteomics workflow for large-scale FFPE tissue analysis. The Journal Of Pathology. 2020;251(1):100–112. [cited 2023 Sep 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/32154592/
  • Nissa MU, Pinto N, Varshnay A, et al. Ecological monitoring and omics: a comprehensive comparison of workflows for mass spectrometry-based Quantitative proteomics of fish (labeo rohita) liver tissue. OMICS [Internet]. 2022;26(9):489–503. [cited 2023 Sep 22]. Available from: doi: 10.1089/omi.2022.0086
  • Bang G, Lee H, Kim H, et al. Comparison of protein characterization using in solution and S-Trap digestion methods for proteomics. Biochem Biophys Res Commun [Internet]. 2022;589:197–203 [cited 2023 Sep 22]. Available from: doi: 10.1016/j.bbrc.2021.12.026
  • Zheng W, Yang P, Sun C, et al. Comprehensive comparison of sample preparation workflows for proteomics. Mol Omics [Internet]. 2022;18(6):555–567. [cited 2023 Sep 22]. doi: 10.1039/D2MO00076H
  • Wiśniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nat Methods [Internet]. 2009;6(5):359–362. [cited 2023 Oct 22]. doi: 10.1038/nmeth.1322
  • Wiśniewski JR, Nagaraj N, Zougman A, et al. Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res [Internet]. 2010;9(6):3280–3289. [cited 2023 Oct 22]. doi: 10.1021/pr1002214
  • Ghantasala S, Pai MGJ, Srivastava S. Quantitative proteomics workflow using multiple Reaction monitoring based detection of proteins from human brain tissue. J Vis Exp [Internet]. 2021;2021(174):e61833. [[cited 2022 Mar 5]]. doi: 10.3791/61833.
  • Pagel O, Kollipara L, Sickmann A. Tandem mass tags for comparative and discovery proteomics. Methods Mol Biol [Internet]. 2021;2228:117–131. [cited 2023 Oct 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/33950487/
  • Evans C, Noirel J, Ow SY, et al. An insight into iTRAQ: where do we stand now? Anal Bioanal Chem [Internet]. 2012;404(4):1011–1027. [cited 2023 Oct 22]. doi: 10.1007/s00216-012-5918-6
  • Chen X, Wei S, Ji Y, et al. Quantitative proteomics using SILAC: principles, applications, and developments. Proteomics [Internet]. 2015;15(18):3175–3192. [cited 2023 Oct 22]. doi: 10.1002/pmic.201500108
  • Verma A, Kumar V, Ghantasala S, et al. Comprehensive workflow of mass spectrometry-based shotgun proteomics of tissue samples. J Visual Exp [Internet]. 2021 (177):e61786. [cited 2022 Mar 5]. Available from: https://www.jove.com/v/61786/comprehensive-workflow-mass-spectrometry-based-shotgun-proteomics.
  • Rozanova S, Barkovits K, Nikolov M, et al. Quantitative mass spectrometry-based proteomics: an overview. Methods Mol Biol [Internet]. 2021;2228:85–116 [cited 2023 Oct 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/33950486/
  • Bantscheff M, Schirle M, Sweetman G, et al. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem [Internet]. 2007;389(4):1017–1031. [cited 2023 Oct 22]. doi: 10.1007/s00216-007-1486-6
  • Mendes ML, Dittmar G. Targeted proteomics on its way to discovery. Proteomics [Internet]. 2022;22(15–16). [cited 2023 Jul 1]. doi: 10.1002/pmic.202100330.
  • Biswas D, Shenoy SV, Chetanya C, et al. Deciphering the interregional and interhemisphere proteome of the human brain in the context of the human proteome project. J Proteome Res. 2021;20(12):5280–5293. doi: 10.1021/acs.jproteome.1c00511
  • Ghantasala S, Pai MGJ, Biswas D, et al. Multiple Reaction monitoring-based targeted assays for the validation of protein biomarkers in brain tumors. Front Oncol [Internet]. 2021;11:1623 [cited 2021 Jul 13]. doi: 10.3389/fonc.2021.548243
  • Schaff LR, Yan D, Thyparambil S, et al. Characterization of MGMT and EGFR protein expression in glioblastoma and association with survival. J Neurooncol [Internet]. 2020;146(1):163–170. [cited 2023 Jul 2]. doi: 10.1007/s11060-019-03358-x
  • Archer TC, Ehrenberger T, Mundt F, et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell [Internet]. 2018;34(3):396–410.e8. doi: 10.1016/j.ccell.2018.08.004
  • Leutert M, Entwisle SW, Villén J. Decoding post-translational modification crosstalk with proteomics. Mol & Cell Proteomics [Internet]. 2021;20:100129. [cited 2023 Jul 1]. doi: 10.1016/j.mcpro.2021.100129.
  • Biswas D, Kumari N, Lachén-Montes M, et al. Deep phosphoproteome landscape of interhemispheric functionality of neuroanatomical regions of the human brain. J Proteome Res [Internet]. 2023;22(4):1043–1055. [cited 2023 Jul 1]. doi: 10.1021/acs.jproteome.2c00244
  • Zhang X, Maity TK, Ross KE, et al. Alterations in the global proteome and phosphoproteome in third generation EGFR TKI resistance reveal drug targets to circumvent resistance. Cancer Res [Internet]. 2021;81(11):3051–3066. [cited 2023 Jul 1]. doi: 10.1158/0008-5472.CAN-20-2435
  • Vázquez-Blomquist D, Hardy-Sosa A, Baez SC, et al. Proteomics and phospho-proteomics profiling of the Co-Formulation of type I and II interferons, HeberFERON, in the glioblastoma-derived cell line U-87 MG. Cells [Internet]. 2022;11(24):4068. [cited 2023 Jul 1]. doi: 10.3390/cells11244068
  • Whiteaker JR, Sharma K, Hoffman MA, et al. Targeted mass spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP kinase, and AKT signaling. Cell Rep Met [Internet]. 2021;1(3):100015. [cited 2023 Jul 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/34671754/
  • Veillon L, Fakih C, Abou-El-Hassan H, et al. Glycosylation changes in brain Cancer. ACS Chem Neurosci [Internet]. 2018;9(1):51–72. doi: 10.1021/acschemneuro.7b00271
  • Sethi MK, Downs M, Shao C, et al. In-depth matrisome and glycoproteomic analysis of human brain glioblastoma versus control tissue. Mol Cell Proteom [Internet]. 2022;21(4):100216. [cited 2023 Jul 1]. doi: 10.1016/j.mcpro.2022.100216
  • Henson JW, Cordon-Cardo C, Posner JB. P-glycoprotein expression in brain tumors. J Neurooncol [Internet]. 1992;14(1):37–43. [cited 2023 Jul 1]. doi: 10.1007/BF00170943.
  • Liao C, Wang Q, An J, et al. CD44 glycosylation as a therapeutic target in oncology. Front Oncol [Internet]. 2022;12. [cited 2023 Jul 1]. doi: 10.3389/fonc.2022.883831
  • Liu X, Chen X, Shi L, et al. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. J Exp Clin Cancer Res [Internet]. 2019;38(1). [cited 2023 Jul 1]. doi: 10.1186/s13046-019-1235-7
  • Sharanek A, Raco L, Soleimani VD, et al. Subcellular fractionation of brain tumor stem cells. Methods Cell Biol [Internet]. 2022;170:47–58 [cited 2023 Jul 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/35811103/
  • Rose M, Cardon T, Aboulouard S, et al. Surfaceome proteomic of glioblastoma revealed potential targets for immunotherapy. Front Immunol [Internet]. 2021;12. [cited 2023 Jul 1]. doi: 10.3389/fimmu.2021.746168
  • Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet [Internet]. 2010;11(1):25–44. [cited 2023 Jul 1]. doi: 10.1146/annurev-genom-082509-141720.
  • Duhamel M, Drelich L, Wisztorski M, et al. Spatial analysis of the glioblastoma proteome reveals specific molecular signatures and markers of survival. Nat Commun [Internet]. 2022;13(1). [cited 2023 Jul 1]. doi: 10.1038/s41467-022-34208-6
  • Wang N, Li X, Wang R, et al. Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment. Biotechnol J [Internet]. 2021;16(9). [cited 2023 Jul 1]. doi: 10.1002/biot.202100041
  • Okawa S, Gagrica S, Blin C, et al. Proteome and Secretome characterization of glioblastoma-derived neural stem cells. Stem Cells [Internet]. 2017;35(4):967–980. [cited 2023 Jul 1]. doi: 10.1002/stem.2542
  • Piñero J, Bravo Á, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res [Internet]. 2017;45(D1):D833–D839. [cited 2023 Oct 27]. doi: 10.1093/nar/gkw943
  • Szklarczyk D et al . (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res, 51(D1), D638–D646. 10.1093/nar/gkac1000
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol [Internet]. 2021;23(8):1231–1251. [cited 2023 Jul 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/34185076/
  • Yanovich-Arad G, Ofek P, Yeini E, et al. Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep. 2021;34(9):108787. doi: 10.1016/j.celrep.2021.108787
  • Buehler M, Yi X, Ge W, et al. Quantitative proteomic landscapes of primary and recurrent glioblastoma reveal a protumorigeneic role for FBXO2-dependent glioma-microenvironment interactions. Neuro Oncol [Internet]. 2023;25(2):290–302. [cited 2023 Jul 1]. doi: 10.1093/neuonc/noac169
  • Miyauchi E, Furuta T, Ohtsuki S, et al. Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS One. 2018;13(3):e0193799. [cited 2023 Jul 1]. doi: 10.1371/journal.pone.0193799
  • Mason JT. Proteomic analysis of FFPE tissue: barriers to clinical impact. Expert Rev Proteom. 2016;13(9):801–803. cited 2021 Jul 19. [Internet] Available from: https://www.tandfonline.com/doi/abs/10.1080/14789450.2016.1221346.
  • Coscia F, Doll S, Bech JM, et al. A streamlined mass spectrometry–based proteomics workflow for large-scale FFPE tissue analysis. J Pathol [Internet]. 2020;251(1):100–112. [cited 2021 Jul 19]. doi: 10.1002/path.5420
  • Föll MC, Fahrner M, Oria VO, et al. Reproducible proteomics sample preparation for single FFPE tissue slices using acid-labile surfactant and direct trypsinization. Clinical Proteomics [Internet]. 2018;15(1):1–15. [cited 2021 Jul 19]. Available from: https://link.springer.com/articles/10.1186/s12014-018-9188-y
  • Choudhary R, Elabbas A, Vyas A, et al. Utilization of Cerebrospinal fluid proteome analysis in the diagnosis of meningioma: a systematic review. Cureus [Internet]. 2021;13 [cited 2023 Jul 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/34966627/
  • Liu J, Xia C, Wang G. Multi-omics analysis in initiation and progression of meningiomas: from pathogenesis to diagnosis. Front Oncol [Internet]. 2020;10. [cited 2023 Jul 1]. doi: 10.3389/fonc.2020.01491
  • Abbritti RV, Polito F, Cucinotta M, et al. Meningiomas and proteomics: focus on New potential biomarkers and molecular pathways. Cancer Genom Proteom [Internet]. 2016;13:369. [cited 2023 Jul 1]. Available from: /pmc/articles/PMC5070626/.
  • Kim JH, Lee SK, Yoo YC, et al. Proteome analysis of human cerebrospinal fluid as a diagnostic biomarker in patients with meningioma. Med Sci Monit. 2012;18(11):BR450–BR460. doi: 10.12659/MSM.883538
  • Mukherjee A, Ghosh S, Biswas D, et al. Clinical proteomics for meningioma: an Integrated workflow for Quantitative proteomics and biomarker validation in formalin-fixed paraffin-embedded tissue samples. OMICS [Internet]. 2022;26(9):512–520. [cited 2023 Jul 1]. doi: 10.1089/omi.2022.0082
  • Halder A, Biswas D, Chauhan A, et al. A large-scale targeted proteomics of serum and tissue shows the utility of classifying high grade and low grade meningioma tumors. Clin Proteomics [Internet]. 2023;20(1). [cited 2023 Oct 27]. doi: 10.1186/s12014-023-09426-9
  • Ramaswamy V, Taylor MD. Medulloblastoma: from myth to molecular. J Clin Oncol. 2017;35(21):2355–2363. doi: 10.1200/JCO.2017.72.7842
  • Zomerman WW, Plasschaert SLA, Conroy S, et al. Identification of two protein-signaling states delineating transcriptionally heterogeneous human medulloblastoma. Cell Rep. 2018;22(12):3206–3216. doi: 10.1016/j.celrep.2018.02.089
  • Forget A, Martignetti L, Puget S, et al. Aberrant ERBB4-SRC signaling as a hallmark of Group 4 medulloblastoma revealed by integrative phosphoproteomic profiling. Cancer Cell. 2018;34(3):379–395.e7. doi: 10.1016/j.ccell.2018.08.002
  • Rivero-Hinojosa S, Lau LS, Stampar M, et al. Proteomic analysis of medulloblastoma reveals functional biology with translational potential. Acta Neuropathol Commun [Internet]. 2018;6(1):48. [cited 2023 Jul 1]. doi: 10.1186/s40478-018-0548-7
  • Narayan V, Jaiswal J, Sugur H, et al. Proteomic profiling of medulloblastoma reveals novel proteins differentially expressed within each molecular subgroup. Clin Neurol Neurosur [Internet]. 2020;196:106028 [cited 2023 Jul 1]. doi: 10.1016/j.clineuro.2020.106028
  • Kp M, Kumar A, Biswas D, et al. The proteomic analysis shows enrichment of RNA surveillance pathways in adult SHH and extensive metabolic [Internet]reprogramming in Group 3 medulloblastomas. Brain Tumor Pathol. 2021;38(2):96–108. [cited 2021 Feb 8]. doi: 10.1007/s10014-020-00391-x
  • Hao X, Guo Z, Sun H, et al. Urinary protein biomarkers for pediatric medulloblastoma. J Proteomics [Internet] 2020;225:103832. [cited 2020 Jul 7]. Available from: https://pubmed.ncbi.nlm.nih.gov/32474013/.
  • Low SYY, Bte Syed Sulaiman N, Tan EEK, et al. Cerebrospinal fluid cytokines in metastatic group 3 and 4 medulloblastoma. BMC Cancer [Internet]. 2020;20(1). [cited 2023 Jul 1]. doi: 10.1186/s12885-020-07048-0
  • Reichl B, Niederstaetter L, Boegl T, et al. Determination of a tumor-promoting microenvironment in recurrent medulloblastoma: a multi-omics study of Cerebrospinal fluid. Cancers (Basel) [Internet]. 2020;12(6):1350. [cited 2023 Jul 1]. doi: 10.3390/cancers12061350
  • Zhao M, Liu Y, Ding G, et al. Online database for brain cancer-implicated genes: exploring the subtype-specific mechanisms of brain cancer. BMC Genomics [Internet]. 2021;22(1). [[cited 2023 Jul 1]]. doi: 10.1186/s12864-021-07793-x
  • Aizer AA, Lamba N, Ahluwalia MS, et al. Brain metastases: a society for Neuro-oncology (SNO) consensus review on current management and future directions. Neuro Oncol [Internet]. 2022;24(10):1613–1646. [cited 2023 Jul 1]. doi: 10.1093/neuonc/noac118
  • Fernández-Irigoyen J, Corrales F, Santamaría E. The human brain proteome project: biological and technological challenges. Methods Mol Biol [Internet]. 2019;2044:3–23. [[cited 2023 Jul 1]]. Available from: https://pubmed.ncbi.nlm.nih.gov/31432403/
  • Rudnick PA, Markey SP, Roth J, et al. A Description of the clinical proteomic tumor analysis Consortium (CPTAC) common data analysis pipeline. J Proteome Res [Internet]. 2016;15(3):1023–1032. [cited 2023 Jul 1]. doi: 10.1021/acs.jproteome.5b01091
  • Wang Q, Ding SL, Li Y, et al. The allen mouse brain common coordinate framework: a 3D reference Atlas. Cell [Internet]. 2020;181(4):936–953.e20. [cited 2023 Jul 1]. doi: 10.1016/j.cell.2020.04.007
  • Bota M, Swanson LW. Collating and Curating Neuroanatomical Nomenclatures: principles and use of the brain architecture knowledge management system (BAMS). Front Neuroinf [Internet]. 2010;4 [cited 2023 Jul 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/20407640/.
  • Najafi H, Naseri M, Zahiri J, et al. Identification of the molecular events involved in the development of Prefrontal Cortex through the analysis of RNA-Seq data from BrainSpan. ASN Neuro [Internet]. 2019;11:175909141985462 [cited 2023 Jul 1]. doi: 10.1177/1759091419854627
  • Liu L, Zhang Y, Niu G, et al. BrainBase: a curated knowledgebase for brain diseases. Nucleic Acids Res [Internet]. 2022;50(D1):D1131–D1138. [cited 2023 Jul 1]. doi: 10.1093/nar/gkab987
  • Biswas D, Vinayak S, Chauahan A, et al. BrainProt(TM) 3.0: understanding human brain diseases using comprehensively curated & integrated OMICS datasets. Biorxiv [Internet]. 2023 [cited 2023 Jul 1]. Available from: https://www.biorxiv.org/content/10.1101/2023.06.21.545851v1
  • Liu J, Xia C, Wang G. Multi-omics analysis in initiation and progression of meningiomas: from pathogenesis to diagnosis. Front Oncol [Internet]. 2020;10:1491. [cited 2023 Jul 1]. Available from. doi: 10.3389/fonc.2020.01491.
  • Francesca Petralia A, Tignor N, Reva B, et al. Integrated proteogenomic characterization across major histological types of pediatric brain Cancer ll resource integrated proteogenomic characterization across major histological types of pediatric brain Cancer. 2020 [[cited 2021 Jul 10]]. Available from: doi: 10.1016/j.cell.2020.10.044
  • Lyne SB, Yamini B. An alternative pipeline for glioblastoma therapeutics: a systematic review of drug repurposing in glioblastoma. Cancers (Basel) [Internet]. 2021;13(8):1953. [[cited 2023 Jul 1]]. Available from: 10.3390/cancers13081953.
  • Ma Y, Xi Z, Liang S. Integrated analysis of Multiomics data identified molecular subtypes and oxidative stress-related prognostic biomarkers in glioblastoma multiforme. Oxid Med Cell Longev. 2022;2022:1–15. doi: 10.1155/2022/9993319
  • Wang H, Diaz AK, Shaw TI, et al. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat Commun. 2019;10(1):10. doi: 10.1038/s41467-019-11661-4
  • Ravi VM, Will P, Kueckelhaus J, et al. Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell [Internet]. 2022;40(6):639–655.e13. [cited 2023 Jul 2]. doi: 10.1016/j.ccell.2022.05.009
  • Harmancl AS, Youngblood MW, Clark VE, et al. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun [Internet]. 2017;8(1). [cited 2023 Jul 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/28195122/
  • McLendon R, Friedman A, Bigner D, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–1068.
  • Westermark B. Platelet-derived growth factor in glioblastoma—driver or biomarker? Ups J Med Sci. 2014;119(4):298–305. doi: 10.3109/03009734.2014.970304
  • Shamsdin SA, Mehrafshan A, Rakei SM, et al. Evaluation of VEGF, FGF and PDGF and serum levels of inflammatory cytokines in patients with glioma and meningioma in southern Iran. Asian Pac J Cancer Prev. 2019;20(10):2883–2890. doi: 10.31557/APJCP.2019.20.10.2883
  • Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Sci (1979). 2008;321(5897):1807–1812. doi: 10.1126/science.1164382
  • Colardo M, Segatto M, Di Bartolomeo S. Targeting rtk-pi3k-mtor axis in gliomas: an update. Int J Mol Sci. 2021;22(9):22. doi: 10.3390/ijms22094899
  • Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462. doi: 10.1016/j.cell.2013.09.034
  • Mao H, Lebrun DG, Yang J, et al. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest. 2012;30(1):48–56. doi: 10.3109/07357907.2011.630050
  • Moodie SA, Willumsen BM, Weber MJ, et al. Complexes of Ras⋅GTP with raf-1 and mitogen-activated protein kinase kinase. Sci (1979). 1993;260(5114):1658–1661. doi: 10.1126/science.8503013
  • Lo H-W. Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for malignant gliomas. Curr Cancer Drug Targets. 2010;10(8):840–848. doi: 10.2174/156800910793357970
  • Serra R, Mangraviti A. A systematic view of pediatric medulloblastoma proteomics-current state of the field and future directions. [cited 2023 Apr 30]. doi: 10.1007/s00381-020-04988-7
  • El-Habr EA, Levidou G, Trigka EA, et al. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch [Internet]. 2014;465(4):473–485. [cited 2023 Jul 1]. doi: 10.1007/s00428-014-1641-3
  • Cui Y, Groth S, Troutman S, et al. The NF2 tumor suppressor merlin interacts with Ras and RasGAP, which may modulate Ras signaling. Oncogene. 2019;38(36):6370–6381. doi: 10.1038/s41388-019-0883-6
  • Wang Z, Wang W, Xu S, et al. The role of MAPK signaling pathway in the her-2-positive meningiomas. Oncol Rep. 2016;36(2):685–695. doi: 10.3892/or.2016.4849
  • Pecina-Slaus N, Cicvara-Pecina T, Kafka A. Epithelial-to-mesenchymal transition: possible role in meningiomas. Front Biosci - Elite. 2012;E4(3):889–896. doi: 10.2741/e427
  • Lu YB, Sun TJ, Chen YT, et al. Targeting the epithelial-to-mesenchymal transition in Cancer stem cells for a better clinical outcome of glioma. Technol Cancer Res Treat. 2020;19:153303382094805. doi: 10.1177/1533033820948053
  • Rowitch DH, St-Jacques B, Lee SMK, et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci. 1999;19(20):8954–8965. doi: 10.1523/JNEUROSCI.19-20-08954.1999
  • Shahi MH, Lorente A, Castresana JS. Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma. Oncol Rep. 2008;19:681–688. doi: 10.3892/or.19.3.681
  • Pietsch T, Waha A, Koch A, et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of drosophila patched. Cancer Res. 1997;57(11):2085–2088.
  • Raffel C, Jenkins RB, Frederick L, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997;57(5):842–845.
  • Dong J, Gailani MR, Pomeroy SL, et al. Identification of PATCHED mutations in medulloblastomas by direct sequencing. Hum Mutat. 2000;16(1):89–90. doi: 10.1002/1098-1004(200007)16:1<89:AID-HUMU18>3.0.CO;2-7
  • Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002;31(3):306–310. doi: 10.1038/ng916
  • Santoni M, Burattini L, Nabissi M, et al. Essential Role of Gli Proteins in Glioblastoma Multiforme. Curr Protein Pept Sci. 2013;14(2):133–140. doi: 10.2174/1389203711314020005
  • Kiecker C, Niehrs C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in xenopus. Development. 2001;128(21):4189–4201. doi: 10.1242/dev.128.21.4189

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.