175
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolomics in diabetes mellitus: clinical insight

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 451-467 | Received 02 Aug 2023, Accepted 13 Dec 2023, Published online: 22 Dec 2023

References

  • Deepthi B, Sowjanya K, Lidiya B, et al. A modern review of diabetes mellitus: an annihilatory metabolic disorder. Jour of In Sil and In Vi Pharm. 2017;3(1):14 .
  • ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and diagnosis of diabetes: standards of Care in diabetes-2023. Diabetes Care. 2023 Jan 1;46(Suppl 1): S19–S40. PubMed PMID: 36507649; PubMed Central PMCID: PMCPMC9810477. eng. doi: 10.2337/dc23-S002.
  • Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(4):174–188. doi: 10.4103/ajm.ajm_53_20
  • Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119
  • Lee Y, Fluckey JD, Chakraborty S, et al. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. FASEB J. 2017 Jul;31(7):2744–2759. PubMed PMID: 28298335; PubMed Central PMCID: PMCPMC5471512. eng. doi: 10.1096/fj.201600887R
  • Li M, Chi X, Wang Y, et al. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Ther. 2022;7(1):216. doi: 10.1038/s41392-022-01073-0
  • Dorcely B, Katz K, Jagannathan R, et al. Novel biomarkers for prediabetes, diabetes, and associated complications. Diab Metab Syndr Obes Targets Ther. 2017;10:345–361. doi: 10.2147/DMSO.S100074
  • Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002 Feb 7;346(6):393–403. PubMed PMID: 11832527; PubMed Central PMCID: PMCPMC1370926. eng. doi: 10.1056/NEJMoa012512
  • Siddiqui MA, Pandey S, Azim A, et al. Metabolomics: An emerging potential approach to decipher critical illnesses. Biophys Chem. 2020 Dec;267:106462. PubMed PMID: 32911125; PubMed Central PMCID: PMCPMC9986419. eng. doi: 10.1016/j.bpc.2020.106462
  • Johnson CH, Gonzalez FJ. Challenges and opportunities of metabolomics. J Cell Physiol. 2012 Aug;227(8):2975–2981. PubMed PMID: 22034100; PubMed Central PMCID: PMCPMC6309313. eng. doi: 10.1002/jcp.24002
  • Johnson CH, Patterson AD, Idle JR, et al. Xenobiotic metabolomics: major impact on the metabolome. Annu Rev Pharmacol Toxicol. 2012;52(1):37–56. PubMed PMID: 21819238; PubMed Central PMCID: PMCPMC6300990. eng. doi: 10.1146/annurev-pharmtox-010611-134748
  • Wood PL. Mass spectrometry strategies for clinical metabolomics and lipidomics in psychiatry, neurology, and neuro-oncology. Neuropsychopharmacology. 2014;39(1):24–33. doi: 10.1038/npp.2013.167
  • Arneth B, Arneth R, Shams M. Metabolomics of type 1 and type 2 diabetes. Int J Mol Sci. 2019 May 18;20(10). PubMed PMID: 31109071; PubMed Central PMCID: PMCPMC6566263. eng. doi: 10.3390/ijms20102467
  • Odom JD, Sutton VR. Metabolomics in clinical practice: improving diagnosis and informing management. Clin Chem. 2021 Nov 26;67(12):1606–1617. PubMed PMID: 34633032; eng. doi: 10.1093/clinchem/hvab184
  • Papamichael MM, Katsardis C, Sarandi E, et al. Application of metabolomics in pediatric asthma: prediction, diagnosis and personalized treatment. Metabolites. 2021 Apr 18;11(4). PubMed PMID: 33919626; PubMed Central PMCID: PMCPMC8072856. eng. doi: 10.3390/metabo11040251
  • Chen ZZ, Gerszten RE. Metabolomics and proteomics in type 2 diabetes. Circ Res. 2020 May 22;126(11): 1613–1627. PubMed PMID: 32437301; eng. doi: 10.1161/circresaha.120.315898
  • Association AD. Standards of Care in diabetes-2023 abridged for primary Care providers. Clin Diabetes: a publication of the American diabetes association. 2022 Winter;41(1): 4–31. PubMed PMID: 36714254; PubMed Central PMCID: PMCPMC9845083. eng. doi: 10.2337/cd23-as01
  • Khan RMM, Chua ZJY, Tan JC, et al. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina (Kaunas). 2019 Aug 29;55(9):546. PubMed PMID: 31470636; PubMed Central PMCID: PMCPMC6780236. eng. doi: 10.3390/medicina55090546
  • Tabák AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for diabetes development. Lancet (London, England). 2012 Jun 16;379(9833):2279–2290. PubMed PMID: 22683128; PubMed Central PMCID: PMCPMC3891203. eng. doi: 10.1016/s0140-6736(12)60283-9
  • Guasch-Ferré M, Hruby A, Toledo E, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016 May;39(5):833–46. PubMed PMID: 27208380; PubMed Central PMCID: PMCPMC4839172. eng. doi: 10.2337/dc15-2251
  • Ren M, Lin DZ, Liu ZP, et al. Potential novel serum metabolic markers associated with progression of prediabetes to overt diabetes in a Chinese Population. Front Endocrinol. 2022;12:745214. PubMed PMID: 35069433; PubMed Central PMCID: PMCPMC8766640. eng. doi: 10.3389/fendo.2021.745214
  • Jin Q, Ma RCW. Metabolomics in diabetes and diabetic complications: insights from epidemiological studies. Cells. 2021 Oct 21;10(11):2832. PubMed PMID: 34831057; PubMed Central PMCID: PMCPMC8616415. eng. doi: 10.3390/cells10112832
  • Mai M, Tönjes A, Kovacs P, et al. Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One. 2013;8(12):e82459. doi: 10.1371/journal.pone.0082459
  • Meikle PJ, Wong G, Barlow CK, et al. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS One. 2013;8(9):e74341. doi: 10.1371/journal.pone.0074341
  • Lee HS, Park TJ, Kim JM, et al. Identification of metabolic markers predictive of prediabetes in a Korean population. Sci Rep. 2020 Dec 15;10(1):22009. PubMed PMID: 33319826; PubMed Central PMCID: PMCPMC7738529. eng. doi: 10.1038/s41598-020-78961-4
  • Hosseinkhani S, Arjmand B, Dilmaghani-Marand A, et al. Targeted metabolomics analysis of amino acids and acylcarnitines as risk markers for diabetes by LC-MS/MS technique. Sci Rep. 2022 May 19;12(1): 8418. PubMed PMID: 35589736; PubMed Central PMCID: PMCPMC9119932. eng. doi: 10.1038/s41598-022-11970-7
  • Chiang JL, Maahs DM, Garvey KC, et al. Type 1 diabetes in children and adolescents: a position statement by the American diabetes association. Diabetes Care. 2018 Sep;41(9):2026–2044. PubMed PMID: 30093549; PubMed Central PMCID: PMCPMC6105320. eng. doi: 10.2337/dci18-0023
  • Flier JS, Underhill LH, Eisenbarth GS. Type I diabetes mellitus. N Engl J Med. 1986;314(21):1360–1368. doi: 10.1056/NEJM198605223142106
  • Giwa AM, Ahmed R, Omidian Z, et al. Current understandings of the pathogenesis of type 1 diabetes: genetics to environment. World J Diabetes. 2020;11(1):13. doi: 10.4239/wjd.v11.i1.13
  • Powers A. Type 1 diabetes mellitus: much progress, many opportunities. J Clin Investig. 2021;131(8). doi: 10.1172/JCI142242
  • Yi L, Swensen AC, Qian W-J. Serum biomarkers for diagnosis and prediction of type 1 diabetes. Transl Res. 2018;201:13–25. doi: 10.1016/j.trsl.2018.07.009
  • Lamichhane S, Kemppainen E, Trošt K, et al. Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia. 2019 Dec;62(12):2287–2297. PubMed PMID: 31444528; PubMed Central PMCID: PMCPMC6861356. eng. doi: 10.1007/s00125-019-04980-0
  • Lindehammer SR, Hansson I, Midberg B, et al. Seroconversion to islet autoantibodies between early pregnancy and delivery in non-diabetic mothers. J Reprod Immunol. 2011;88(1):72–79. doi: 10.1016/j.jri.2010.10.002
  • Andersson Svärd A, Kaur S, Trôst K, et al. Characterization of plasma lipidomics in adolescent subjects with increased risk for type 1 diabetes in the DiPiS cohort. Metabolomics. 2020 Oct 8;16(10):109. PubMed PMID: 33033923; PubMed Central PMCID: PMCPMC7544716. eng. doi: 10.1007/s11306-020-01730-x
  • Oresic M, Simell S, Sysi-Aho M, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med. 2008 Dec 22;205(13):2975–2984. PubMed PMID: 19075291; PubMed Central PMCID: PMCPMC2605239. eng. doi: 10.1084/jem.20081800
  • Kawamori D, Kageyama Y, Tanaka T, et al. Characteristic changes in plasma glutamate levels and free amino acid profiles in Japanese patients with type 1 diabetes mellitus. J of Diabetes Invest. 2023 Jan;14(1):111–121. PubMed PMID: 36151993; PubMed Central PMCID: PMCPMC9807144. eng. doi: 10.1111/jdi.13911
  • Alcazar O, Hernandez LF, Nakayasu ES, et al. Parallel multi-omics in high-risk subjects for the Identification of Integrated biomarker signatures of type 1 diabetes. Biomolecules. 2021 Mar 4;11(3): 383. PubMed PMID: 33806609; PubMed Central PMCID: PMCPMC7999903. eng. doi: 10.3390/biom11030383
  • Lamichhane S, Ahonen L, Dyrlund TS, et al. Cord-blood lipidome in progression to islet autoimmunity and type 1 diabetes. Biomolecules. 2019 Jan 21;9(1):33. PubMed PMID: 30669674; PubMed Central PMCID: PMCPMC6359525. eng. doi: 10.3390/biom9010033
  • Suvitaival T. Lipidomic abnormalities during the pathogenesis of type 1 diabetes: a quantitative review. Curr Diab Rep. 2020 Aug 15;20(9):46. PubMed PMID: 32803436; PubMed Central PMCID: PMCPMC7429527. eng. doi: 10.1007/s11892-020-01326-8
  • La Torre D, Seppänen-Laakso T, Larsson HE, et al. Decreased cord-blood phospholipids in young age-at-onset type 1 diabetes. Diabetes. 2013 Nov;62(11):3951–3956. PubMed PMID: 23929934; PubMed Central PMCID: PMCPMC3806611. eng. doi: 10.2337/db13-0215
  • Lamichhane S, Ahonen L, Dyrlund TS, et al. Dynamics of plasma lipidome in progression to islet autoimmunity and type 1 diabetes–type 1 diabetes prediction and prevention study (DIPP). Sci Rep. 2018;8(1):10635. doi: 10.1038/s41598-018-28907-8
  • Wu F, Liang P. Application of metabolomics in various types of diabetes. Diabetes Metab Syndr Obes: Targets Ther. 2022;15:2051–2059. PubMed PMID: 35860310; PubMed Central PMCID: PMCPMC9289753. eng. doi: 10.2147/dmso.S370158
  • Frohnert BI, Rewers M. Metabolomics in childhood diabetes. Pediatr Diabetes. 2016;17(1):3–14. doi: 10.1111/pedi.12323
  • Pflueger M, Seppänen-Laakso T, Suortti T, et al. Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes. 2011 Nov;60(11):2740–2747. PubMed PMID: 22025777; PubMed Central PMCID: PMCPMC3198092. eng. doi: 10.2337/db10-1652
  • Sen P, Dickens AM, López-Bascón MA, et al. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia. 2020 May;63(5):1017–1031. PubMed PMID: 32043185; PubMed Central PMCID: PMCPMC7145788. eng. doi: 10.1007/s00125-020-05107-6
  • Herance JR, Ciudin A, Lamas-Domingo R, et al. The footprint of type 1 diabetes on red blood cells: a metabolomic and lipidomic study. J Clin Med. 2023;12(2):556. doi: 10.3390/jcm12020556
  • Oresic M, Gopalacharyulu P, Mykkänen J, et al. Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes. 2013 Sep;62(9):3268–74. PubMed PMID: 23630305; PubMed Central PMCID: PMCPMC3749353. eng. doi: 10.2337/db13-0159
  • Guo X, Li H, Xu H, et al. Glycolysis in the control of blood glucose homeostasis. Acta Pharm Sin B. 2012;2(4):358–367. doi: 10.1016/j.apsb.2012.06.002
  • Palomino-Schätzlein M, Lamas-Domingo R, Ciudin A, et al. A translational in vivo and in vitro metabolomic study reveals altered metabolic pathways in red blood cells of type 2 diabetes. J Clin Med. 2020 May 27;9(6). PubMed PMID: 32471219; PubMed Central PMCID: PMCPMC7355709. eng. doi: 10.3390/jcm9061619
  • Mochida T, Tanaka T, Shiraki Y, et al. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus. Mol Gene Metabol. 2011 Aug;103(4):406–9. PubMed PMID: 21636301; eng. doi: 10.1016/j.ymgme.2011.05.002
  • Holeček M. Why are branched-chain amino acids increased in starvation and diabetes? Nutrients. 2020 Oct 11;12(10): 3087. PubMed PMID: 33050579; PubMed Central PMCID: PMCPMC7600358. eng. doi: 10.3390/nu12103087
  • Jung HS. Clinical implications of glucose variability: chronic complications of diabetes. Endocrinol Metab (Seoul). 2015 Jun;30(2):167–174. PubMed PMID: 26194076; PubMed Central PMCID: PMCPMC4508260. eng. doi: 10.3803/EnM.2015.30.2.167
  • Dutta T, Kudva YC, Persson XM, et al. Impact of long-term poor and good glycemic control on metabolomics alterations in type 1 diabetic people. J Clin Endocrinol Metab. 2016 Mar;101(3):1023–1033. PubMed PMID: 26796761; PubMed Central PMCID: PMCPMC4803168. eng. doi: 10.1210/jc.2015-2640
  • Dungan KM. 1,5-anhydroglucitol (GlycoMark) as a marker of short-term glycemic control and glycemic excursions. Expert Rev Mol Diagn. 2008 Jan;8(1):9–19. PubMed PMID: 18088226; eng. doi: 10.1586/14737159.8.1.9
  • Lanza IR, Zhang S, Ward LE, et al. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One. 2010 May 10;5(5):e10538. PubMed PMID: 20479934; PubMed Central PMCID: PMCPMC2866659. eng. doi: 10.1371/journal.pone.0010538
  • Dutta T, Chai HS, Ward LE, et al. Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes. Diabetes. 2012 May;61(5):1004–1016. PubMed PMID: 22415876; PubMed Central PMCID: PMCPMC3331761. eng. doi: 10.2337/db11-0874
  • Knebel B, Strassburger K, Szendroedi J, et al. Specific metabolic profiles and their relationship to insulin resistance in recent-onset type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2016 May;101(5):2130–2140. PubMed PMID: 26829444; eng. doi: 10.1210/jc.2015-4133
  • de Oliveira LR, Martins C, Fidalgo TK, et al. Salivary metabolite fingerprint of type 1 diabetes in young children. J Proteome Res. 2016 Aug 5;15(8): 2491–2499. PubMed PMID: 27306956; eng. doi: 10.1021/acs.jproteome.6b00007
  • Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2019 Nov;15(11):635–650. PubMed PMID: 31534209; eng. doi: 10.1038/s41574-019-0254-y
  • Fowler M. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26(2):77–82. doi: 10.2337/diaclin.26.2.77
  • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013 Jan;93(1):137–188. PubMed PMID: 23303908; eng. doi: 10.1152/physrev.00045.2011
  • Harjutsalo V, Katoh S, Sarti C, et al. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes. 2004 Sep;53(9):2449–2454. PubMed PMID: 15331558; eng. doi: 10.2337/diabetes.53.9.2449
  • Persson F, Rossing P. Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int Suppl. 2018 Jan;8(1):2–7. PubMed PMID: 30675433; PubMed Central PMCID: PMCPMC6336222. eng. doi: 10.1016/j.kisu.2017.10.003
  • Haukka JK, Sandholm N, Forsblom C, et al. Metabolomic profile predicts development of microalbuminuria in individuals with type 1 diabetes. Sci Rep. 2018 Sep 14;8(1):13853. PubMed PMID: 30217994; PubMed Central PMCID: PMCPMC6138633 Ingelheim, Cebix, Eli Lilly, Janssen, Medscape, MSD, Novartis, Novo Nordisk, Sanofi, and has received lecture honoraria from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Elo Water, Genzyme, Medscape, MSD, Novartis, Novo Nordisk and Sanofi. P.-H. G. has also received investigator-initiated grants from Eli Lilly and Roche. E.F. has served on advisory boards for MSD, Boehringer Ingelheim, Sanofi, and has received lecture honoraria from AstraZeneca, Boehringer Ingelheim, Sanofi, Novo Nordisk and Mitsubishi-Tanabe. E.F. has received investigator-initiated funding from Boehringer Ingelheim and Eli Lilly. J.E.C. is a former employee of Metabolon, Inc., Durham, NC. eng. doi: 10.1038/s41598-018-32085-y
  • Mäkinen VP, Tynkkynen T, Soininen P, et al. Metabolic diversity of progressive kidney disease in 325 patients with type 1 diabetes (the FinnDiane study). J Proteome Res. 2012 Mar 2;11(3): 1782–1790. PubMed PMID: 22204613; eng. doi: 10.1021/pr201036j
  • Tofte N, Suvitaival T, Ahonen L, et al. Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes. Sci Rep. 2019 Nov 8;9(1):16398. PubMed PMID: 31705008; PubMed Central PMCID: PMCPMC6841673 the impartiality of the research reported. Outside this study, P.R. reports personal shares in Novo Nordisk, having given lectures for Mundi Pharma, Eli Lilly and Boehringer Ingelheim, being in the advisory board for Novo Nordisk, MSD, Bayer, Astellas, AbbVie, Sanofi and Boehringer Ingelheim, being a steering group member for Gilead, Astra Zeneca, Bayer and Novo Nordisk. All honorarium given to institution. eng. doi: 10.1038/s41598-019-52916-w
  • Niewczas MA, Mathew AV, Croall S, et al. Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care. 2017 Mar;40(3):383–390. PubMed PMID: 28087576; PubMed Central PMCID: PMCPMC5319475. eng. doi: 10.2337/dc16-0173
  • Sekula P, Goek ON, Quaye L, et al. A metabolome-wide association study of kidney function and disease in the General Population. J Am Soc Nephrol. 2016 Apr;27(4):1175–1188. PubMed PMID: 26449609; PubMed Central PMCID: PMCPMC4814172. eng. doi: 10.1681/asn.2014111099
  • van der Kloet FM, Tempels FW, Ismail N, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 2012 Feb;8(1):109–119. PubMed PMID: 22279428; PubMed Central PMCID: PMCPMC3258399. eng. doi: 10.1007/s11306-011-0291-6
  • Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013 Nov;24(11):1901–1912. PubMed PMID: 23949796; PubMed Central PMCID: PMCPMC3810086. eng. doi: 10.1681/asn.2013020126
  • Mutter S, Valo E, Aittomäki V, et al. Urinary metabolite profiling and risk of progression of diabetic nephropathy in 2670 individuals with type 1 diabetes. Diabetologia. 2022 Jan;65(1):140–149. PubMed PMID: 34686904; PubMed Central PMCID: PMCPMC8660744. eng. doi: 10.1007/s00125-021-05584-3
  • Calvani R, Miccheli A, Capuani G, et al. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int J Obes. 2010 Jun;34(6):1095–1098. PubMed PMID: 20212498; eng. doi: 10.1038/ijo.2010.44
  • Hirakawa Y, Yoshioka K, Kojima K, et al. Potential progression biomarkers of diabetic kidney disease determined using comprehensive machine learning analysis of non-targeted metabolomics. Sci Rep. 2022 Sep 29;12(1):16287. PubMed PMID: 36175470 PubMed Central PMCID: PMCPMC9523033 division funded by Kyowa Kirin Co. Ltd. The other authors do not have any conflict of interest. eng. doi: 10.1038/s41598-022-20638-1
  • Gale MJ, Scruggs BA, Flaxel CJ. Diabetic eye disease: a review of screening and management recommendations. Clin Exp Ophthalmol. 2021 Mar;49(2):128–145. PubMed PMID: 33438363; eng. doi: 10.1111/ceo.13894
  • Curovic VR, Suvitaival T, Mattila I, et al. Circulating metabolites and lipids are associated to diabetic retinopathy in individuals with type 1 diabetes. Diabetes. 2020 Oct;69(10):2217–2226. PubMed PMID: 32737117; PubMed Central PMCID: PMCPMC7506826. eng. doi: 10.2337/db20-0104
  • Barba I, Garcia-Ramírez M, Hernández C, et al. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Visual Sci. 2010 Sep;51(9):4416–4421. PubMed PMID: 20375324; eng. doi: 10.1167/iovs.10-5348
  • Hou XW, Wang Y, Pan CW. Metabolomics in diabetic retinopathy: a systematic review. Invest Ophthalmol Visual Sci. 2021 Aug 2;62(10):4. PubMed PMID: 34347011; PubMed Central PMCID: PMCPMC8340662. eng. doi: 10.1167/iovs.62.10.4
  • Yun JH, Kim JM, Jeon HJ, et al. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS One. 2020;15(10):e0241365. PubMed PMID: 33119699; PubMed Central PMCID: PMCPMC7595280. eng doi: 10.1371/journal.pone.0241365
  • Rojas DR, Kuner R, Agarwal N. Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy. J Mol Med. 2019 Jun;97(6):845–854. PubMed PMID: 30949723; eng. doi: 10.1007/s00109-019-01781-1
  • Hansen CS, Suvitaival T, Theilade S, et al. Cardiovascular Autonomic Neuropathy in Type 1 Diabetes Is Associated With Disturbances in TCA, Lipid, and Glucose Metabolism. Front Endocrinol. 2022;13:831793. PubMed PMID: 35498422; PubMed Central PMCID: PMCPMC9046722. eng. doi: 10.3389/fendo.2022.831793
  • Lindström J, Ilanne-Parikka P, Peltonen M, et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish diabetes prevention study. Lancet. 2006 Nov 11;368(9548):1673–1679. PubMed PMID: 17098085; eng. doi: 10.1016/s0140-6736(06)69701-8
  • Izundegui DG, Nayor M. Metabolomics of type 1 and type 2 diabetes: insights into risk prediction and mechanisms. Curr Diab Rep. 2022 Feb;22(2):65–76. PubMed PMID: 35113332; PubMed Central PMCID: PMCPMC8934149. eng. doi: 10.1007/s11892-022-01449-0
  • Zhao H, Zhang F, Sun D, et al. Branched-chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling. Diabetes. 2020 Jun;69(6):1164–1177. PubMed PMID: 32184272; eng. doi: 10.2337/db19-0920
  • Morze J, Wittenbecher C, Schwingshackl L, et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care. 2022;45(4):1013–1024. doi: 10.2337/dc21-1705
  • Gu X, Al Dubayee M, Alshahrani A, et al. Distinctive metabolomics patterns associated with insulin resistance and type 2 diabetes mellitus. Front Mol Biosci. 2020;7:609806. PubMed PMID: 33381523; PubMed Central PMCID: PMCPMC7768025. eng. doi: 10.3389/fmolb.2020.609806
  • Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res. 2016;2016:1–10. doi: 10.1155/2016/3898502
  • Palanisamy S, Yien ELH, Shi LW, et al. Systematic review of efficacy and safety of newer antidiabetic drugs approved from 2013 to 2017 in controlling HbA1c in diabetes patients. Pharmacy. 2018;6(3):57. doi: 10.3390/pharmacy6030057
  • Van Doorn M, Vogels J, Tas A, et al. Evaluation of metabolite profiles as biomarkers for the pharmacological effects of thiazolidinediones in type 2 diabetes mellitus patients and healthy volunteers. Br J Clin Pharmacol. 2007;63(5):562–574. doi: 10.1111/j.1365-2125.2006.02816.x
  • Taya N, Katakami N, Omori K, et al. Evaluation of change in metabolome caused by comprehensive diabetes treatment: a prospective observational study of diabetes inpatients with gas chromatography/mass spectrometry‐based non‐target metabolomic analysis. J Diabetes Investig. 2021;12(12):2232–2241. doi: 10.1111/jdi.13600
  • Banimfreg BH, Shamayleh A, Alshraideh H, et al. Untargeted approach to investigating the metabolomics profile of type 2 diabetes emiratis. J Proteomics. 2022 Oct 30;269:104718. PubMed PMID: 36100153; eng. doi: 10.1016/j.jprot.2022.104718
  • Huo T, Cai S, Lu X, et al. Metabonomic study of biochemical changes in the serum of type 2 diabetes mellitus patients after the treatment of metformin hydrochloride. J Pharm Biomed Anal. 2009 May 1;49(4):976–982. PubMed PMID: 19249171; eng. doi: 10.1016/j.jpba.2009.01.008
  • Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019 Oct;15(10):569–589. PubMed PMID: 31439934; eng. doi: 10.1038/s41574-019-0242-2
  • Aleidi SM, Dahabiyeh LA, Gu X, et al. Obesity connected metabolic changes in type 2 diabetic patients treated with metformin. Front Pharmacol. 2021;11:616157. PubMed PMID: 33664666; PubMed Central PMCID: PMCPMC7921791. eng. doi: 10.3389/fphar.2020.616157
  • Dahabiyeh LA, Mujammami M, AlMalki RH, et al. Lipids alterations associated with metformin in healthy subjects: an investigation using mass spectrometry shotgun approach. Int J Mol Sci. 2022;23(19):11478. doi: 10.3390/ijms231911478
  • Dahabiyeh LA, Mujammami M, Arafat T, et al. A metabolic pattern in healthy subjects given a single dose of metformin: a metabolomics approach. Front Pharmacol. 2021;12:705932. doi: 10.3389/fphar.2021.705932
  • Adam J, Brandmaier S, Leonhardt J, et al. Metformin effect on nontargeted metabolite profiles in patients with type 2 diabetes and in multiple murine tissues. Diabetes. 2016;65(12):3776–3785. doi: 10.2337/db16-0512
  • Breier M, Wahl S, Prehn C, et al. Immediate reduction of serum citrulline but no change of steroid profile after initiation of metformin in individuals with type 2 diabetes. J Steroid Biochem Mol Biol. 2017;174:114–119. doi: 10.1016/j.jsbmb.2017.08.004
  • Xu T, Brandmaier S, Messias AC, et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. 2015;38(10):1858–1867. doi: 10.2337/dci15-0022
  • Zhou Y, Hu C, Zhao X, et al. Serum metabolomics study of gliclazide-modified-release-treated type 2 diabetes mellitus patients using a gas chromatography–mass spectrometry method. J Proteome Res. 2018 Apr 6;17(4):1575–1585. PubMed PMID: 29460634; eng. doi: 10.1021/acs.jproteome.7b00866
  • den Ouden H, Pellis L, Rutten G, et al. Metabolomic biomarkers for personalised glucose lowering drugs treatment in type 2 diabetes. Metabolomics. 2016;12:27. PubMed PMID: 26770180; PubMed Central PMCID: PMCPMC4703625. eng. doi: 10.1007/s11306-015-0930-4
  • Yau H, Rivera K, Lomonaco R, et al. The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab Rep. 2013 Jun;13(3):329–341. PubMed PMID: 23625197; eng. doi: 10.1007/s11892-013-0378-8
  • Inzucchi SE, Lupsa BJUWU. Thiazolidinediones in the treatment of type 2 diabetes mellitus. 2020. [cited 2007 Aug 17]. https://www.uptodate.com/contents/thiazolidinediones-in-the-treatment-of-type-2-diabetes-mellitus?search=Thiazolidinediones%20in%20the%20treatment%20of%20type%202%20diabetes&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1
  • Davidson MA, Mattison DR, Azoulay L, et al. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol. 2018 Jan;48(1):52–108. PubMed PMID: 28816105; eng. doi: 10.1080/10408444.2017.1351420
  • Nachawi N, Rao PP, Makin VJCCJo V. The role of GLP-1 receptor agonists in managing type 2 diabetes. Cleve Clin J Med. 2022;89(8):457–464. doi: 10.3949/ccjm.89a.21110
  • Dungan K, DeSantis A. Glucagon-like peptide-1-based therapies for the treatment of type 2 diabetes mellitus 2013. [cited 2007 Aug 17]. https://www.uptodate.com/contents/glucagon-like-peptide-1-based-therapies-for-the-treatment-of-type-2-diabetes-mellitus?search=Glucagon-like%20peptide-1-based%20therapies%20for%20the%20treatment%20of%20type%202%20diabetes%20mellitus.%202013.&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1
  • Jendle J, Hyötyläinen T, Orešič M, et al. Pharmacometabolomic profiles in type 2 diabetic subjects treated with liraglutide or glimepiride. Cardiovasc Diabetol. 2021 Dec 17;20(1): 237. PubMed PMID: 34920733; PubMed Central PMCID: PMCPMC8684205. eng. doi: 10.1186/s12933-021-01431-2
  • Tsushima Y, Lansang MC, Makin V. The role of SGLT-2 inhibitors in managing type 2 diabetes. Cleve Clin J Med. 2021;88(1):47–58. doi: 10.3949/ccjm.88a.20088
  • DeSantis A, Nathan D, Mulder JJAN. Sodium-glucose co-transporter 2 inhibitors for the treatment of hyperglycemia in type 2 diabetes mellitus. 2021. [cited 2007 Aug 17]. https://www.uptodate.com/contents/sodium-glucose-cotransporter-2-inhibitors-for-the-treatment-of-hyperglycemia-in-type-2-diabetes-mellitus?search=Sodium-glucose%20co-transporter%202%20inhibitors%20for%20the%20treatment%20of%20hyperglycemia%20in%20type%202%20diabetes%20mellitus&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1
  • Jo HA, Seo J-H, Lee S, et al. Metabolomic profiling in kidney cells treated with a sodium glucose-cotransporter 2 inhibitor. Sci Rep. 2023;13(1):2026. doi: 10.1038/s41598-023-28850-3
  • Bletsa E, Filippas-Dekouan S, Kostara C, et al. Effect of dapagliflozin on urine metabolome in patients with type 2 diabetes. J Clin Endocrinol Metab. 2021 Apr 23;106(5):1269–1283. PubMed PMID: 33592103; PubMed Central PMCID: PMCPMC8063232. eng. doi: 10.1210/clinem/dgab086
  • ElSayed NA, Aleppo G, Aroda VR, et al. 9. Pharmacologic approaches to glycemic treatment: standards of Care in diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S140–S157. doi: 10.2337/dc23-S009
  • Vargas E, Joy NV, Sepulveda MAC. Biochemistry, insulin metabolic effects. StatPearls [Internet]: StatPearls Publishing; 2021.
  • Julve J, Genua I, Quifer-Rada P, et al. Circulating metabolomic and lipidomic changes in subjects with new-onset type 1 diabetes after optimization of glycemic control. Diabetes Res Clin Pract. 2023 Mar;197:110578. PubMed PMID: 36804334; eng. doi: 10.1016/j.diabres.2023.110578

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.