84
Views
0
CrossRef citations to date
0
Altmetric
Review

Bringing proteomics to bear on male fertility: key lessons

&
Pages 181-203 | Received 19 Oct 2023, Accepted 07 Feb 2024, Published online: 10 Apr 2024

References

  • Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369–384. doi: 10.1038/s41585-018-0003-3
  • Ferlin A, Raicu F, Gatta V, et al. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734–745. doi: 10.1016/S1472-6483(10)60677-3
  • Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018 Mar 1;16(1):10–20. doi: 10.1016/j.aju.2017.12.004
  • Kamiński P, Baszyński J, Jerzak I, et al. External and genetic conditions determining male infertility. Int J Mol Sci MDPI AG. 2020;21(15):1–27. doi: 10.3390/ijms21155274
  • Park YJ, Kim J, You YA, et al. Proteomic revolution to improve tools for evaluating male fertility in animals. J Proteome Res. 2013 Nov 1;12(11):4738–4747. doi: 10.1021/pr400639x
  • Panner Selvam MK, Agarwal A. Update on the proteomics of male infertility: a systematic review. Arab J Urol. 2018 Mar;16(1):103–112. doi: 10.1016/j.aju.2017.11.016
  • Al-Amrani S, Al-Jabri Z, Al-Zaabi A, et al. Proteomics: concepts and applications in human medicine. World J Biol Chem. 2021 Sep 27;12(5):57–69. doi: 10.4331/wjbc.v12.i5.57
  • Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996 Dec 1;13(1):19–50. doi: 10.1080/02648725.1996.10647923
  • Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19(11):1853–1861. doi: 10.1002/elps.1150191103
  • Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Sterility. 2013;99(4):998–1007. doi: 10.1016/j.fertnstert.2013.01.111
  • Chalmel F, Rolland AD. Linking transcriptomics and proteomics in spermatogenesis. Reproduction. 2015;150(5):R149–57. doi: 10.1530/REP-15-0073
  • Jodar M, Soler-Ventura A, Oliva R. Semen proteomics and male infertility. J Proteomics. 2017;162:125–134. doi: 10.1016/j.jprot.2016.08.018
  • Vazquez-Levin MH. Proteomic analysis and sperm physiopathology: the two-dimensional difference in gel electrophoresis approach. Fertil Sterility. 2013;99(5):1199–1200. doi: 10.1016/j.fertnstert.2012.12.051
  • Hamada A, Sharma R, du Plessis SS, et al. Two-dimensional differential in-gel electrophoresis–based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013 Apr;99(5):1216–1226.e2.
  • Lee PY, Saraygord-Afshari N, Low TY. The evolution of two-dimensional gel electrophoresis - from proteomics to emerging alternative applications. J Chromatogr A. 2020 Mar 29;1615:1615. doi: 10.1016/j.chroma.2019.460763
  • Ong SE, Pandey A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics [internet]. Biomol Eng. 2001;18(5):195–205. doi: 10.1016/S1389-0344(01)00095-8. ht tp://Available from:http://www.elsevier.com/locate/geneanabioeng.
  • de Mateo S, Martínez-Heredia J, Estanyol JM, et al. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics. 2007;7(23):4264–4277. doi: 10.1002/pmic.200700521
  • de Mateo S, Estanyol JM, Oliva R. Methods for the analysis of the sperm proteome. Methods Mol Biol. 2013;927:411–422.
  • Clarke NJ, Zhang Y, Reitz RE. A novel mass spectrometry–based assay for the accurate measurement of thyroglobulin from patient samples containing antithyroglobulin autoantibodies. J Investig Med. 2012 Dec;60(8):1157–1163. doi: 10.2310/JIM.0b013e318276deb4
  • Parker CE, Borchers CH. Mass spectrometry based biomarker discovery, verification, and validation — quality assurance and control of protein biomarker assays. Mol Oncol. 2014 Jun;8(4):840–858. doi: 10.1016/j.molonc.2014.03.006
  • Amaral A, Paiva C, Attardo Parrinello C, et al. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res. 2014 Dec 5;13(12):5670–5684. doi: 10.1021/pr500652y
  • Wang G, Guo Y, Zhou T, et al. In-depth proteomic analysis of the human sperm reveals complex protein compositions. J Proteomics. 2013 Feb 21;79:114–122. doi: 10.1016/j.jprot.2012.12.008
  • Johnston DS, Wooters J, Kopf GS, et al. Analysis of the human sperm proteome. Annals New York Academy Sci New York Academy Sci. 2005;1061(1):190–202. doi: 10.1196/annals.1336.021
  • Miki K, Qu W, Goulding EH, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Nat Acad Sci. 2004;101(47):16501–16506. doi: 10.1073/pnas.0407708101
  • Baker MA, Reeves G, Hetherington L, et al. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl. 2007 May;1(5):524–532.
  • Castillo J, Bogle OA, Jodar M, et al. Proteomic changes in human sperm during sequential in vitro capacitation and acrosome reaction. Front Cell Dev Biol. 2019 Nov 20;7:7. doi: 10.3389/fcell.2019.00295
  • Baker MA, Hetherington L, Reeves GM, et al. The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics. 2008 Apr;8(8):1720–1730.
  • Huang IS, Li LH, Chen WJ, et al. Proteomic Analysis of Testicular Interstitial Fluid in Men with Azoospermia. Eur Urol Open Sci. 2023 Aug 1;54:88–96. doi: 10.1016/j.euros.2023.06.004
  • Dacheux JL, Belleannée C, Guyonnet B, et al. The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med. 2012;58(4):197–210. doi: 10.3109/19396368.2012.663233
  • Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147(2):R27–R42. doi: 10.1530/REP-13-0420
  • Paz M, Morín M, Del Mazo J. Proteome profile changes during mouse testis development. Comp Biochem Physiol Part D Genomics Proteomics. 2006;1(4):404–415. doi: 10.1016/j.cbd.2006.10.002
  • Zheng B, Zhao D, Zhang P, et al. Quantitative proteomics reveals the essential roles of stromal interaction molecule 1 (STIM1) in the testicular cord formation in mouse testis. Mol & Cell Proteomics. 2015 Oct 1;14(10):2682–2691. doi: 10.1074/mcp.M115.049569
  • Guo X, Zhang P, Huo R, et al. Analysis of the human testis proteome by mass spectrometry and bioinformatics. Proteomics Clin Appl. 2008;2(12):1651–1657. doi: 10.1002/prca.200780120
  • Guo X, Zhao C, Wang F, et al. Investigation of human testis protein heterogeneity using 2-dimensional electrophoresis. J Androl. 2010 Jul;31(4):419–429.
  • Huo R, He Y, Zhao C, et al. Identification of human spermatogenesis-related proteins by comparative proteomic analysis: a preliminary study. Fertil Steril. 2008 Oct;90(4):1109–1118. doi: 10.1016/j.fertnstert.2007.07.1342
  • Davalieva K, Rusevski A, Velkov M, et al. Comparative proteomics analysis of human FFPE testicular tissues reveals new candidate biomarkers for distinction among azoospermia types and subtypes. J Proteomics. 2022 Sep 15;267:104686. doi: 10.1016/j.jprot.2022.104686
  • Li JY, Liu FJ, Liu X, et al. Mapping of the human testicular proteome and its relationship with that of the epididymis and spermatozoa. Mol & Cell Proteomics. 2011;10(3):M110.004630. doi: 10.1074/mcp.M110.004630
  • Liu M, Hu Z, Qi L, et al. Scanning of novel cancer/testis proteins by human testis proteomic analysis. Proteomics. 2013 Apr;13(7):1200–1210.
  • Fagerberg L, Hallstrom BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol & Cell Proteomics. 2014 Feb;13(2):397–406.
  • Uhlén M, Fagerberg L, Hallström BM, et al. Tissue-based map of the human proteome. Sci (1979). 2015 Jan 23;347(6220). doi: 10.1126/science.1260419
  • Djureinovic D, Fagerberg L, Hallström B, et al. The human testis-specific proteome defined by transcriptomics and antibody-based profiling. MHR: basic science of reproductive medicine. Mol Hum Reprod. 2014 Jun 1;20(6):476–488. doi: 10.1093/molehr/gau018
  • Johnston DS, Jelinsky SA, Zhi Y, et al. Identification of testis-specific male contraceptive targets: insights from transcriptional profiling of the cycle of the rat seminiferous epithelium and purified testicular cells. Annals of the New York Academy of Sciences. 2007;1120:36–46. doi: 10.1196/annals.1411.014
  • Jin LC, Wang D, Zhou X. Sperm proteome and reproductive technologies in mammals. Animal Reproduct Sci. 2016;173:1–7. doi: 10.1016/j.anireprosci.2016.08.008
  • Cedenho AP, Lima SB, Cenedeze MA, et al. Oligozoospermia and heat-shock protein expression in ejaculated spermatozoa. Hum Reprod. 2006;21(7):1791–1794. doi: 10.1093/humrep/del055
  • Hosseinifar H, Gourabi H, Salekdeh GH, et al. Study of sperm protein profile in men with and without varicocele using two-dimensional gel electrophoresis. Urology. 2013 Feb;81(2):293–300.
  • Liao TT, Xiang Z, Zhu WB, et al. Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl. 2009;11(6):683–693. doi: 10.1038/aja.2009.59
  • Shetty J, Diekman AB, Jayes FCL, et al. Differential extraction and enrichment of human sperm surface proteins in a proteome: identification of immunocontraceptive candidates. Electrophoresis. 2001;22(14):3053–3066. doi: 10.1002/1522-2683(200108)22:14<3053:AID-ELPS3053>3.0.CO;2-K
  • Martínez-Heredia J, Estanyol JM, Ballescà JL, et al. Proteomic identification of human sperm proteins. Proteomics. 2006 Aug;6(15):4356–4369.
  • Baker MA, Hetherington L, Reeves G, et al. The rat sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics. 2008 Jun;8(11):2312–2321.
  • Baker MA, Naumovski N, Hetherington L, et al. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics. 2013 Jan;13(1):61–74.
  • Nowicka-Bauer K, Ozgo M, Lepczynski A, et al. Human sperm proteins identified by 2-dimensional electrophoresis and mass spectrometry and their relevance to a transcriptomic analysis. Reprod Biol. 2018 Jun 1;18(2):151–160. doi: 10.1016/j.repbio.2018.02.003
  • Lefièvre L, Chen Y, Conner SJ, et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007 Sep;7(17):3066–3084.
  • Camargo M, Intasqui Lopes P, Del Giudice PT, et al. Unbiased label-free quantitative proteomic profiling and enriched proteomic pathways in seminal plasma of adult men before and after varicocelectomy. Hum Reprod. 2013 Jan;28(1):33–46.
  • Zylbersztejn DS, Andreoni C, Del Giudice PT, et al. Proteomic analysis of seminal plasma in adolescents with and without varicocele. Fertil Steril. 2013 Jan;99(1):92–98.
  • Vandenbrouck Y, Lane L, Carapito C, et al. Looking for missing proteins in the proteome of human spermatozoa: an update. J Proteome Res. 2016 Nov 4;15(11):3998–4019. doi: 10.1021/acs.jproteome.6b00400
  • Zhang Y, Li Q, Wu F. Tissue-based proteogenomics reveals that human testis endows plentiful missing proteins. J Proteome Res. 2015;14(9):3583–3594. doi: 10.1021/acs.jproteome.5b00435
  • James ER, Carrell DT, Aston KI, et al. The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. IJMS. 2020;21(15):1–17. doi: 10.3390/ijms21155377
  • Sullivan R, Mieusset R. The human epididymis: its function in sperm maturation. Hum Reprod Update. 2016 Sep 1;22(5):574–587. doi: 10.1093/humupd/dmw015
  • Silber SJ. Role of epididymis in sperm maturation. Urology. 1989 Jan;33(1):47–51. doi: 10.1016/0090-4295(89)90066-6
  • Barrachina F, Battistone MA, Castillo J, et al. Sperm acquire epididymis-derived proteins through epididymosomes. Hum Reprod. 2022 Apr 1;37(4):651–668. doi: 10.1093/humrep/deac015
  • Hu J, Merriner DJ, O’Connor AE, et al. Epididymal cysteine-rich secretory proteins are required for epididymal sperm maturation and optimal sperm function. Mol Hum Reprod. 2018 Mar 1;24(3):111–122. doi: 10.1093/molehr/gay001
  • Carvajal G, Brukman NG, Weigel Muñoz M. et al. Impaired male fertility and abnormal epididymal epithelium differentiation in mice lacking CRISP1 and CRISP4. Sci Rep. 2018 Dec 1;8(1). doi: 10.1038/s41598-018-35719-3
  • Martin-Deleon PA. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface. Asian J Androl. 2015;17(5):720–725. doi: 10.4103/1008-682X.155538
  • Olli KE, Li K, Galileo DS, et al. Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity. J Cell Physiol. 2018 Jan 1;233(1):11–22. doi: 10.1002/jcp.25882
  • Li JY, Liu FJ, Wang HY, et al. Systematic mapping and functional analysis of a family of human epididymal secretory sperm-located proteins. Mol & Cell Proteomics. 2010;9(11):2517–2528. doi: 10.1074/mcp.M110.001719
  • Robertson MJ, Kent K, Tharp N, et al. Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biol. 2020 Aug 19;18(1). doi: 10.1186/s12915-020-00826-z
  • Sutton C, Nozawa K, Kent K. et al. Molecular dissection and testing of PRSS37 function through LC–MS/MS and the generation of a PRSS37 humanized mouse model. Sci Rep. 2023 Dec 1;13(1). doi: 10.1038/s41598-023-37700-1
  • Aoki Y, Tsujimura A, Kaseda K, et al. Haprin ‐deficient spermatozoa are incapable of in vitro fertilization. Mol Reprod Dev. 2020 May 20;87(5):534–541. doi: 10.1002/mrd.23344
  • Wang X, Jiang C, Dai S, et al. Identification of nonfunctional SPATA20 causing acephalic spermatozoa syndrome in humans. Clin Genet. 2023 Mar 30;103(3):310–319. doi: 10.1111/cge.14268
  • Kruger AN, Brogley MA, Huizinga JL, et al. A neofunctionalized X-Linked ampliconic gene family is essential for male fertility and equal sex ratio in mice. Curr Biol. 2019 Nov;29(21):3699–3706.e5.
  • Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep. 2022 Feb 16;12(1):2584. doi: 10.1038/s41598-022-06476-1
  • Kent K, Nozawa K, Sutton C, et al. CUB domains are not required for OVCH2 function in sperm maturation in the mouse epididymis. Andrology. 2023;12(3):682–697. doi: 10.1111/andr.13508
  • Kiyozumi D, Noda T, Yamaguchi R, et al. NELL2-mediated lumicrine signaling through OVCH2 is required for male fertility. Science. 2020 Jun 5;368(6495):1132–1135. doi: 10.1126/science.aay5134
  • Batruch I, Lecker I, Kagedan D, et al. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res. 2011 Mar 4;10(3):941–953. doi: 10.1021/pr100745u
  • Goss DM, Vasilescu SA, Sacks G, et al. Microfluidics facilitating the use of small extracellular vesicles in innovative approaches to male infertility. Nat Rev Urol. 2023;20(2):66–95. doi: 10.1038/s41585-022-00660-8
  • Wang H, Zhu Y, Tang C, et al. Reassessment of the proteomic composition and function of extracellular vesicles in the seminal plasma. Endocrinol (United States). 2022 Jan 1;163(1). doi: 10.1210/endocr/bqab214
  • Panner Selvam MK, Agarwal A, Sharma R, et al. Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Mens Health. 2019;37(3):296–312. doi: 10.5534/wjmh.190055
  • Ayaz A, Houle E, Pilsner JR. Extracellular vesicle cargo of the male reproductive tract and the paternal preconception environment. Syst Biol Reprod Med. 2021;67(2):103–111. doi: 10.1080/19396368.2020.1867665
  • Tamessar CT, Trigg NA, Nixon B. et al. Roles of male reproductive tract extracellular vesicles in reproduction. Am J Reprod Immunol. 2021 Feb 1;85(2). doi: 10.1111/aji.13338
  • Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRnas and microRnas is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654–659.
  • Thimon V, Frenette G, Saez F, et al. Protein composition of human epididymosomes collected during surgical vasectomy reversal: a proteomic and genomic approach. Hum Reprod. 2008;23(8):1698–1707. doi: 10.1093/humrep/den181
  • Nixon B, De Iuliis GN, Hart HM, et al. Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation. Mol & Cell Proteomics. 2019 Mar 1;18:S91–108. doi: 10.1074/mcp.RA118.000946
  • Drabovich AP, Jarvi K, Diamandis EP. Verification of male infertility biomarkers in seminal plasma by multiplex selected reaction monitoring assay. Mol & Cell Proteomics. 2011 Dec;10(12):M110.004127. doi: 10.1074/mcp.M110.004127
  • Drabovich AP, Dimitromanolakis A, Saraon P, et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci Transl Med. 2013 Nov 20;5(212):212ra160. doi: 10.1126/scitranslmed.3006260
  • Luppi S, Martinelli M, Giacomini E. et al. Comparative proteomic analysis of spermatozoa isolated by swim-up or density gradient centrifugation. Reprod Biol Endocrinol. 2015 Apr 19;13(1). doi: 10.1186/s12958-015-0027-y
  • Netherton J, Ogle RA, Hetherington L, et al. Proteomic analysis reveals that topoisomerase 2A is associated with defective sperm head morphology. Molecular & Cellular Proteomics. 2020 Mar;19(3):444–455. doi: 10.1074/mcp.RA119.001626
  • Du J, Shen J, Wang Y, et al. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget. 2016 Sep 13;7(37):58832–58847. doi: 10.18632/oncotarget.11315
  • Park YJ, Kim J, You YA, et al. Proteomic revolution to improve tools for evaluating male fertility in animals. J Proteome Res. 2013;12(11):4738–4747. doi: 10.1021/pr400639x
  • Cannarella R, Condorelli RA, Mongioì LM, et al. Molecular biology of spermatogenesis: novel targets of apparently idiopathic male infertility. Int J Mol Sci MDPI AG. 2020;21(5):1728. doi: 10.3390/ijms21051728
  • Cheng A, Le T, Palacios M, et al. Sperm-egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3. J Cell Bio. 1994;125(4):867–878. doi: 10.1083/jcb.125.4.867
  • de Mateo S, Castillo J, Estanyol JM, et al. Proteomic characterization of the human sperm nucleus. Proteomics. 2011 Jul 13;11(13):2714–2726. doi: 10.1002/pmic.201000799
  • Nixon B, Mitchell LA, Anderson AL, et al. Proteomic and functional analysis of human sperm detergent resistant membranes. J Cell Physiol. 2011 Oct;226(10):2651–2665.
  • Torabi F, Bogle OA, Estanyol JM, et al. Zona pellucida-binding protein 2 (ZPBP2) and several proteins containing BX7B motifs in human sperm may have hyaluronic acid binding or recognition properties. Mol Hum Reprod. 2017 Dec 1;23(12):803–816. doi: 10.1093/molehr/gax053
  • Stein KK, Go JC, Lane WS, et al. Proteomic analysis of sperm regions that mediate sperm-egg interactions. Proteomics. 2006 Jun;6(12):3533–3543.
  • Inoue N, Ikawa M, Isotani A, et al. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005 Mar;434(7030):234–238.
  • Schiza C, Korbakis D, Jarvi K, et al. Identification of TEX101-associated proteins through proteomic measurement of human spermatozoa homozygous for the missense variant rs35033974. Mol & Cell Proteomics. 2019 Feb;18(2):338–351.
  • Sigman M. Introduction: male fertility testing: the past, present, and future. Fertil Steril. 2019 May 1;111(5):833–834. doi: 10.1016/j.fertnstert.2019.03.008
  • Wang C, Swerdloff RS. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Sterility. 2014;102(6):1502–1507. doi: 10.1016/j.fertnstert.2014.10.021
  • Carracedo S, Briand-Amirat L, Dordas-Perpinyà M, et al. ProAKAP4 protein marker: towards a functional approach to male fertility. Anim Reprod Sci. 2022 Dec 1;247:247. doi: 10.1016/j.anireprosci.2022.107074
  • Nowicka-Bauer K, Kamieniczna M, Olszewska M, et al. Proteomic approach towards identification of seminal fluid biomarkers from individuals with severe oligozoospermia, cryptozoospermia and non-obstructive azoospermia: a pilot study. Transl Androl Urol. 2023 Oct 31;12(10):1497–1510. doi: 10.21037/tau-23-130
  • Shiraishi K, Takihara H, Matsuyama H. Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World J Urol. 2010 Jun;28(3):359–364. doi: 10.1007/s00345-009-0462-5
  • Razi M, Tavalaee M, Sarrafzadeh-Rezaei F, et al. Varicocoele and oxidative stress: new perspectives from animal and human studies. Andrology. 2021;9(2):546–558. doi: 10.1111/andr.12940
  • Chen H, Ruan YC, Xu WM, et al. Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update. 2012;18(6):703–713. doi: 10.1093/humupd/dms027
  • Herwig R, Knoll C, Planyavsky M, et al. Proteomic analysis of seminal plasma from infertile patients with oligoasthenoteratozoospermia due to oxidative stress and comparison with fertile volunteers. Fertil Steril. 2013 Aug;100(2):355–66.e2.
  • Korbakis D, Schiza C, Brinc D, et al. Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility. BMC Med. 2017 Mar 23;15(1):60. doi: 10.1186/s12916-017-0817-5
  • Schiza CG, Jarv K, Diamandis EP, et al. An emerging role of TEX101 protein as a male infertility biomarker. EJIFCC. 2014 Apr;25(1):9–26.
  • Intasqui P, Agarwal A, Sharma R, et al. Towards the identification of reliable sperm biomarkers for male infertility: a sperm proteomic approach. Andrologia. 2018 Apr;50(3):e12919. doi: 10.1111/and.12919
  • Selvam MKP, Agarwal A, Pushparaj PN, et al. Sperm proteome analysis and identification of fertility-associated biomarkers in unexplained male infertility. Genes (Basel). 2019 Jul 1;10(7):522. doi: 10.3390/genes10070522
  • Greither T, Dejung M, Behre HM, et al. The human sperm proteome—toward a panel for male fertility testing. Andrology. 2023;11(7):1418–1436. doi: 10.1111/andr.13431
  • Dai J, Zhang T, Guo J, et al. Homozygous pathogenic variants in ACTL9 cause fertilization failure and male infertility in humans and mice. Am J Hum Genet. 2021 Mar;108(3):469–481.
  • Yu K, Xiao K, Sun QQ, et al. Comparative proteomic analysis of seminal plasma exosomes in buffalo with high and low sperm motility. BMC Genomics. 2023 Jan 9;24(1):8. doi: 10.1186/s12864-022-09106-2
  • Liu C, Tu C, Wang L, et al. Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am J Hum Genet. 2021 Feb 4;108(2):309–323. doi: 10.1016/j.ajhg.2021.01.002
  • Kherraf ZE, Amiri-Yekta A, Dacheux D, et al. A Homozygous Ancestral sva-insertion-mediated deletion in WDR66 induces multiple morphological abnormalities of the sperm flagellum and male infertility. Am J Hum Genet. 2018 Sep 6;103(3):400–412. doi: 10.1016/j.ajhg.2018.07.014
  • Auguste Y, Delague V, Desvignes JP, et al. Loss of Calmodulin- and radial-spoke-associated complex protein CFAP251 leads to Immotile Spermatozoa Lacking Mitochondria and infertility in men. Am J Hum Genet. 2018 Sep;103(3):413–420.
  • Avidan N, Tamary H, Dgany O, et al. CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur J Hum Genet. 2003 Jul 27;11(7):497–502. doi: 10.1038/sj.ejhg.5200991
  • Wang Z, Ding Z, Guan Y, et al. Altered gene expression in the testis of infertile patients with Nonobstructive Azoospermia. Comput Math Meth Med. 2021 Jun 9;2021:1–9. doi: 10.1155/2021/4530180
  • von Bülow M, Heid H, Hess H, et al. Molecular nature of Calicin, a Major basic protein of the mammalian sperm head cytoskeleton. Exp Cell Res. 1995 Aug;219(2):407–413. doi: 10.1006/excr.1995.1246
  • Ben Khelifa M, Coutton C, Zouari R, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014 Jan 2;94(1):95–104. doi: 10.1016/j.ajhg.2013.11.017
  • Levkova M, Radanova M, Angelova L. Potential role of dynein‐related genes in the etiology of male infertility: a systematic review and a meta‐analysis. Andrology. 2022 Nov 11;10(8):1484–1499. doi: 10.1111/andr.13287
  • Zhang X, Shen Y, Wang X, et al. A novel homozygous CFAP65 mutation in humans causes male infertility with multiple morphological abnormalities of the sperm flagella. Clin Genet. 2019 Dec 3;96(6):541–548. doi: 10.1111/cge.13644
  • Hashemitabar M, Sabbagh S, Orazizadeh M, et al. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet. 2015 Jun 1;32(6):853–863. doi: 10.1007/s10815-015-0465-7
  • Netherton JK, Hetherington L, Ogle RA, et al. Proteomic analysis of good- and poor-quality human sperm demonstrates that several proteins are routinely aberrantly regulated. Biol Reprod. 2018 Aug 1;99(2):395–408. doi: 10.1093/biolre/iox166
  • Amaral A, Castillo J, Estanyol JM, et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol & Cell Proteomics. 2013;12(2):330–342. doi: 10.1074/mcp.M112.020552
  • Cui Z, Sharma R, Agarwal A. Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men. Asian J Androl. 2016 Sep 1;18(5):735–746. doi: 10.4103/1008-682X.164924
  • Oiki S, Hiyama E, Gotoh T, et al. Localization of Tektin 1 at both acrosome and flagella of mouse and Bull Spermatozoa. Zoolog Sci. 2014 Feb 1;31(2):101. doi: 10.2108/zsj.31.101
  • Wolkowicz MJ, Naaby-Hansen S, Gamble AR, et al. Tektin B1 Demonstrates Flagellar Localization in Human Sperm1. Biol Reprod. 2002 Jan 1;66(1):241–250. doi: 10.1095/biolreprod66.1.241
  • Murayama E, Yamamoto E, Kaneko T, et al. Tektin5, a new Tektin family member, is a component of the middle piece of flagella in rat spermatozoa. Mol Reprod Dev. 2008 Apr;75(4):650–658.
  • Iida H, Honda Y, Matsuyama T, et al. Tektin 4 is located on outer dense fibers, not associated with axonemal tubulins of flagella in rodent spermatozoa. Mol Reprod Dev. 2006 Jul;73(7):929–936.
  • Tanaka H, Iguchi N, Toyama Y, et al. Mice Deficient in the Axonemal Protein Tektin-t Exhibit Male Infertility and Immotile-Cilium Syndrome Due to Impaired Inner Arm Dynein Function. Mol Cell Biol. 2004 Sep 1;24(18):7958–7964. doi: 10.1128/MCB.24.18.7958-7964.2004
  • Roy A, Lin YN, Agno JE, et al. Tektin 3 is required for progressive sperm motility in mice. Mol Reprod Dev. 2009 May;76(5):453–459.
  • Wang G, Wu Y, Zhou T, et al. Mapping of the N-linked glycoproteome of human spermatozoa. J Proteome Res. 2013 Dec 6;12(12):5750–5759. doi: 10.1021/pr400753f
  • Schumacher J, Ramljak S, Asif AR, et al. Evolutionary conservation of mammalian sperm proteins associates with overall, not tyrosine, phosphorylation in human spermatozoa. J Proteome Res. 2013 Dec 6;12(12):5370–5382. doi: 10.1021/pr400228c
  • Visconti PE, Bailey JL, Moore GD, et al. Capacitation of mouse spermatozoa: I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995 Apr;121(4):1129–1137. doi: 10.1242/dev.121.4.1129
  • Carrera A, Moos J, Ning XP, et al. Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of a kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol. 1996 Nov 25;180(1):284–296. doi: 10.1006/dbio.1996.0301
  • Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3’,5’monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod. 1996 Sep;55(3):684–692. doi: 10.1095/biolreprod55.3.684
  • Aitken RJ, Paterson M, Fisher H, et al. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995 May;108(Pt 5):2017–2025. doi: 10.1242/jcs.108.5.2017
  • Qi H, Moran MM, Navarro B, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility [Internet]. 2007. Available from: http://www.pnas.org/cgi/content/full/
  • Chung JJ, Shim SH, Everley RA, et al. Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell. 2014 May 8;157(4):808–822. doi: 10.1016/j.cell.2014.02.056
  • Chung JJ, Miki K, Kim D, et al. CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. eLife. 2017;6:e23082. doi: 10.7554/eLife.23082
  • Serrano R, Garcia-Marin LJ, Bragado MJ. Sperm Phosphoproteome: Unraveling Male Infertility. Biology. 2022;11(5):659. doi: 10.3390/biology11050659
  • Castillo J, Knol JC, Korver CM, et al. Human testis phosphoproteome reveals kinases as potential targets in spermatogenesis and testicular cancer. Mol & Cell Proteomics. 2019 Mar 1;18:S132–44. doi: 10.1074/mcp.RA118.001278
  • Nozawa K, Garcia TX, Kent K, et al. Testis-specific serine kinase 3 is required for sperm morphogenesis and male fertility. Andrology. 2022 Jul 1;11(5):826–839. doi: 10.1111/andr.13314
  • Ten Have S, Boulon S, Ahmad Y, et al. Mass spectrometry-based immuno-precipitation proteomics – the user’s guide. Proteomics. 2011 Mar 6;11(6):1153–1159. doi: 10.1002/pmic.201000548
  • Castaneda JM, Shimada K, Satouh Y. et al. FAM209 associates with DPY19L2, and is required for sperm acrosome biogenesis and fertility in mice. J Cell Sci. 2021 Nov 1;134(21). doi: 10.1242/jcs.259206
  • Schiza C, Korbakis D, Panteleli E, et al. Discovery of a human testis-specific protein complex TEX101-DPEP3 and selection of its disrupting antibodies. Mol & Cell Proteomics. 2018 Dec 1;17(12):2480–2495. doi: 10.1074/mcp.RA118.000749
  • Bosch JA, Chen CL, Perrimon N. Proximity-dependent labeling methods for proteomic profiling in living cells: An update. WIREs Develop Biol. 2021;10(1). doi: 10.1002/wdev.392
  • Oura S, Ninomiya A, Sugihara F. et al. Proximity-dependent biotin labeling in testicular germ cells identified TESMIN-associated proteins. Sci Rep. 2022 Dec 1;12(1). doi: 10.1038/s41598-022-26501-7
  • Varnaitė R, MacNeill SA. Meet the neighbors: mapping local protein interactomes by proximity-dependent labeling with BioID. Proteomics. 2016 Oct;16(19):2503–2518. doi: 10.1002/pmic.201600123
  • Liu X, Salokas K, Tamene F, et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat Commun. 2018 Mar 22;9(1):1188. doi: 10.1038/s41467-018-03523-2
  • Do N Moreira CM, Kelemen CD, Obado SO, et al. Impact of inherent biases built into proteomic techniques: proximity labeling and affinity capture compared. Journal of Biological Chemistry. 2023 Jan 1;299(1):102726. doi: 10.1016/j.jbc.2022.102726
  • Xu Y, Fan X, Hu Y. In vivo interactome profiling by enzyme‐catalyzed proximity labeling. Cell Biosci. 2021;11(1). doi: 10.1186/s13578-021-00542-3
  • Bieniek JM, Drabovich AP, Lo KC. Seminal biomarkers for the evaluation of male infertility. Asian J Androl. 2016;18(3):426–433. doi: 10.4103/1008-682X.175781
  • Candenas L, Chianese R. Exosome composition and seminal plasma proteome: a promising source of biomarkers of male infertility. Int J Mol Sci MDPI AG. 2020;21(19):7022–7027. doi: 10.3390/ijms21197022
  • Chiriva-Internati M, Gagliano N, Donetti E, et al. Sperm protein 17 is expressed in the sperm fibrous sheath. J Transl Med. 2009 Jul 15;7(1):61. doi: 10.1186/1479-5876-7-61
  • Cheerathodi MR, Meckes DG. BioID combined with Mass spectrometry to study herpesvirus protein-protein interaction networks. Methods Mol Biol. 2020;2060:327–341.
  • Panner Selvam MK, Agarwal A. Sperm and seminal plasma proteomics: molecular changes associated with varicocele-mediated male infertility. World J Mens Health. 2019;38(4):472. doi: 10.5534/wjmh.190018
  • Camargo M, Intasqui P, Bertolla RP. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele. Asian J Androl. 2016;18(2):194–201. doi: 10.4103/1008-682X.168788
  • Samanta L, Parida R, Dias TR, et al. The enigmatic seminal plasma: a proteomics insight from ejaculation to fertilization. Reprod Biol Endocrinol. 2018;16(1). doi: 10.1186/s12958-018-0358-6
  • Gourinat A, Mazeaud C, Hubert J, et al. Impact of paternal age on assisted reproductive technology outcomes and offspring health: a systematic review. Andrology. 2023;11(6):973–986. doi: 10.1111/andr.13385
  • Légaré C, Droit A, Fournier F, et al. Investigation of male infertility using quantitative comparative proteomics. J Proteome Res. 2014 Dec 5;13(12):5403–5414. doi: 10.1021/pr501031x
  • McReynolds S, Dzieciatkowska M, Stevens J, et al. Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertil Steril. 2014;102(3):692–699. doi: 10.1016/j.fertnstert.2014.05.021
  • Choi YJ, Cho SK, Hwang KC, et al. Nm23-M5 mediates round and elongated spermatid survival by regulating GPX-5 levels. FEBS Lett. 2009 Apr 17;583(8):1292–1298. doi: 10.1016/j.febslet.2009.03.023
  • Yang TY, Chen Y, Chen GW, et al. Sperm-specific protein ACTL7A as a biomarker for fertilization outcomes of assisted reproductive technology. Asian J Androl. 2022 May 1;24(3):260–265. doi: 10.4103/aja2021111
  • Rahman MS, Kwon WS, Pang MG. Prediction of male fertility using capacitation-associated proteins in spermatozoa. Molecular Reproduct Devel. 2017;84(9):749–759. doi: 10.1002/mrd.22810

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.