212
Views
0
CrossRef citations to date
0
Altmetric
Review

Paving the path toward multi-omics approaches in the diagnostic challenges faced in thyroid pathology

, , , , , & show all
Pages 419-437 | Received 12 Sep 2023, Accepted 22 Nov 2023, Published online: 29 Nov 2023

References

  • Rosario PW, de Castro Nicolau T. The value of ultrasonography for the indication of fine-needle aspiration in autonomous thyroid nodules. Diagn Cytopathol. 2021;49:363–366. doi: 10.1002/dc.24659
  • Mistry R, Hillyar C, Nibber A, et al. Ultrasound classification of thyroid nodules: a systematic review. Cureus. 2020;12:e7239. doi: 10.7759/cureus.7239
  • Garber JR, Papini E, Frasoldati A, et al. American Association of clinical Endocrinology and Associazione Medici endocrinologi thyroid nodule algorithmic tool. Endocr Pract. 2021;27(7):649–660. doi: 10.1016/j.eprac.2021.04.007
  • Seminati D, Capitoli G, Leni D, et al. Use of diagnostic criteria from ACR and EU-TIRADS systems to improve the performance of cytology in thyroid nodule triage. Cancers. 2021;13(21):5439. doi: http://dx.doi.org/10.3390/cancers13215439
  • Leni D, Seminati D, Fior D, et al. Diagnostic performances of the ACR-TIRADS System in thyroid nodules triage: a prospective single center study. Cancers. 2021;13(9):2230. doi: http://dx.doi.org/10.3390/cancers13092230
  • Maxwell C, Sipos JA. Clinical Diagnostic Evaluation of Thyroid Nodules. Endocrinol Metab Clin North Am. 2019;48(1):61–84. doi: 10.1016/j.ecl.2018.11.001
  • Wang Z, Vyas CM, Van Benschoten O, et al. Quantitative analysis of the benefits and risk of thyroid nodule evaluation in patients ≥70 years old. Thyroid. 2018;28(4):465–471. doi: 10.1089/thy.2017.0655
  • Baloch Z, LiVolsi VA. The Bethesda System for reporting thyroid cytology (TBSRTC): from look-backs to look-ahead. Diagn Cytopathol. 2020;48:862–866. doi: 10.1002/dc.24385
  • Nardi F, Basolo F, Crescenzi A, et al. Italian consensus for the classification and reporting of thyroid cytology. J Endocrinol Invest. 2014;37(6):593–599. doi: 10.1007/s40618-014-0062-0
  • Asad Ullah M, Iqbal J, Ahmed MS, et al. Factors responsible for non-diagnostic cytology on ultrasound-guided fine-needle aspiration of thyroid nodules. Cureus. 2021;13:e14955. doi: 10.7759/cureus.14955
  • Ali SZ, Cibas ES The Bethesda System for reporting thyroid Cytopathology: definitions, criteria, and explanatory notes. Springer; 2017.
  • Poller DN, Cochand-Priollet B, Trimboli P. Thyroid FNA terminology: the case for a single unified international system for thyroid FNA reporting. Cytopathology. 2021;32:714–717.
  • Christofer Juhlin C, Mete O, Baloch ZW. The 2022 WHO classification of thyroid tumors: novel concepts in nomenclature and grading. Endocr Relat Cancer. 2023;30. doi: 10.1530/ERC-22-0293
  • Canini V, Leni D, Pincelli AI, et al. Clinical-pathological issues in thyroid pathology: study on the routine application of NIFTP diagnostic criteria. Sci Rep. 2019;9(1):13179. doi: 10.1038/s41598-019-49851-1
  • Nishino M, Nikiforova M. Update on molecular testing for cytologically indeterminate thyroid nodules. Arch Pathol Lab Med. 2018;142(4):446–457. doi: 10.5858/arpa.2017-0174-RA
  • Caputo A, L’Imperio V, Merolla F, et al. The slow-paced digital evolution of pathology: lights and shadows from a multifaceted board. Pathologica. 2023;115(3):127–136. doi: 10.32074/1591-951X-868
  • L’Imperio V, Casati G, Cazzaniga G, et al. Improvements in digital pathology equipment for renal biopsies: updating the standard model. J Nephrol. 2023. doi:10.1007/s40620-023-01568-1
  • Pisapia P, L’Imperio V, Galuppini F, et al. The evolving landscape of anatomic pathology. Crit Rev Oncol Hematol. 2022;178:103776. doi: 10.1016/j.critrevonc.2022.103776
  • Caputo A, Gibilisco F, Belmonte B, et al. Real-world digital pathology: considerations and ruminations of four young pathologists. J Clin Pathol. 2023;76(1):68–70. doi: 10.1136/jclinpath-2022-208218
  • L’Imperio V, Brambilla V, Cazzaniga G, et al. Digital pathology for the routine diagnosis of renal diseases: a standard model. J Nephrol. 2021;34(3):681–688. doi: 10.1007/s40620-020-00805-1
  • L’Imperio V, Wulczyn E, Plass M, et al. Pathologist validation of a machine learning-derived feature for colon cancer risk stratification. JAMA Netw Open. 2023;6:e2254891. doi: 10.1001/jamanetworkopen.2022.54891
  • Bindi G, Smith A, Oliveira G, et al. Spatial resolution of renal amyloid deposits through MALDI-MSI: a combined digital and molecular approach to monoclonal gammopathies. J Clin Pathol. 2023. doi: 10.1136/jcp-2023-208790
  • Piga I, Casano S, Smith A, et al. Update on: proteome analysis in thyroid pathology - part II: overview of technical and clinical enhancement of proteomic investigation of the thyroid lesions. Expert Rev Proteomics. 2018;15:937–948. doi: 10.1080/14789450.2018.1532793
  • Han R-L, Wang J, Zhang F-J, et al. Ultrasound risk assessment combined with molecular markers of galectin-3, c-MET, HBME-1 and CK19 for diagnosis of malignant and benign thyroid nodules. Pathol Oncol Res. 2019;25(3):1075–1081. doi: 10.1007/s12253-018-0485-6
  • Huang L, Wang X, Huang X, et al. Diagnostic significance of CK19, galectin-3, CD56, TPO and Ki67 expression and BRAF mutation in papillary thyroid carcinoma. Oncol Lett. 2018;15:4269–4277. doi: 10.3892/ol.2018.7873
  • Xiong Y, Li X, Liang L, et al. Application of biomarkers in the diagnosis of uncertain samples of core needle biopsy of thyroid nodules. Virchows Arch. 2021;479(5):961–974. doi: 10.1007/s00428-021-03161-y
  • Song S, Kim H, Ahn S-H. Role of immunohistochemistry in fine needle aspiration and core needle biopsy of thyroid nodules. Clin Exp Otorhinolaryngol. 2019;12(2):224–230. doi: 10.21053/ceo.2018.01011
  • Scarpino S, Di Napoli A, Melotti F, et al. Papillary carcinoma of the thyroid: low expression of NCAM (CD56) is associated with downregulation of VEGF-D production by tumour cells. J Pathol. 2007;212(4):411–419. doi: 10.1002/path.2183
  • El Demellawy D, Nasr AL, Babay S, et al. Diagnostic utility of CD56 immunohistochemistry in papillary carcinoma of the thyroid. Pathol Res Pract. 2009;205(5):303–309. doi: 10.1016/j.prp.2008.11.011
  • Park WY, Jeong SM, Lee JH, et al. Diagnostic value of decreased expression of CD56 protein in papillary carcinoma of the thyroid gland. Basic Appl Pathol. 2009;2(2):63–68. doi: 10.1111/j.1755-9294.2009.01045.x
  • Solmaz OA. Diagnostic importance of CD56 with fine-needle aspiration cytology in suspected papillary thyroid carcinoma cases. Cytojournal. 2018;15:3. doi: 10.4103/cytojournal.cytojournal_42_17
  • Cha H, Pyo JY, Hong SW. The usefulness of immunocytochemistry of CD56 in determining malignancy from indeterminate thyroid fine-needle aspiration cytology. J Pathol Transl Med. 2018;52(6):404–410. doi: 10.4132/jptm.2018.09.20
  • Bizzarro T, Martini M, Marrocco C, et al. The role of CD56 in thyroid fine needle aspiration cytology: a Pilot study performed on liquid based cytology. PLoS One. 2015;10(7):e0132939. doi: 10.1371/journal.pone.0132939
  • Kwaspen FH, Smedts FM, Broos A, et al. Reproducible and highly sensitive detection of the broad spectrum epithelial marker keratin 19 in routine cancer diagnosis. Histopathology. 1997;31(6):503–516. doi: 10.1046/j.1365-2559.1997.2960896.x
  • Sethi K, Sarkar S, Das S, et al. Biomarkers for the diagnosis of thyroid cancer. J Exp Ther Oncol. 2010;8:341–352.
  • Park YJ, Kwak SH, Kim DC, et al. Diagnostic value of galectin-3, HBME-1, cytokeratin 19, high molecular weight cytokeratin, cyclin D1 and p27(kip1) in the differential diagnosis of thyroid nodules. J Korean Med Sci. 2007;22:621–628. doi: 10.3346/jkms.2007.22.4.621
  • Nechifor-Boilă A, Cătană R, Loghin A, et al. Diagnostic value of HBME-1, CD56, galectin-3 and cytokeratin-19 in papillary thyroid carcinomas and thyroid tumors of uncertain malignant potential. Rom J Morphol Embryol. 2014;55:49–56.
  • Barroeta JE, Baloch ZW, Lal P, et al. Diagnostic value of differential expression of CK19, galectin-3, HBME-1, ERK, RET, and p16 in benign and malignant follicular-derived lesions of the thyroid: an immunohistochemical tissue microarray analysis. Endocr Pathol. 2006;17:225–234. doi: 10.1385/EP:17:3:225
  • Zhu X, Sun T, Lu H, et al. Diagnostic significance of CK19, RET, galectin-3 and HBME-1 expression for papillary thyroid carcinoma. J Clin Pathol. 2010;63(9):786–789. doi: 10.1136/jcp.2010.076901
  • Scognamiglio T, Hyjek E, Kao J, et al. Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol. 2006;126(5):700–708. doi: 10.1309/044V86JN2W3CN5YB
  • Nasr MR, Mukhopadhyay S, Zhang S, et al. Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: utility of HBME1 combined with CK19 immunostaining. Mod Pathol. 2006;19(12):1631–1637. doi: 10.1038/modpathol.3800705
  • Dunđerović D, Lipkovski JM, Boričic I, et al. Defining the value of CD56, CK19, galectin 3 and HBME-1 in diagnosis of follicular cell derived lesions of thyroid with systematic review of literature. Diagn Pathol. 2015;10(1):196. doi: 10.1186/s13000-015-0428-4
  • Xu XC, el-Naggar AK, Lotan R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol. 1995;147:815–822.
  • Liu F-T, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005;5(1):29–41. doi: 10.1038/nrc1527
  • Liu YY, Morreau H, Kievit J, et al. Combined immunostaining with galectin-3, fibronectin-1, CITED-1, Hector Battifora mesothelial-1, cytokeratin-19, peroxisome proliferator-activated receptor-{gamma}, and sodium/iodide symporter antibodies for the differential diagnosis of non-medullary thyroid carcinoma. Eur J Endocrinol. 2008;158:375–384. doi: 10.1530/EJE-07-0492
  • Raouf SM A-E, Ibrahim TR. Immunohistochemical expression of HBME-1 and galectin-3 in the differential diagnosis of follicular-derived thyroid nodules. Pathol Res Pract. 2014;210:971–978. doi: 10.1016/j.prp.2014.06.010
  • Inohara H, Segawa T, Miyauchi A, et al. Cytoplasmic and serum galectin-3 in diagnosis of thyroid malignancies. Biochem Biophys Res Commun. 2008;376(3):605–610. doi: 10.1016/j.bbrc.2008.09.041
  • Sapio MR, Guerra A, Posca D, et al. Combined analysis of galectin-3 and BRAFV600E improves the accuracy of fine-needle aspiration biopsy with cytological findings suspicious for papillary thyroid carcinoma. Endocr Relat Cancer. 2007;14(4):1089–1097. doi: 10.1677/ERC-07-0147
  • Nucera C, Mazzon E, Caillou B, et al. Human galectin-3 immunoexpression in thyroid follicular adenomas with cell atypia. J Endocrinol Invest. 2005;28(4):106–112. doi: 10.1007/BF03345351
  • Zhang L, Krausz T, DeMay RM. A Pilot study of galectin-3, HBME-1, and p27 triple immunostaining pattern for diagnosis of indeterminate thyroid nodules in cytology with correlation to histology. Appl Immunohistochem Mol Morphol. 2015;23(7):481–490. doi: 10.1097/PAI.0000000000000106
  • Weber KB, Shroyer KR, Heinz DE, et al. The use of a combination of galectin-3 and thyroid peroxidase for the diagnosis and prognosis of thyroid cancer. Am J Clin Pathol. 2004;122(4):524–531. doi: 10.1309/UUQTE505PTN5QJ7M
  • Cazzaniga G, Seminati D, Smith A, et al. Lights on HBME-1: the elusive biomarker in thyroid cancer pathology. J Clin Pathol. 2022;75(9):588–592. doi: 10.1136/jclinpath-2022-208248
  • Volante M, Bozzalla-Cassione F, DePompa R, et al. Galectin-3 and HBME-1 expression in oncocytic cell tumors of the thyroid. Virchows Arch. 2004;445(2):183–188. doi: 10.1007/s00428-004-1074-5
  • Mase T, Funahashi H, Koshikawa T, et al. HBME-1 immunostaining in thyroid tumors especially in follicular neoplasm. Endocr J. 2003;50(2):173–177. doi: 10.1507/endocrj.50.173
  • Ito Y, Yoshida H, Tomoda C, et al. HBME-1 expression in follicular tumor of the thyroid: an investigation of whether it can be used as a marker to diagnose follicular carcinoma. Anticancer Res. 2005;25:179–182.
  • Mai KT, Bokhary R, Yazdi HM, et al. Reduced HBME-1 immunoreactivity of papillary thyroid carcinoma and papillary thyroid carcinoma-related neoplastic lesions with hürthle cell and/or apocrine-like changes. Histopathology. 2002;40(2):133–142. doi: 10.1046/j.1365-2559.2002.01315.x
  • Sadiq Q, Sekhri R, Dibaba DT, et al. HBME1 and CK19 expression in non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) vs other follicular patterned thyroid lesions. World J Surg Oncol. 2021;19(1):143. doi: 10.1186/s12957-021-02258-7
  • Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954. doi: 10.1038/nature00766
  • Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28(7):742–762. doi: 10.1210/er.2007-0007
  • Fagin JA, SA W Jr. Biologic and clinical perspectives on thyroid cancer. 2016 [cited 2023 Jul 27]. Available from: https://www.nejm.org/doi/10.1056/NEJMra1501993.
  • Choden S, Keelawat S, Jung CK, et al. VE1 immunohistochemistry improves the limit of genotyping for detecting BRAFV600E mutation in papillary thyroid cancer. Cancers. 2020;12(3):596. doi: 10.3390/cancers12030596
  • Kim M, Jeon S, Jung CK. Preoperative risk stratification of follicular-patterned thyroid lesions on core needle biopsy by histologic subtyping and RAS variant-specific immunohistochemistry. Endocr Pathol. 2023;34(2):247–256. doi: 10.1007/s12022-023-09763-3
  • Marchiò C, Scaltriti M, Ladanyi M, et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol. 2019;30(9):1417–1427. doi: 10.1093/annonc/mdz204
  • Macerola E, Proietti A, Poma AM, et al. Limited accuracy of pan-trk immunohistochemistry screening for rearrangements in follicular-derived thyroid carcinoma. IJMS. 2022;23:7470. doi: http://dx.doi.org/10.3390/ijms23137470
  • Rosenbaum JN, Guo Z, Baus RM, et al. INSM1: a novel Immunohistochemical and molecular marker for neuroendocrine and neuroepithelial neoplasms. Am J Clin Pathol. 2015;144(4):579–591. doi: 10.1309/AJCPGZWXXBSNL4VD
  • Hou T, Gan Q, Joseph CT, et al. Insulinoma-associated protein 1 immunostaining for various types of neuroendocrine tumors on FNA smears. Cancer Cytopathol. 2020;128:725–732. doi: 10.1002/cncy.22310
  • Maleki Z, Abram M, Dell’aquila M, et al. Insulinoma-associated protein 1 (INSM-1) expression in medullary thyroid carcinoma FNA: a multi-institutional study. J Am Soc Cytopathol. 2020;9(3):185–190. doi: 10.1016/j.jasc.2020.01.005
  • Belovarac B, Zhou F, Sharma J, et al. Indeterminate thyroid nodules and advances in molecular pathology. Semin Diagn Pathol. 2023;40(5):349–352. doi: http://dx.doi.org/10.1053/j.semdp.2023.05.001
  • Glass RE, Marotti JD, Kerr DA, et al. Using molecular testing to improve the management of thyroid nodules with indeterminate cytology: an institutional experience with review of molecular alterations. J Am Soc Cytopathol. 2022;11(2):79–86. doi: 10.1016/j.jasc.2021.08.004
  • Livhits MJ, Zhu CY, Kuo EJ, et al. Effectiveness of molecular testing techniques for diagnosis of indeterminate thyroid nodules: a randomized clinical trial. JAMA Oncol. 2021;7(1):70–77. doi: 10.1001/jamaoncol.2020.5935
  • Park H, Shin HC, Yang H, et al. Molecular classification of follicular thyroid carcinoma based on TERT promoter mutations. Mod Pathol. 2022;35(2):186–192. doi: 10.1038/s41379-021-00907-6
  • Patel KN, Angell TE, Babiarz J, et al. Performance of a Genomic sequencing Classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg. 2018;153(9):817–824. doi: 10.1001/jamasurg.2018.1153
  • Lee E, Terhaar S, McDaniel L, et al. Diagnostic performance of the second-generation molecular tests in the assessment of indeterminate thyroid nodules: a systematic review and meta-analysis. Am J Otolaryngol. 2022;43:103394. doi: 10.1016/j.amjoto.2022.103394
  • Gortakowski M, Feghali K, Osakwe I. Single institution experience with Afirma and thyroseq testing in indeterminate thyroid nodules. Thyroid. 2021;31(9):1376–1382. doi: 10.1089/thy.2020.0801
  • Nikiforova MN, Lepe M, Tolino LA, et al. Thyroid cytology smear slides: an untapped resource for ThyroSeq testing. Cancer Cytopathol. 2021;129:33–42. doi: 10.1002/cncy.22331
  • Steward DL, Carty SE, Sippel RS, et al. Performance of a multigene genomic Classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol. 2019;5(2):204–212. doi: 10.1001/jamaoncol.2018.4616
  • Ohori NP, Landau MS, Carty SE, et al. Benign call rate and molecular test result distribution of ThyroSeq v3. Cancer Cytopathol. 2019;127:161–168. doi: 10.1002/cncy.22088
  • Lupo MA, Walts AE, Sistrunk JW, et al. Multiplatform molecular test performance in indeterminate thyroid nodules. Diagn Cytopathol. 2020;48:1254–1264. doi: 10.1002/dc.24564
  • Gooding WE, Chiosea SI. Alternate diagnostic test interpretation in a retrospective convenience cohort and clinical application of MPTX. Diagn Cytopathol. 2021;49:347–348. doi: 10.1002/dc.24656
  • Smith A, L’Imperio V, Denti V, et al. High spatial resolution MALDI-MS imaging in the study of Membranous nephropathy. Proteomics Clin Appl. 2019;13(1):e1800016. doi: 10.1002/prca.201800016
  • Schober Y, Guenther S, Spengler B, et al. Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem. 2012;84(15):6293–6297. doi: 10.1021/ac301337h
  • McMillen JC, Gutierrez DB, Judd AM, et al. Enhancement of tryptic peptide signals from tissue sections using MALDI IMS postionization (MALDI-2). J Am Soc Mass Spectrom. 2021;32(10):2583–2591. doi: 10.1021/jasms.1c00213
  • Meier F, Brunner A-D, Frank M, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods. 2020;17:1229–1236. doi: 10.1038/s41592-020-00998-0
  • Denti V, Capitoli G, Piga I, et al. Correction to spatial multiomics of lipids, N-Glycans, and tryptic peptides on a single FFPE tissue Section. J Proteome Res. 2023;22(6):2149. doi: 10.1021/acs.jproteome.3c00217
  • Yagnik G, Liu Z, Rothschild KJ, et al. Highly multiplexed Immunohistochemical MALDI-MS imaging of biomarkers in tissues. J Am Soc Mass Spectrom. 2021;32(4):977–988. doi: 10.1021/jasms.0c00473
  • Lim MJ, Yagnik G, Henkel C, et al. MALDI HiPLEX-IHC: multiomic and multimodal imaging of targeted intact proteins in tissues. Front Chem. 2023;11:1182404. doi: 10.3389/fchem.2023.1182404
  • Heijs B, Holst S, Briaire-de Bruijn IH, et al. Multimodal mass spectrometry imaging of N-Glycans and proteins from the same tissue Section. Anal Chem. 2016;88(15):7745–7753. doi: 10.1021/acs.analchem.6b01739
  • Ciregia F, Giusti L, Molinaro A, et al. Proteomic analysis of fine-needle aspiration in differential diagnosis of thyroid nodules. Transl Res. 2016;176:81–94. doi: 10.1016/j.trsl.2016.04.004
  • Wu C-C, Lin J-D, Chen J-T, et al. Integrated analysis of fine-needle-aspiration cystic fluid proteome, cancer cell secretome, and public transcriptome datasets for papillary thyroid cancer biomarker discovery. Oncotarget. 2018;9(15):12079–12100. doi: 10.18632/oncotarget.23951
  • Lin P, Yao Z, Sun Y, et al. Deciphering novel biomarkers of lymph node metastasis of thyroid papillary microcarcinoma using proteomic analysis of ultrasound-guided fine-needle aspiration biopsy samples. J Proteomics. 2019;204:103414. doi: 10.1016/j.jprot.2019.103414
  • Kostrzewa M. Application of the MALDI Biotyper to clinical microbiology: progress and potential. Expert Rev Proteomics. 2018;15(3):193–202. doi: 10.1080/14789450.2018.1438193
  • Piga I, Capitoli G, Denti V, et al. The management of haemoglobin interference for the MALDI-MSI proteomics analysis of thyroid fine needle aspiration biopsies. Anal Bioanal Chem. 2019;411(20):5007–5012. doi: 10.1007/s00216-019-01908-w
  • Piga I, Capitoli G, Clerici F, et al. Ex vivo thyroid fine needle aspirations as an alternative for MALDI-MSI proteomic investigation: intra-patient comparison. Anal Bioanal Chem. 2021;413(5):1259–1266. doi: 10.1007/s00216-020-03088-4
  • Piga I, Capitoli G, Tettamanti S, et al. Feasibility study for the MALDI-MSI analysis of thyroid fine needle aspiration biopsies: evaluating the morphological and proteomic stability over time. Proteomics Clin Appl. 2019;13(1):e1700170. doi: 10.1002/prca.201700170
  • Piga I, Pagni F, Magni F, et al. Cytological cytospin preparation for the spatial proteomics analysis of thyroid nodules using MALDI-MSI. Methods Mol Biol. 2023;2688:95–105.
  • Capitoli G, Piga I, Galimberti S, et al. MALDI-MSI as a complementary diagnostic tool in Cytopathology: a Pilot study for the characterization of thyroid nodules. Cancers. 2019;11:11. doi: 10.3390/cancers11091377
  • Capitoli G, Piga I, Clerici F, et al. Analysis of Hashimoto’s thyroiditis on fine needle aspiration samples by MALDI-Imaging. Biochim Biophys Acta Proteins Proteomics. 2020;1868(11):140481. doi: 10.1016/j.bbapap.2020.140481
  • Piga I, Capitoli G, Clerici F, et al. Molecular trait of follicular-patterned thyroid neoplasms defined by MALDI-imaging. Biochim Biophys Acta Proteins Proteomics. 2020;1868(11):140511. doi: 10.1016/j.bbapap.2020.140511
  • Capitoli G, Piga I, L’Imperio V, et al. Cytomolecular classification of thyroid nodules using fine-needle washes aspiration biopsies. IJMS. 2022;23(8):4156. doi: 10.3390/ijms23084156
  • Ye G, Zhang X, Li M, et al. Integrated analysis of circulating and tissue proteomes reveals that fibronectin 1 is a potential biomarker in papillary thyroid cancer. BMC Cancer. 2023;23(1):412. doi: 10.1186/s12885-023-10839-w
  • Wei W, Wu Y, Chen D-D, et al. Proteomics profiling for the global and acetylated proteins of papillary thyroid cancers. Proteome Sci. 2023;21(1):6. doi: 10.1186/s12953-023-00207-8
  • Zhan S, Li J, Wang T, et al. Quantitative proteomics analysis of sporadic medullary thyroid cancer reveals FN1 as a potential novel candidate prognostic biomarker. Oncology. 2018;23(12):1415–1425. doi: 10.1634/theoncologist.2017-0399
  • Li J, Mi L, Ran B, et al. Identification of potential diagnostic and prognostic biomarkers for papillary thyroid microcarcinoma (PTMC) based on TMT-labeled LC-MS/MS and machine learning. J Endocrinol Invest. 2023;46:1131–1143. doi: 10.1007/s40618-022-01960-x
  • Zhan S, Wang T, Wang M, et al. In-depth proteomics analysis to identify biomarkers of papillary thyroid cancer patients older than 45 years with different degrees of lymph node metastases. Proteomics Clin Appl. 2019;13(5):e1900030. doi: 10.1002/prca.201900030
  • Jin S, Bao W, Yang Y-T, et al. Proteomic analysis of the papillary thyroid microcarcinoma. Ann Endocrinol. 2019;80(5–6):293–300. doi: 10.1016/j.ando.2019.01.003
  • Cao Z, Zhang Z, Tang X, et al. Comprehensive analysis of tissue proteomics in patients with papillary thyroid microcarcinoma uncovers the underlying mechanism of lymph node metastasis and its significant sex disparities. Front Oncol. 2022;12:887977. doi: 10.3389/fonc.2022.887977
  • Gawin M, Kurczyk A, Stobiecka E, et al. Molecular heterogeneity of papillary thyroid cancer: comparison of primary tumors and synchronous metastases in regional lymph nodes by mass spectrometry imaging. Endocr Pathol. 2019;30(4):250–261. doi: 10.1007/s12022-019-09593-2
  • Lu J, Zhang Y, Sun M, et al. Multi-omics analysis of fatty acid metabolism in thyroid carcinoma. Front Oncol. 2021;11:737127. doi: 10.3389/fonc.2021.737127
  • Renaud E, Riegel K, Romero R, et al. Multiomic analysis of papillary thyroid cancers identifies BAIAP2L1-BRAF fusion and requirement of TRIM25, PDE5A and PKCδ for tumorigenesis. Mol Cancer. 2022;21(1):195. doi: 10.1186/s12943-022-01665-y
  • Sun Y, Li L, Zhou Y, et al. Stratification of follicular thyroid tumours using data-independent acquisition proteomics and a comprehensive thyroid tissue spectral library. Mol Oncol. 2022;16(8):1611–1624. doi: 10.1002/1878-0261.13198
  • Huang D, Zhang H, Li L, et al. Proteotypic Differences of Follicular-Patterned Thyroid Neoplasms. Front Endocrinol. 2022;13:854611. doi: 10.3389/fendo.2022.854611
  • Ucal Y, Tokat F, Duren M, et al. Peptide Profile Differences of Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features, Encapsulated Follicular Variant, and Classical Papillary Thyroid Carcinoma: An Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Thyroid. 2019;29(8):1125–1137. doi: 10.1089/thy.2018.0392
  • García-Vence M, Chantada-Vázquez MDP, Cameselle-Teijeiro JM, et al. A novel nanoproteomic approach for the identification of molecular Targets associated with thyroid tumors. Nanomaterials (Basel). 2020;10(12):2370. doi: http://dx.doi.org/10.3390/nano10122370
  • Piga I, L’Imperio V, Principi L, et al. Spatially resolved molecular approaches for the characterisation of non-invasive follicular tumours with papillary-like features (NIFTPs). IJMS. 2023;24(3):2567. doi: 10.3390/ijms24032567
  • Gawin M, Wojakowska A, Pietrowska M, et al. Proteome profiles of different types of thyroid cancers. Mol Cell Endocrinol. 2018;472:68–79. doi: 10.1016/j.mce.2017.11.020
  • Kurczyk A, Gawin M, Chekan M, et al. Classification of thyroid tumors based on mass spectrometry imaging of tissue Microarrays; a single-pixel approach. IJMS. 2020;21(17):6289. doi: 10.3390/ijms21176289
  • Smith A, Galli M, Piga I, et al. Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. J Proteomics. 2019;191:114–123. doi: 10.1016/j.jprot.2018.03.021
  • Shi X, Sun Y, Shen C, et al. Integrated proteogenomic characterization of medullary thyroid carcinoma. Cell Discov. 2022;8(1):120. doi: 10.1038/s41421-022-00479-y
  • Wang Y, Zhou S, Wang D, et al. Complement C4-A and plasminogen as potential biomarkers for prediction of papillary thyroid carcinoma. Front Endocrinol. 2021;12:737638. doi: 10.3389/fendo.2021.737638
  • Lu H, Pan Y, Ruan Y, et al. Biomarker discovery for early diagnosis of papillary thyroid carcinoma using high-throughput enhanced quantitative plasma proteomics. J Proteome Res. 2023;22(10):3200–3212. doi: http://dx.doi.org/10.1021/acs.jproteome.3c00187
  • Lauc G, Trbojević-Akmačić I. The role of glycosylation in health and disease. Springer Nature Switzerland AG; 2021 doi:10.1007/978-3-030-70115-4
  • Zhang Y, Zhao W, Zhao Y, et al. Comparative glycoproteomic profiling of human body fluid between healthy controls and patients with papillary thyroid carcinoma. J Proteome Res. 2020;19(7):2539–2552. doi: 10.1021/acs.jproteome.9b00672
  • Zhang Z, Reiding KR, Wu J, et al. Distinguishing benign and malignant thyroid nodules and identifying lymph node metastasis in papillary thyroid cancer by plasma -glycomics. Front Endocrinol. 2021;12:692910. doi: 10.3389/fendo.2021.692910
  • Sun Z, Feng D, Jiang L, et al. Integrated proteomic and metabolomic analysis of plasma reveals regulatory pathways and key elements in thyroid cancer. Mol Omics. 2023. doi: 10.1039/d3mo00142c
  • Denti V, Piga I, Guarnerio S, et al. Antigen Retrieval and its effect on the MALDI-MSI of lipids in formalin-fixed paraffin-embedded tissue. J Am Soc Mass Spectrom. 2020;31(8):1619–1624. doi: 10.1021/jasms.0c00208
  • Ly A, Buck A, Balluff B, et al. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc. 2016;11(8):1428–1443. doi: 10.1038/nprot.2016.081
  • Lee GB, Lee JC, Moon MH. Plasma lipid profile comparison of five different cancers by nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2019;1063:117–126. doi: 10.1016/j.aca.2019.02.021
  • Huang L, Mao X, Sun C, et al. Molecular pathological diagnosis of thyroid tumors using Spatially resolved metabolomics. Molecules. 2022;27(4):1390. doi: 10.3390/molecules27041390
  • DeHoog RJ, Zhang J, Alore E, et al. Preoperative metabolic classification of thyroid nodules using mass spectrometry imaging of fine-needle aspiration biopsies. Proc Natl Acad Sci U S A. 2019;116(43):21401–21408. doi: 10.1073/pnas.1911333116
  • Rezig L, Servadio A, Torregrossa L, et al. Diagnosis of post-surgical fine-needle aspiration biopsies of thyroid lesions with indeterminate cytology using HRMAS NMR-based metabolomics. Metabolomics. 2018;14(10):141. doi: 10.1007/s11306-018-1437-6
  • Skorupa A, Ciszek M, Chmielik E, et al. Shared and unique metabolic features of the malignant and benign thyroid lesions determined with use of H HR MAS NMR spectroscopy. Sci Rep. 2021;11:1344. doi: 10.1038/s41598-020-79565-8
  • Seo JW, Han K, Lee J, et al. Application of metabolomics in prediction of lymph node metastasis in papillary thyroid carcinoma. PLoS One. 2018;13(3):e0193883. doi: 10.1371/journal.pone.0193883
  • Wang T, Sun Z, Wang Y, et al. Diagnosis of papillary thyroid carcinoma by H NMR spectroscopy-based metabolomic analysis of whole blood. Drug Discov Ther. 2020;14:187–196. doi: 10.5582/ddt.2020.03062
  • DeHoog RJ, King ME, Keating MF, et al. Intraoperative identification of thyroid and parathyroid tissues during human endocrine surgery using the MasSpec pen. JAMA Surg. 2023;158(10):1050. doi: 10.1001/jamasurg.2023.3229
  • Szulc DA. Manganese-based positive-contrast MRI for non-invasive monitoring of biomaterials and cells in tissue engineering. 2020.
  • Zhang J, Rector J, Lin JQ, et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med. 2017;9. doi: 10.1126/scitranslmed.aan3968
  • Sutton RT, Pincock D, Baumgart DC, et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3:17. doi: 10.1038/s41746-020-0221-y
  • Aversano L, Bernardi ML, Cimitile M, et al. A systematic review on artificial intelligence techniques for detecting thyroid diseases. PeerJ Comput Sci. 2023;9:e1394. doi: 10.7717/peerj-cs.1394
  • Girolami I, Marletta S, Pantanowitz L, et al. Impact of image analysis and artificial intelligence in thyroid pathology, with particular reference to cytological aspects. Cytopathology. 2020;31(5):432–444. doi: 10.1111/cyt.12828
  • Kumar Y, Gupta S, Singla R, et al. A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Arch Comput Methods Eng. 2022;29(4):2043–2070. doi: 10.1007/s11831-021-09648-w
  • Rajkomar A, Dean J, Kohane I. Machine learning in Medicine. N Engl J Med. 2019;380(14):1347–1358. doi: 10.1056/NEJMra1814259
  • Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–29. doi: 10.1038/s41591-018-0316-z
  • Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16:703–715. doi: 10.1038/s41571-019-0252-y
  • Asan U, Ercan S. An Introduction to Self-Organizing Maps. In Kahraman C, editor. Computational Intelligence Systems in Industrial Engineering. Atlantis Computational Intelligence Systems. Vol. 6, Paris: Atlantis Press; 2012. doi:10.2991/978-94-91216-77-0_14
  • Hautaniemi S, Yli-Harja O, Astola J, et al. Analysis and visualization of gene expression microarray data in human cancer using self-organizing maps. MACH LEARN. 2003;52:45–66. doi: 10.1023/A:1023941307670
  • Lee B, Yamanakkanavar N, Choi JY, et al. Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. PLoS One. 2020;15(8):e0236493. doi: 10.1371/journal.pone.0236493
  • Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF. A review of unsupervised feature selection methods. Artif Intell Rev. 2019;53:907–948. doi: 10.1007/s10462-019-09682-y
  • Nobile MS, Capitoli G, Sowirono V, et al. Unsupervised neural networks as a support tool for pathology diagnosis in MALDI-MSI experiments: a case study on thyroid biopsies. Expert Syst Appl. 2023;215:119296.
  • Cao C-L, Li Q-L, Tong J, et al. Artificial intelligence in thyroid ultrasound. Front Oncol. 2023;13:1060702. doi: 10.3389/fonc.2023.1060702
  • Zhang X, Lee VC, Rong J, et al. Deep convolutional neural networks in thyroid disease detection: a multi-classification comparison by ultrasonography and computed tomography. Comput Methods Programs Biomed. 2022;220:106823. doi: 10.1016/j.cmpb.2022.106823
  • Wang Y, Guan Q, Lao I, et al. Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: a large-scale pilot study. Ann Transl Med. 2019;7:468. doi: 10.21037/atm.2019.08.54
  • Duan W, Gao L, Liu J, et al. Computer-assisted fine-needle aspiration cytology of thyroid using two-stage refined convolutional neural network. Electronics. 2022;11(24):4089. doi: 10.3390/electronics11244089
  • Zhu X, Chen C, Guo Q, et al. Deep learning-based Recognition of different thyroid cancer categories using whole frozen-slide images. Front Bioeng Biotechnol. 2022;10:857377. doi: 10.3389/fbioe.2022.857377
  • Sanyal P, Mukherjee T, Barui S, et al. Artificial intelligence in Cytopathology: a neural network to identify papillary carcinoma on thyroid fine-needle aspiration cytology smears. J Pathol Inform. 2018;9:43. doi: 10.4103/jpi.jpi_43_18
  • Ambags EL, Capitoli G, Imperio VL, et al. Assisting clinical practice with fuzzy probabilistic decision trees [internet]. 2023 [cited 2023 Jul 27]. Available from: http://arxiv.org/abs/2304.07788.
  • Thomasian NM, Kamel IR, Bai HX. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat Rev Endocrinol. 2022;18(2):81–95. doi: 10.1038/s41574-021-00543-9
  • No title. [Internet]. [cited 2023 Jul 27]. Available from: https://www.ams-inc.on.ca/wp-content/uploads/2020/02/The-Impact-of-AI-on-clinical-judgement.pdf.
  • Obermeyer Z, Topol EJ. Artificial intelligence, bias, and patients’ perspectives. Lancet. 2021;397(10289):2038. doi: 10.1016/S0140-6736(21)01152-1
  • Pagni F, L’Imperio V, Bono F, et al. Proteome analysis in thyroid pathology. Expert Rev Proteomics. 2015;12(4):375–390. doi: 10.1586/14789450.2015.1062369
  • Pagni F, Mainini V, Garancini M, et al. Proteomics for the diagnosis of thyroid lesions: preliminary report. Cytopathology. 2015;26(5):318–324. doi: 10.1111/cyt.12166
  • Mainini V, Pagni F, Garancini M, et al. An alternative approach in endocrine pathology research: MALDI-IMS in papillary thyroid carcinoma. Endocr Pathol. 2013;24(4):250–253. doi: 10.1007/s12022-013-9273-8
  • Galli M, Pagni F, De Sio G, et al. Proteomic profiles of thyroid tumors by mass spectrometry-imaging on tissue microarrays. Biochim Biophys Acta Proteins Proteomics. 2017;1865(7):817–827. doi: 10.1016/j.bbapap.2016.11.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.