121
Views
0
CrossRef citations to date
0
Altmetric
Review

Utilizing databases for astrocyte secretome research

ORCID Icon, , & ORCID Icon
Pages 371-379 | Received 26 Jun 2023, Accepted 07 Nov 2023, Published online: 23 Nov 2023

References

  • Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362(6411):181–185. doi: 10.1126/science.aat0473
  • Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. doi: 10.1007/s00401-009-0619-8
  • Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55(12):1251–1262. doi: 10.1002/glia.20528
  • Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36(2):180–190. doi: 10.1002/glia.1107
  • Jha MK, Kim JH, Song GJ, et al. Functional dissection of astrocyte-secreted proteins: implications in brain health and diseases. Prog Neurobiol. 2018;162:37–69. doi: 10.1016/j.pneurobio.2017.12.003
  • Verkhratsky A, Matteoli M, Parpura V, et al. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J. 2016;35(3):239–257. doi: 10.15252/embj.201592705
  • Brezovakova V, Sykova E, Jadhav S. Astrocytes derived from familial and sporadic Alzheimer’s disease iPscs show altered calcium signaling and respond differently to misfolded protein tau. Cells. 2022;11(9):1429. doi: 10.3390/cells11091429
  • Jha MK, Seo M, Kim JH, et al. The secretome signature of reactive glial cells and its pathological implications. Biochim Biophys Acta. 2013;1834(11):2418–2428. doi: 10.1016/j.bbapap.2012.12.006
  • Benussi A, Ashton NJ, Karikari TK, et al. Serum glial fibrillary acidic protein (GFAP) is a marker of disease severity in frontotemporal lobar degeneration. J Alzheimers Dis. 2020;77(3):1129–1141. doi: 10.3233/JAD-200608
  • Llorens F, Hermann P, Villar-Pique A, et al. Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia. Nat Commun. 2020;11(1):619. doi: 10.1038/s41467-020-14373-2
  • Michetti F, D’Ambrosi N, Toesca A, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem. 2019;148(2):168–187. doi: 10.1111/jnc.14574
  • Tjalsma H, Antelmann H, Jongbloed JD, et al. Proteomics of protein secretion by Bacillus subtilis: separating the secrets of the secretome. Microbiol Mol Biol Rev. 2004;68(2):207–233. doi: 10.1128/MMBR.68.2.207-233.2004
  • Agrawal GK, Jwa NS, Lebrun MH, et al. Plant secretome: unlocking secrets of the secreted proteins. Proteomics. 2010;10(4):799–827. doi: 10.1002/pmic.200900514
  • Hathout Y. Approaches to the study of the cell secretome. Expert Rev Proteomics. 2007;4(2):239–248. doi: 10.1586/14789450.4.2.239
  • Jiang J, Wang C, Qi R, et al. scREAD: a single-cell RNA-Seq database for Alzheimer’s disease. iScience. 2020;23(11):101769. doi: 10.1016/j.isci.2020.101769
  • Cahoy JD, Emery B, Kaushal A, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264–278. doi: 10.1523/JNEUROSCI.4178-07.2008
  • Caldwell ALM, Sancho L, Deng J, et al. Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders. Nat Neurosci. 2022;25(9):1163–1178. doi: 10.1038/s41593-022-01150-1
  • Peng L, Guo C, Wang T, et al. Methodological limitations in determining astrocytic gene expression. Front Endocrinol. 2013;4:176. doi: 10.3389/fendo.2013.00176
  • Wang D. Discrepancy between mRNA and protein abundance: insight from information retrieval process in computers. Comput Biol Chem. 2008;32(6):462–468. doi: 10.1016/j.compbiolchem.2008.07.014
  • Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419
  • Viejo L, Noori A, Merrill E, et al. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2022;48(1):e12753. doi: 10.1111/nan.12753
  • Pielot R, Smalla KH, Muller A, et al. SynProt: a database for proteins of detergent-resistant synaptic protein preparations. Front Synaptic Neurosci. 2012;4:1. doi: 10.3389/fnsyn.2012.00001
  • Kim JH, Park SH, Han J, et al. Gliome database: a comprehensive web-based tool to access and analyze glia secretome data. Database (Oxford). 2020;2020: doi: 10.1093/database/baaa057
  • Guldbrandsen A, Farag Y, Kroksveen AC, et al. CSF-PR 2.0: an interactive literature guide to quantitative cerebrospinal fluid mass spectrometry data from neurodegenerative disorders. Mol & Cell Proteomics. 2017;16(2):300–309. doi: 10.1074/mcp.O116.064477
  • Lein ES, Hawrylycz MJ, Ao N, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–176. doi: 10.1038/nature05453
  • Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–11947. doi: 10.1523/JNEUROSCI.1860-14.2014
  • Li XW, Duan TT, Chu JY, et al. SCAD-Brain: a public database of single cell RNA-seq data in human and mouse brains with Alzheimer’s disease. Front Aging Neurosci. 2023;15:1157792. doi: 10.3389/fnagi.2023.1157792
  • Liu L, Zhang Y, Niu G, et al. BrainBase: a curated knowledgebase for brain diseases. Nucleic Acids Res. 2022;50(D1):D1131–D1138. doi: 10.1093/nar/gkab987
  • Uhlen M, Bjorling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol & Cell Proteomics. 2005;4(12):1920–1932. doi: 10.1074/mcp.M500279-MCP200
  • Puente-Santamaria L, Wasserman WW, Del Peso L, et al. Tfea.Chip: a tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets. Bioinformatics. 2019;35(24):5339–5340. doi: 10.1093/bioinformatics/btz573
  • Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–97. doi: 10.1093/nar/gkw377
  • Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 2013;14(1):128. doi: 10.1186/1471-2105-14-128
  • Suk K. Combined analysis of the glia secretome and the CSF proteome: neuroinflammation and novel biomarkers. Expert Rev Proteomics. 2010;7(2):263–274. doi: 10.1586/epr.10.6
  • Hedl TJ, San Gil R, Cheng F, et al. Proteomics approaches for biomarker and drug target discovery in ALS and FTD. Front Neurosci. 2019;13:548. doi: 10.3389/fnins.2019.00548
  • Athanasios A, Charalampos V, Vasileios T, et al. Protein-protein interaction (PPI) network: recent advances in drug discovery. Curr Drug Metab. 2017;18(1):5–10. doi: 10.2174/138920021801170119204832
  • Begcevic I, Brinc D, Drabovich AP, et al. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein Atlas. Clin Proteomics. 2016;13(1):11. doi: 10.1186/s12014-016-9111-3
  • Zhang Y, Guo Z, Zou L, et al. A comprehensive map and functional annotation of the normal human cerebrospinal fluid proteome. J Proteomics. 2015;119:90–99. doi: 10.1016/j.jprot.2015.01.017
  • Guldbrandsen A, Vethe H, Farag Y, et al. In-depth characterization of the cerebrospinal fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR). Mol & Cell Proteomics. 2014;13(11):3152–3163. doi: 10.1074/mcp.M114.038554
  • Schutzer SE, Liu T, Natelson BH, et al. Establishing the proteome of normal human cerebrospinal fluid. PLoS One. 2010;5(6):e10980. doi: 10.1371/journal.pone.0010980
  • Clarke LE, Liddelow SA, Chakraborty C, et al. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A. 2018;115(8):E1896–E1905. doi: 10.1073/pnas.1800165115
  • Krawczyk MC, Haney JR, Pan L, et al. Human astrocytes exhibit tumor microenvironment-, age-, and sex-related transcriptomic signatures. J Neurosci. 2022;42(8):1587–1603. doi: 10.1523/JNEUROSCI.0407-21.2021
  • Claeys T, Menu M, Bouwmeester R, et al. Machine learning on large-scale proteomics data identifies tissue and cell-type specific proteins. J Proteome Res. 2023;22(4):1181–1192. doi: 10.1021/acs.jproteome.2c00644
  • Tandon R, Levey AI, Lah JJ, et al. Machine learning selection of most predictive brain proteins suggests role of sugar metabolism in Alzheimer’s disease. J Alzheimers Dis. 2023;92(2):411–424. doi: 10.3233/JAD-220683
  • Mund A, Coscia F, Kriston A, et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat Biotechnol. 2022;40(8):1231–1240. doi: 10.1038/s41587-022-01302-5
  • Caccia D, Dugo M, Callari M, et al. Bioinformatics tools for secretome analysis. Biochim Biophys Acta. 2013;1834(11):2442–2453. doi: 10.1016/j.bbapap.2013.01.039
  • Vella LJ, Scicluna BJ, Cheng L, et al. A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles. 2017;6(1):1348885. doi: 10.1080/20013078.2017.1348885
  • Perez-Gonzalez R, Gauthier SA, Kumar A, et al. A method for isolation of extracellular vesicles and characterization of exosomes from brain extracellular space. Methods Mol Biol. 2017;1545:139–151.
  • Huang Y, Cheng L, Turchinovich A, et al. Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles. J Extracell Vesicles. 2020;9(1):1785746. doi: 10.1080/20013078.2020.1785746
  • Orchard S, Hermjakob H, Apweiler R. The proteomics standards initiative. Proteomics. 2003;3(7):1374–1376. doi: 10.1002/pmic.200300496
  • Hanash S, Celis JE. The human proteome organization: a mission to advance proteome knowledge. Mol & Cell Proteomics. 2002;1(6):413–414. doi: 10.1074/mcp.R200002-MCP200
  • Mayer G, Montecchi-Palazzi L, Ovelleiro D, et al. The HUPO proteomics standards initiative- mass spectrometry controlled vocabulary. Database (Oxford). 2013;2013:bat009. doi: 10.1093/database/bat009
  • Deutsch EW, Vizcaino JA, Jones AR, et al. Proteomics standards initiative at twenty years: current activities and future work. J Proteome Res. 2023;22(2):287–301. doi: 10.1021/acs.jproteome.2c00637

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.