145
Views
0
CrossRef citations to date
0
Altmetric
Review

Proteomic scrutiny of nasal microbiomes: implications for the clinic

, , , , &
Pages 169-179 | Received 20 Jun 2023, Accepted 21 Feb 2024, Published online: 04 Mar 2024

References

  • Nicholson JK, Holmes E, Kinross J, et al. Host-Gut Microbiota Metabolic Interactions. Science. 2012;336(6086):1262–1267. doi: 10.1126/science.1223813
  • Lloyd-Price J, Mahurkar A, Rahnavard G, et al. Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017;550(7674):61–66. doi: 10.1038/nature23889
  • Hartstra AV, Bouter KEC, Backhed F, et al. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159–165. doi: 10.2337/dc14-0769
  • Piters W, Jochems SP, Mitsi E, et al. Interaction between the nasal microbiota and S.Pneumoniae in the context of live-attenuated influenza vaccine. Nat Commun. 2019;10(9). doi: 10.1038/s41467-019-10814-9
  • Mitsi E, Carniel B, Reine J, et al. Nasal pneumococcal density is associated with microaspiration and heightened human alveolar macrophage responsiveness to bacterial pathogens. Am J Respir Crit Care Med. 2020;201(3):335–347. doi: 10.1164/rccm.201903-0607OC
  • Zhao Y, Chen JR, Hao Y, et al. Predicting the recurrence of chronic rhinosinusitis with nasal polyps using nasal microbiota. Allergy. 2022;77(2):540–549. doi: 10.1111/all.15168
  • Miao P, Jiang Y, Jian Y, et al. Exacerbation of allergic rhinitis by the commensal bacterium streptococcus salivarius. Nat Microbiol. 2023;8(2):218–230. doi: 10.1038/s41564-022-01301-x
  • Fazlollahi M, Lee TD, Andrade J, et al. The nasal microbiome in asthma. J Allergy Clin Immunol. 2018;142(3):834–843.e832. doi: 10.1016/j.jaci.2018.02.020
  • Heintz-Buschart A, Pandey U, Wicke T, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord. 2018;33(1):88–98. doi: 10.1002/mds.27105
  • Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45(9):2761–2764. doi: 10.1128/JCM.01228-07
  • Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol. 2019;14(1):319–338. doi: 10.1146/annurev-pathmechdis-012418-012751
  • Maron PA, Ranjard L, Mougel C, et al. Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol. 2007;53(3):486–493. doi: 10.1007/s00248-006-9196-8
  • Graves PR, Haystead TA. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002;66(1):39–63. doi: 10.1128/MMBR.66.1.39-63.2002 table of contents.
  • Xiao Q, Zhang F, Xu L, et al. High-throughput proteomics and AI for cancer biomarker discovery. Adv Drug Deliv Rev. 2021;176:113844. doi: 10.1016/j.addr.2021.113844
  • Terracciano R, Pelaia G, Preiano M, et al. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin Appl. 2015;9(1–2):203–220. doi: 10.1002/prca.201400099
  • Nurmohamed NS, Belo Pereira JP, Hoogeveen RM, et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur Heart J. 2022;43(16):1569–1577. doi: 10.1093/eurheartj/ehac055
  • Rodriguez-Valera F. Environmental genomics, the big picture? FEMS Microbiol. Lett. 2004;231(2):153–158. doi: 10.1016/S0378-1097(04)00006-0
  • Li L, Abou-Samra E, Ning Z, et al. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat Commun. 2019;10(1):4146. doi: 10.1038/s41467-019-12087-8
  • Guo J, Gu D, Zhao T, et al. Trends in piezo channel research over the past decade: a bibliometric analysis. Front Pharmacol. 2021;12:668714. doi: 10.3389/fphar.2021.668714
  • Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1–464. doi: 10.4193/Rhin20.401
  • Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2013;131(6):1479–1490. doi: 10.1016/j.jaci.2013.02.036
  • Man WH, Piters W, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15(5):259–270. doi: 10.1038/nrmicro.2017.14
  • Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85–93. doi: 10.1038/nature18849
  • Lucas SK, Feddema E, Boyer HC, et al. Diversity of cystic fibrosis chronic rhinosinusitis microbiota correlates with different pathogen dominance. J Cyst Fibros. 2021;20(4):678–681. doi: 10.1016/j.jcf.2021.03.022
  • Copeland E, Leonard K, Carney R, et al. Chronic rhinosinusitis: potential role of microbial dysbiosis and recommendations for sampling sites. Front Cell Infect Microbiol. 2018;8:57. doi: 10.3389/fcimb.2018.00057
  • Biswas K, Hoggard M, Jain R, et al. The nasal microbiota in health and disease: variation within and between subjects. Front Microbiol. 2015;9:134. doi: 10.3389/fmicb.2015.00134
  • Cleland EJ, Bassiouni A, Vreugde S, et al. The bacterial microbiome in chronic rhinosinusitis: richness, diversity, postoperative changes, and patient outcomes. Am J Rhinol Allergy. 2016;30(1):37–43. doi: 10.2500/ajra.2016.30.4261
  • Stephenson MF, Mfuna L, Dowd SE, et al. Molecular characterization of the Polymicrobial Flora in chronic rhinosinusitis. J Otolaryngol Head Neck Surg. 2010;39(2):182–187.
  • Ivanchenko OA, Karpishchenko SA, Kozlov RS, et al. The microbiome of the maxillary sinus and middle nasal meatus in chronic rhinosinusitis. Rhinology. 2016;54(1):68–74. doi: 10.4193/Rhino15.018
  • Psaltis AJ, Mackenzie BW, Cope EK, et al. Unraveling the role of the microbiome in chronic rhinosinusitis. J Allergy Clin Immunol. 2022;149(5):1513–1521. doi: 10.1016/j.jaci.2022.02.022
  • Lucas SK, Villarreal AR, Ahmad MM, et al. Anaerobic microbiota derived from the Upper Airways impact staphylococcus aureus physiology. Infect Immun. 2021;89(9):e0015321. doi: 10.1128/IAI.00153-21
  • Wise SK, Damask C, Roland LT, et al. International consensus statement on allergy and rhinology: allergic rhinitis-2023. Int Forum Allergy Rhinol. 2023;13(4):293–859. doi: 10.1002/alr.23090
  • Jensen-Jarolim E, Bax HJ, Bianchini R, et al. AllergoOncology – the impact of allergy in oncology: EAACI position paper. Allergy. 2017;72(6):866–887. doi: 10.1111/all.13119
  • Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–118. doi: 10.1016/j.cell.2005.05.007
  • Bender ME, Read TD, Edwards TS, et al. A comparison of the bacterial nasal microbiome in allergic rhinitis patients before and after immunotherapy. Laryngoscope. 2020;130(12):E882–E888. doi: 10.1002/lary.28599
  • Choi CH, Poroyko V, Watanabe S, et al. Seasonal allergic rhinitis affects sinonasal microbiota. Am J Rhinol Allergy. 2014;28(4):281–286. doi: 10.2500/ajra.2014.28.4050
  • Lal D, Keim P, Delisle J, et al. Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol. 2017;7(6):561–569. doi: 10.1002/alr.21934
  • Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014;31:31–37. doi: 10.1016/j.coi.2014.09.004
  • Porsbjerg C, Melen E, Lehtimaki L, et al. Asthma. Lancet. 2023;401(10379):858–873. doi: 10.1016/S0140-6736(22)02125-0
  • Togias A. Rhinitis and asthma: evidence for respiratory system integration. J Allergy Clin Immunol. 2003;111(6):1171–1183; quiz 1184. doi: 10.1067/mai.2003.1592
  • Losol P, Park H-S, Song W-J, et al. Association of upper airway bacterial microbiota and asthma: systematic review. Asia Pac Allergy. 2022;12(3):e32–e32. doi: 10.5415/apallergy.2022.12.e32
  • Bousquet J, Khaltaev N, Cruz AA, et al. Allergic rhinitis and its impact on asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63(Suppl 86):8–160. doi: 10.1111/j.1398-9995.2007.01620.x
  • Chen M, He S, Miles P, et al. Nasal bacterial microbiome differs between healthy controls and those with asthma and allergic rhinitis. Front Cell Infect Microbiol. 2022;12:841995. doi: 10.3389/fcimb.2022.841995
  • Li YY, Wang YN. Obstructive sleep apnea-hypopnea syndrome as a novel potential risk for aging. Aging Dis. 2021;12(2):586–596. doi: 10.14336/AD.2020.0723
  • Ko CY, Hu AK, Chou D, et al. Analysis of oral microbiota in patients with obstructive sleep apnea-associated hypertension. Hypertens Res. 2019;42(11):1692–1700. doi: 10.1038/s41440-019-0260-4
  • Ko CY, Liu QQ, Su HZ, et al. Gut microbiota in obstructive sleep apnea-hypopnea syndrome: disease-related dysbiosis and metabolic comorbidities. Clin sci. 2019;133(7):905–917. doi: 10.1042/CS20180891
  • Young T, Finn L, Palta M. Chronic nasal congestion at night is a risk factor for snoring in a population-based cohort study. Arch Internal Med. 2001;161(12):1514–1519. doi: 10.1001/archinte.161.12.1514
  • Wu BG, Sulaiman I, Wang J, et al. Severe obstructive sleep apnea is associated with alterations in the nasal microbiome and an increase in inflammation. Am J Respir Crit Care Med. 2019;199(1):99–109. doi: 10.1164/rccm.201801-0119OC
  • Gieffers J, van Zandbergen G, Rupp J, et al. Phagocytes transmit Chlamydia pneumoniae from the lungs to the vasculature. Eur Resp J. 2004;23(4):506–510. doi: 10.1183/09031936.04.00093304
  • Dando SJ, Mackay-Sim A, Norton R, et al. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev. 2014;27(4):691–726. doi: 10.1128/CMR.00118-13
  • Pal G, Ramirez V, Engen PA, et al. Deep nasal sinus cavity microbiota dysbiosis in Parkinson’s disease. NPJ Parkinsons Dis. 2021;7(1):111. doi: 10.1038/s41531-021-00254-y
  • McWilliams TG, Prescott AR, Montava-Garriga L, et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 2018;27(2):439–449.e435. doi: 10.1016/j.cmet.2017.12.008
  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):32. doi: 10.1186/s13024-019-0333-5
  • Thangaleela S, Sivamaruthi BS, Kesika P, et al. Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging – A Review. Microorganisms. 2022;10(7):1405. doi: 10.3390/microorganisms10071405
  • Xie J, Tian S, Liu J, et al. Dual role of the nasal microbiota in neurological diseases – An unignorable risk factor or a potential therapy carrier. Pharmacol Res. 2022;179:106189. doi: 10.1016/j.phrs.2022.106189
  • Branton WG, Lu JQ, Surette MG, et al. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep. 2016;6(1):37344. doi: 10.1038/srep37344
  • Gay F. Staphylococcal immune complexes and myelinolytic toxin in early acute multiple sclerosis lesions-an immunohistological study supported by multifactorial cluster analysis and antigen-imprint isoelectric focusing. Mult Scler Relat Disord. 2013;2(3):213–232. doi: 10.1016/j.msard.2013.01.002
  • Lazarini F, Roze E, Lannuzel A, et al. The microbiome-nose-brain axis in health and disease. Trends Neurosci. 2022;45(10):718–721. doi: 10.1016/j.tins.2022.08.003
  • Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13(4):217–231. doi: 10.1038/nrneurol.2017.27
  • Carceles-Cordon M, Weintraub D, Chen-Plotkin AS. Cognitive heterogeneity in Parkinson’s disease: a mechanistic view. Neuron. 2023;111(10):1531–1546. doi: 10.1016/j.neuron.2023.03.021
  • Ubeda-Bañon I, Saiz-Sanchez D, Flores-Cuadrado A, et al. The human olfactory system in two proteinopathies: Alzheimer’s and Parkinson’s diseases. Transl Neurodegener. 2020;9(1):22. doi: 10.1186/s40035-020-00200-7
  • Woods JJ, Skelding KA, Martin KL, et al. Assessment of evidence for or against contributions of chlamydia pneumoniae infections to Alzheimer’s disease etiology. Brain Behav Immun. 2020;83:22–32. doi: 10.1016/j.bbi.2019.10.014
  • Gerard HC, Dreses-Werringloer U, Wildt KS, et al. Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol. 2006;48(3):355–366. doi: 10.1111/j.1574-695X.2006.00154.x
  • Chacko A, Delbaz A, Walkden H, et al. Chlamydia pneumoniae can infect the central nervous system via the olfactory and trigeminal nerves and contributes to Alzheimer’s disease risk. Sci Rep. 2022;12(1):2759. doi: 10.1038/s41598-022-06749-9
  • Naegelin Y, Naegelin P, von Felten S, et al. Association of Rituximab treatment with disability progression among patients with secondary progressive multiple sclerosis. JAMA Neurol. 2019;76(3):274–281. doi: 10.1001/jamaneurol.2018.4239
  • Zhou X, Baumann R, Gao X. iMSMS consortium. Electronic address: [email protected]; iMSMS consortium. Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell. 2022;185(19):3467–3486.e3416. doi: 10.1016/j.cell.2022.08.021
  • Yu G, Phillips S, Gail MH, et al. The effect of cigarette smoking on the oral and nasal microbiota. Microbiome. 2017;5(1):3. doi: 10.1186/s40168-016-0226-6
  • Olesen CM, Ingham AC, Thomsen SF, et al. Changes in skin and nasal microbiome and staphylococcal species following treatment of atopic dermatitis with Dupilumab. Microorganisms. 2021;9(7):1487. doi: 10.3390/microorganisms9071487
  • Wang Y, Li X, Gu S, et al. Characterization of dysbiosis of the conjunctival microbiome and nasal microbiome associated with allergic rhinoconjunctivitis and allergic rhinitis. Front Immunol. 2023;14:1079154. doi: 10.3389/fimmu.2023.1079154
  • Simner PJ, Miller HB, Breitwieser FP, et al. Development and optimization of metagenomic next-generation sequencing methods for cerebrospinal fluid diagnostics. J Clin Microbiol. 2018;56(9):e00472–18. doi: 10.1128/JCM.00472-18
  • Van Den Bossche T, Arntzen M, Becher D, et al. The metaproteomics initiative: a coordinated approach for propelling the functional characterization of microbiomes. Microbiome. 2021;9(1):243. doi: 10.1186/s40168-021-01176-w
  • Gökdemir FŞ, İ̇şeri ÖD, Sharma A, et al. Metagenomics next generation sequencing (mNGS): an exciting tool for early and accurate diagnostic of fungal pathogens in plants. J Fungi. 2022;8(11):1195. doi: 10.3390/jof8111195
  • Ojala T, Kankuri E, Kankainen M. Understanding human health through metatranscriptomics. Trends Mol Med. 2023;29(5):376–389. doi: 10.1016/j.molmed.2023.02.002
  • Seelbinder B, Chen J, Brunke S, et al. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome. 2020;8(1):133. doi: 10.1186/s40168-020-00899-6
  • Delaveau T, Davoine D, Jolly A, et al. Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae. Nucleic Acids Res. 2016;44(18):8826–8841. doi: 10.1093/nar/gkw732
  • Deng FY, Zhu W, Zeng Y, et al. Is GSN significant for hip BMD in female Caucasians? Bone. 2014;63:69–75. doi: 10.1016/j.bone.2014.02.015
  • Van Zele T, Gevaert P, Watelet JB, et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 2004;114(4):981–983. doi: 10.1016/j.jaci.2004.07.013
  • Murphy J, Ramezanpour M, Drilling A, et al. In vitro characteristics of an airway barrier-disrupting factor secreted by staphylococcus aureus. Int Forum Allergy Rhinol. 2019;9(2):187–196. doi: 10.1002/alr.22232
  • Stubbendieck RM, Dissanayake E, Burnham PM, et al. Rothia from the human nose inhibit moraxella catarrhalis colonization with a secreted peptidoglycan endopeptidase. MBio. 2023;14(2):e0046423. doi: 10.1128/mbio.00464-23
  • Zhang X, Li L, Butcher J, et al. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome. 2019;7(1):154. doi: 10.1186/s40168-019-0767-6
  • Heyer R, Schallert K, Zoun R, et al. Challenges and perspectives of metaproteomic data analysis. J Biotechnol. 2017;261:24–36. doi: 10.1016/j.jbiotec.2017.06.1201
  • Guirro M, Herrero P, Costa A, et al. Comparison of metaproteomics workflows for deciphering the functions of gut microbiota in an animal model of obesity. J Proteomics. 2019;209:103489. doi: 10.1016/j.jprot.2019.103489
  • Shao HL, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118(4):1917–1950. doi: 10.1021/acs.chemrev.7b00534
  • Heyer R, Schallert K, Zoun R, et al. Challenges and perspectives of metaproteomic data analysis. J Biotechnol. 2017;261:24–36. doi: 10.1016/j.jbiotec.2017.06.1201
  • Thuy-Boun PS, Wang AY, Crissien-Martinez A, et al. Quantitative metaproteomics and activity-based protein profiling of patient fecal microbiome identifies Host and microbial serine-type endopeptidase activity associated with ulcerative colitis. Mol & Cell Proteomics. 2022;21(3):100197. doi: 10.1016/j.mcpro.2022.100197
  • Cheng K, Ning Z, Zhang X, et al. MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome. 2017;5(1):157. doi: 10.1186/s40168-017-0375-2
  • Muth T, Kohrs F, Heyer R, et al. MPA portable: a stand-alone software package for analyzing metaproteome samples on the go. Anal Chem. 2018;90(1):685–689. doi: 10.1021/acs.analchem.7b03544
  • Jagtap PD, Blakely A, Murray K, et al. Metaproteomic analysis using the Galaxy framework. Proteomics. 2015;15(20):3553–3565. doi: 10.1002/pmic.201500074
  • Chatterjee S, Stupp GS, Park SK, et al. A comprehensive and scalable database search system for metaproteomics. BMC Genomics. 2016;17(1):642. doi: 10.1186/s12864-016-2855-3
  • Taylor JA, Johnson RS. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(9):1067–75. doi: 10.1002/(SICI)1097-0231(19970615)11:9<1067:AID-RCM953>3.0.CO;2-L
  • Frank AM, Savitski MM, Nielsen ML, et al. De Novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res. 2007;6(1):114–23. doi: 10.1021/pr060271u
  • Dancík V, Addona TA, Clauser KR, et al. De novo peptide sequencing via tandem mass spectrometry. J Comput Biol. 1999;6(3–4):327–42. doi: 10.1089/106652799318300
  • Pevtsov S, Fedulova I, Mirzaei H, et al. Performance evaluation of existing de novo sequencing algorithms. J Proteome Res. 2006;5(11):3018–28. doi: 10.1021/pr060222h
  • Lindsey ML, Jung M, Hall ME, et al. Proteomic analysis of the cardiac extracellular matrix: clinical research applications. Expert Rev Proteomics. 2018;15(2):105–112. doi: 10.1080/14789450.2018.1421947
  • Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007;4(3):207–14. doi: 10.1038/nmeth1019
  • Gonzalez CG, Mills RH, Zhu Q, et al. Location-specific signatures of Crohn’s disease at a multi-omics scale. Microbiome. 2022;10(1):133. doi: 10.1186/s40168-022-01331-x
  • Calabrese FM, Porrelli A, Vacca M, et al. Metaproteomics Approach and pathway modulation in obesity and diabetes: a narrative review. Nutrients. 2021;14(1):47. doi: 10.3390/nu14010047
  • Jiang X, Zhang Y, Wang H, et al. In-depth metaproteomics analysis of oral microbiome for lung cancer. Research (Wash DC). 2022;9781578. doi: 10.34133/2022/9781578
  • Apweiler R, Bairoch A, H WC, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32(suppl_1):D115–D119. doi: 10.1093/nar/gkh131
  • Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005;33(Database issue):D501–D504. doi: 10.1093/nar/gki025
  • Yates A, Akanni W, R AM, et al. Ensembl 2016. Nucleic Acids Res. 2016;44(D1):D710–D716. doi: 10.1093/nar/gkv1157
  • Xiao J, Tanca A, Jia B, et al. Metagenomic taxonomy-guided database-searching strategy for improving metaproteomic analysis. J Proteome Res. 2018;17(4):1596–1605. doi: 10.1021/acs.jproteome.7b00894
  • Proctor LM, Creasy HH, Fettweis JM, et al. The Integrative Human Microbiome Project. Nature. 2019;569(7758):641–648.
  • Chen M, Ge Y, Lin W, et al. Clinical features and nasal inflammation in asthma and allergic rhinitis. Clin Exp Immunol. 2022;208(1):25–32. doi: 10.1093/cei/uxac019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.