2,294
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Virtual forests: a review on emerging questions in the use and application of 3D data in forestry

ORCID Icon, , , , , & show all
Pages 29-42 | Received 07 Feb 2023, Accepted 17 May 2023, Published online: 14 Jun 2023

References

  • Abe M, Yoshimura T, Koizumi S, Hasegawa N, Osaki T, Yasukawa N, Koba K, Moriya K, Sakai T. 2005. Virtual forest: design and evaluation of a walk-through system for forest education. J For Res. 10(3):189–197. doi:10.1007/s10310-004-0131-x.
  • Abegg M, Kükenbrink D, Zell J, Schaepman ME, Morsdorf F. 2017. Terrestrial laser scanning for forest inventories—tree diameter distribution and scanner location impact on occlusion. Forests. 8(6):184. doi:10.3390/f8060184.
  • Astner T. 2018. Forest thinning in VR: a VR application with the theme of forest thinning. [Bachelor’s thesis]. Mid Sweden University.
  • Baek N, Yoo KH. 2020. An accelerated rendering scheme for massively large point cloud data. J Supercomput. 76(10):8313–8323. doi:10.1007/s11227-019-03114-y.
  • Bates-Brkljac N, Dupras M. 2001. The virtual forest: integrating VRML worlds and generative music. In: Proceedings of 4th International Conference on Generative Design, Politecnico di Milano University. Milan: CUMINCAD. p. 25–30.
  • Bergen SD, McGaughey RJ, Fridley JL. 1998. Data-driven simulation, dimensional accuracy and realism in a landscape visualization tool. Landsc Urban Plan. 40(4):283–293. doi:10.1016/S0169-2046(97)00091-1.
  • Biljecki F, Ledoux H, Stoter J. 2016. An improved LOD specification for 3D building models. Comput Environ Urban Syst. 59:25–37. doi:10.1016/j.compenvurbsys.2016.04.005.
  • Bonnaffe F, Jennette D, Andrews J. 2007. A method for acquiring and processing ground-based lidar data in difficult-to-access outcrops for use in three-dimensional, virtual-reality models. Geosphere. 3(6):501. doi:10.1130/GES00104.1.
  • Botev J, Viegas A. 2020. Forest SaVR - A Virtual-Reality Application to Raise Awareness of Deforestation. In: Weyers B, Lürig C, Zielasko D, editors. GI VR/AR Workshop; Sep 24–25; Trier. Trier (Germany): Gesellschaft für Informatik e.V.
  • Boukherroub T, D’amours S, Rönnqvist M. 2018. Sustainable forest management using decision theaters: rethinking participatory planning. J Clean Prod. 179:567–580. doi:10.1016/j.jclepro.2018.01.084.
  • Bozgeyikli E, Raij A, Katkoori S, Dubey R. 2016. Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play. Austin, Texas, USA: Association for Computing Machinery, New York (NY), United States. p. 205–216.
  • Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver PO, Meurisse N, Oxbrough A, Taki H, et al. 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv. 26(13):3005–3035. doi:10.1007/s10531-017-1453-2.
  • Buckley DJ, Ulbricht C, Berry J. 1998. The virtual forest: advanced 3-D visualization techniques for forest management and research. In: ESRI 1998 User Conference. Toronto, Ontario, Canada. p. 27–31.
  • Burdea G. 2003. Virtual reality technology. 2nd ed. Hoboken (N.J): Wiley-Interscience.
  • Burt A, Disney M, Calders K. 2019. Extracting individual trees from lidar point clouds using treeseg. Methods Ecol Evol. 10(3):438–445.
  • Cabo C, Del Pozo S, Rodríguez-Gonzálvez P, Ordóñez C, González-Aguilera D. 2018. Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level. Remote Sens. 10(4):540. doi:10.3390/rs10040540.
  • Calders K, Burt A, Origo N, Disney M, Nightingale J, Raumonen P, Lewis P. 2016. Large-area virtual forests from terrestrial laser scanning data. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China: IEEE. p. 1765–1767.
  • Chandler T, Richards AE, Jenny B, Dickson F, Huang J, Klippel A, Neylan M, Wang F, Prober SM. 2022. Immersive landscapes: modelling ecosystem reference conditions in virtual reality. Landsc Ecol. 37(5):1293–1309. doi:10.1007/s10980-021-01313-8.
  • Çöltekin A, Lochhead I, Madden M, Christophe S, Devaux A, Pettit C, Lock O, Shukla S, Herman L, Stachoň Z, et al. 2020. Extended reality in spatial sciences: a review of research challenges and future directions. ISPRS Int J Geoinf. 9(7):439. doi:10.3390/ijgi9070439.
  • Cournède P-H, Guyard T, Bayol B, Griffon S, De Coligny F, Borianne P, Jaeger M, De Reffye P. 2009. A forest growth simulator based on functional-structural modelling of individual trees. In: Li B, Jaeger M, Guo Y, editors. 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. Beijing: IEEE. p. 34–41.
  • Dalponte M, Coops NC, Bruzzone L, Gianelle D. 2009. Analysis on the use of multiple returns LiDAR data for the estimation of tree stems volume. IEEE J Sel Top Appl Earth Obs Remote Sens. 2(4):310–318. doi:10.1109/JSTARS.2009.2037523.
  • Daniel TC, Meitner MM. 2001. Representational validity of landscape visualizations: the effects of graphical realism on perceived scenic beauty of forest vistas. J Environ Psychol. 21(1):61–72. doi:10.1006/jevp.2000.0182.
  • Dede C. 2009. Immersive interfaces for engagement and learning. Science. 323(5910):66–69. doi:10.1126/science.1167311.
  • Dunbar MD, Moskal LM, Jakubauskas ME. 2004. 3D visualization for the analysis of forest cover change. Geocarto Int. 19(2):103–112. doi:10.1080/10106040408542310.
  • Fabrika M. 2021. Interactive procedural forest in game engine environment as background for forest modelling. In: Beiträge zue Jahrestagung 2021 DVFFA - Sektion Ertragskunde. DVFFA. p. 86–95.
  • Fabrika M, Valent P, Scheer L. 2018. Thinning trainer based on forest-growth model, virtual reality and computer-aided virtual environment. Environ Model Softw. 100:11–23. doi:10.1016/j.envsoft.2017.11.015.
  • Fol CR, Murtiyoso A, Griess VC. 2022. Evaluation of azure kinect derived point clouds to determine the presence of microhabitats on single trees based on the swiss standard parameters. Int Arch Photogram Remote Sens Spatial Inform Sci. 43(B2–2022):989–994.
  • Frey J, Kovach K, Stemmler S, Koch B. 2018. UAV photogrammetry of forests as a vulnerable process. a sensitivity analysis for a structure from motion RGB-image pipeline. Remote Sens. 10(6):912. doi:10.3390/rs10060912.
  • Fujisaki I, Evans DL, Moorhead RJ, Irby DW, Mohammadi-Aragh MJ, Roberts SD, Gerard PD. 2008. Stand assessment through lidar-based forest visualization using immersive virtual environment technology. For Sci. 54(1):1–7. doi:10.1093/forestscience/54.1.1.
  • Ghorpade J, Parande J, Kulkarni M, Bawaskar A. 2012. GPGPU processing in CUDA architecture. advanced computing. Int J. 3(1):105–120.
  • Gollob C, Ritter T, Kraßnitzer R, Tockner A, Nothdurft A. 2021. Measurement of forest inventory parameters with Apple iPad pro and integrated LiDAR technology. Remote Sens. 13(16):3129. doi:10.3390/rs13163129.
  • Granshaw SI. 2020. Photogrammetric terminology: fourth edition. Photogramm Record. 35(170):143–288. doi:10.1111/phor.12314.
  • Hackenberg J, Spiecker H, Calders K, Disney M, Raumonen P. 2015. SimpleTree —An efficient open source tool to build tree models from TLS clouds. Forests. 6(11):4245–4294. doi:10.3390/f6114245.
  • Hejtmánek L, Hůla M, Herrová A, Surový P. 2022. Forest digital twin as a relaxation environment: a pilot study. Front Virtual Real. 3:1033708. doi:10.3389/frvir.2022.1033708.
  • Herwig A, Paar P. 2002. Game engines: tools for landscape visualization and planning. GIS Trends in Environmental Planning: Internet GIS and Web Mapping, Mobile- and Virtual GIS; May 2; Anhalt, Germany. Wichmann. p. 172.
  • Hettinger LJ, Riccio GE. 1992. Visually induced motion sickness in virtual environments. Presence. 1(3):306–310. doi:10.1162/pres.1992.1.3.306.
  • Hirschmüller H. 2011. Semi-global matching motivation, developments and applications. Photogrammetric Week; Stuttgart, Germany. p. 173–184.
  • Holopainen J, Mattila O, Pöyry E, Parvinen P. 2020. Applying design science research methodology in the development of virtual reality forest management services. For Policy Econ. 116:102190. doi:10.1016/j.forpol.2020.102190.
  • Hristova H, Abegg M, Fischer C, Rehush N. 2022. Monocular depth estimation in forest environments. International archives of the photogrammetry, remote sensing and spatial information sciences. ISPRS Arch. 43(B2–2022):1017–1023.
  • Huang J, Lucash MS, Scheller RM, Klippel A. 2020. Walking through the forests of the future: using data-driven virtual reality to visualize forests under climate change. Int J Geograph Inform Sci. 35(6):1155–1178. doi:10.1080/13658816.2020.1830997.
  • Huang J, Lucash MS, Scheller RM, Klippel A. 2021. Walking through the forests of the future: using data-driven virtual reality to visualize forests under climate change. Int J Geograph Inform Sci. 35(6):1155–1178.
  • Hyyppa J. 1999. Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finland. 16:27–42.
  • Jaiswal RK, Mukherjee S, Raju KD, Saxena R. 2002. Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Observ Geoinf. 4(1):1–10. doi:10.1016/S0303-2434(02)00006-5.
  • Jerald J, Giokaris P, Woodall D, Hartbolt A, Chandak A, Kuntz S. 2014. Developing virtual reality applications with unity. In: 2014 IEEE Virtual Reality (VR); Mar 29–Apr 2; Minneapolis, MN, USA. p. 1–3.
  • Johansson M, Roupé M, Bosch-Sijtsema P. 2015. Real-time visualization of building information models (BIM). Autom Constr. 54:69–82. doi:10.1016/j.autcon.2015.03.018.
  • Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F, et al. 2012. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 4(4):950–974. doi:10.3390/rs4040950.
  • Kalacska M, Arroyo-Mora JP, Lucanus O. 2021. Comparing UAS LiDAR and structure-from-motion photogrammetry for peatland mapping and virtual reality (VR) visualization. Drones. 5(2):36. doi:10.3390/drones5020036.
  • Karjalainen E, Tyrväinen L. 2002. Visualization in forest landscape preference research: a Finnish perspective. Landsc Urban Plan. 59(1):13–28. doi:10.1016/S0169-2046(01)00244-4.
  • Kavanagh S, Luxton-Reilly A, Wuensche B, Plimmer B. 2017. A systematic review of virtual reality in education. Themes Sci Technol Educ. 10(2):85–119.
  • Kharroubi A, Hajji R, Billen R, Poux F. 2019. Classification and integration of massive 3D points clouds in a virtual reality (VR) environment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W17(W17):165–171. doi:10.5194/isprs-archives-XLII-2-W17-165-2019.
  • Klippel A, Zhao J, Jackson KL, La Femina P, Stubbs C, Wetzel R, Blair J, Wallgrün JO, Oprean D. 2019. Transforming earth science education through immersive experiences: delivering on a long held promise. J Educ Comput Res. 57(7):1745–1771. doi:10.1177/0735633119854025.
  • Krumm F, Lachat T, Schuck A, Bütler R, Kraus D. 2019. Marteloskope als Trainingstools zur Erhaltungund Förderung von Habitatbäumen im Wald. Schweiz Z Forstwes. 170(2):86–93. doi:10.3188/szf.2019.0086.
  • Kükenbrink D, Gardi O, Morsdorf F, Thürig E, Schellenberger A, Mathys L. 2021. Above-ground biomass references for urban trees from terrestrial laser scanning data. Ann Bot. 128(6):709–724. doi:10.1093/aob/mcab002.
  • Kükenbrink D, Marty M, Bösch R, Ginzler C. 2022. Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest. Int J Appl Earth Observ Geoinf. 113(March):102999. doi:10.1016/j.jag.2022.102999.
  • Laksono D, Aditya T. 2019. Utilizing a game engine for interactive 3D topographic data visualization. ISPRS Int J Geoinf. 8(8):361. doi:10.3390/ijgi8080361.
  • Lau A, Bentley LP, Martius C, Shenkin A, Bartholomeus H, Raumonen P, Malhi Y, Jackson T, Herold M. 2018. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees. 32(5):1219–1231. doi:10.1007/s00468-018-1704-1.
  • Li W, Guo Q, Jakubowski MK, Kelly M. 2012. A new method for segmenting individual trees from the LiDAR point cloud. Photogramm Eng Remote Sensing. 78(1):75–84. doi:10.14358/PERS.78.1.75.
  • Lim EM, Honjo T. 2003. Three-dimensional visualization forest of landscapes by VRML. Landsc Urban Plan. 63(3):175–186. doi:10.1016/S0169-2046(02)00189-5.
  • Lin W, Wang J. 2012. An integrated 3D log processing optimization system for hardwood sawmills in central Appalachia, USA. Comput Electron Agric. 82:61–74. doi:10.1016/j.compag.2011.12.014.
  • Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas M-J, Lasch P, Eggers J, van der Maaten-Theunissen M, et al. 2014. Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage. 146:69–83. doi:10.1016/j.jenvman.2014.07.030.
  • Lindner P, Miloff A, Hamilton W, Reuterskiöld L, Andersson G, Powers MB, Carlbring P. 2017. Creating state of the art, next-generation virtual reality exposure therapies for anxiety disorders using consumer hardware platforms: design considerations and future directions. Cogn Behav Ther. 46(5):404–420. doi:10.1080/16506073.2017.1280843.
  • Lintermann B, Deussen O. 1999. Interactive modeling of plants. IEEE Comput Graph Appl. 19(1):56–65. doi:10.1109/38.736469.
  • Liu D, Dede C, Huang R, Richards J. 2017. Virtual, augmented, and mixed realities in education. Singapore: Springer. p. 247.
  • Luetzenburg G, Kroon A, Bjørk AA. 2021. Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences. Sci Rep. 11(1):1–9. doi:10.1038/s41598-021-01763-9.
  • Mallet C, Bretar F. 2009. Full-waveform topographic lidar: state-of-the-art. ISPRS J Photogramm Remote Sens. 64(1):1–16. doi:10.1016/j.isprsjprs.2008.09.007.
  • Mantovani F, Castelnuovo G, Gaggioli A, Riva G. 2003. Virtual reality training for health-care professionals. Cyberpsychol Behav. 6(4):389–395. doi:10.1089/109493103322278772.
  • Matthews D. 2018. Virtual-reality applications give science a new dimension. Nature. 557(7703):127–128. doi:10.1038/d41586-018-04997-2.
  • Mattila O, Korhonen A, Pöyry E, Hauru K, Holopainen J, Parvinen P. 2020. Restoration in a virtual reality forest environment. Comput Human Behav. 107:106295. doi:10.1016/j.chb.2020.106295.
  • Mazzacca G, Grilli E, Cirigliano GP, Remondino F, Campana S. 2022. Seeing among foliage with LIDAR and machine learning: towards a transferable archaeological pipeline. In: 9th International Workshop 3D-ARCH; Mar 2–4; Mantova, Italy. p. 365–372.
  • McGaughey RJ. 1998. Techniques for visualizing the appearance of forestry operations. J For. 96(6):9–14.
  • Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R. 2021. Nerf: representing scenes as neural radiance fields for view synthesis. Commun ACM. 65(1):99–106. doi:10.1145/3503250.
  • Milgram P, Kishino F. 1994. A taxonomy of mixed reality visual displays. IEICE Trans Inform Syst. E77–D:1321–1329.
  • Mokroš M, Mikita T, Singh A, Tomaštík J, Chudá J, Wężyk P, Kuželka K, Surový P, Klimánek M, Zięba-Kulawik K, et al. 2021. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. Int J Appl Earth Observ Geoinf. 104:102512. doi:10.1016/j.jag.2021.102512.
  • Mokroš M, Výbošťok J, Tomaštík J, Grznárová A, Valent P, Slavík M, Merganič J. 2018. High precision individual tree diameter and perimeter estimation from close-range photogrammetry. Forests. 9(11):696. doi:10.3390/f9110696.
  • Mostajeran F, Krzikawski J, Steinicke F, Kühn S. 2021. Effects of exposure to immersive videos and photo slideshows of forest and urban environments. Sci Rep. 11(1):1–14. doi:10.1038/s41598-021-83277-y.
  • Murtiyoso A, Grussenmeyer P, Landes T, Macher H. 2021. First assessments into the use of commercial-grade solid state lidar for low cost heritage documentation. Int Arch Photogram Remote Sens Spatial Inform Sci. 43(B2–2021):599–604.
  • Murtiyoso A, Hristova H, Rehush N, Griess VC. 2022. Low-cost mapping of forest under-storey vegetation using spherical photogrammetry. The international archives of the photogrammetry, remote sensing and spatial information sciences. XLVIII-2/W1-2022:185–190.
  • Næsset E. 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ. 80(1):88–99. doi:10.1016/S0034-4257(01)00290-5.
  • Nex F, Gerke M, Remondino F, Przybilla H-J, Bäumker M, Zurhorst A. 2015. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences. II3/W4:135–142.
  • Nocerino E, Stathopoulou EK, Rigon S, Remondino F. 2020. Surface reconstruction assessment in photogrammetric applications. Sensors. 20(20):5863. doi:10.3390/s20205863.
  • Oberdörfer S, Heidrich D, Birnstiel S, Latoschik ME. 2021. Enchanted by your surrounding? Measuring the effects of immersion and design of virtual environments on decision-making. Front Virtual Real. 2:679277. doi:10.3389/frvir.2021.679277.
  • Ochmann S, Vock R, Wessel R, Klein R. 2016. Automatic reconstruction of parametric building models from indoor point clouds. Comput Graph. 54:94–103. doi:10.1016/j.cag.2015.07.008.
  • Orland B. 1988. Video imaging: a powerful tool for visualization and analysis. Landscape Archit. 78(5):78–88.
  • Orland B. 1994. Visualization techniques for incorporation in forest planning geographic information systems. Landsc Urban Plan. 30(1–2):83–97. doi:10.1016/0169-2046(94)90069-8.
  • Overpeck JT, Rind D, Goldberg R. 1990. Climate-induced changes in forest disturbance and vegetation. Nature. 343(6253):51–53. doi:10.1038/343051a0.
  • Palha A, Murtiyoso A, Michelin J-C, Alby E, Grussenmeyer P. 2017. Open source first person view 3D point cloud visualizer for large data sets. In: Ivan I, Singleton A, Horak J, Inspektor T, editors. The rise of big spatial data. Ostrava, Czech Republic: Springer; p. 27–39.
  • Park H, Lee D. 2019. Comparison between point cloud and mesh models using images from an unmanned aerial vehicle. Measurement. 138:461–466. doi:10.1016/j.measurement.2019.02.023.
  • Parkan M, Tuia D. 2015. Individual tree segmentation in deciduous forests using geodesic voting. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Milan, Italy. p. 637–640.
  • Picchi G, Sandak J, Grigolato S, Panzacchi P, Tognetti R. 2022. Smart Harvest Operations and Timber Processing for Improved Forest Management. In Tognetti R, Smith M, Panzacchi P, editors. Vol. 40, Climate-Smart Forestry in Mountain Regions. Managing Forest Ecosystems. Cham, Switzerland: Springer, Cham; p. 317–359.
  • Pichler G, Poveda Lopez JA, Picchi G, Nolan E, Kastner M, Stampfer K, Kühmaier M. 2017. Comparison of remote sensing based RFID and standard tree marking for timber harvesting. Comput Electron Agric. 140:214–226. doi:10.1016/j.compag.2017.05.030.
  • Pretzsch H, Grote R, Reineking B, Rötzer TH, Seifert ST. 2008. Models for forest ecosystem management: a European perspective. Ann Bot. 101(8):1065–1087. doi:10.1093/aob/mcm246.
  • Ranta P. 2009. Added values of forestry machine simulator based training. In: Proceedings of the International conference on multimedia and ICT education; Apr 22–24; Lisbon, Portugal. p. 1–6.
  • Rehush N, Abegg M, Waser LT, Brändli U-B. 2018. Identifying tree-related microhabitats in TLS point clouds using machine learning. Remote Sens. 10(11):1735. doi:10.3390/rs10111735.
  • Remondino F, Rizzi A. 2010. Reality-based 3D documentation of natural and cultural heritage sites-techniques, problems, and examples. Appl Geomat. 2(3):85–100. doi:10.1007/s12518-010-0025-x.
  • Risse B, Mangan M, Stürzl W, Webb B. 2018. Software to convert terrestrial LiDAR scans of natural environments into photorealistic meshes. Environ Model Softw. 99:88–100. doi:10.1016/j.envsoft.2017.09.018.
  • Rupnik E, Pierrot-Deseilligny M, Delorme A. 2018. 3D reconstruction from multi-view VHR-satellite images in MicMac. ISPRS J Photogramm Remote Sens. 139:201–211. doi:10.1016/j.isprsjprs.2018.03.016.
  • Rusu RB, Cousins S. 2011. 3D is here: Point Cloud Library (PCL). In: 2011 IEEE International Conference on Robotics and Automation; Shanghai, China. p. 1–4.
  • Sankey T, Donager J, McVay J, Sankey JB. 2017. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens Environ. 195:30–43. doi:10.1016/j.rse.2017.04.007.
  • Schenk T. 2005. Introduction to photogrammetry. Columbus, OH, USA: The Ohio State University.
  • Schütz M, Ohrhallinger S, Wimmer M. 2020. Fast out-of-core octree generation for massive point clouds. Comput Graph Forum. 39(7):155–167. doi:10.1111/cgf.14134.
  • Sheppard SRJ, Meitner M. 2005. Using multi-criteria analysis and visualisation for sustainable forest management planning with stakeholder groups. For Ecol Manage. 207(1–2):171–187. doi:10.1016/j.foreco.2004.10.032.
  • Sonntag-Öström E, Nordin M, Lundell Y, Dolling A, Wiklund U, Karlsson M, Carlberg B, Järvholm LS. 2014. Restorative effects of visits to urban and forest environments in patients with exhaustion disorder. Urban Green. 13(2):344–354. doi:10.1016/j.ufug.2013.12.007.
  • Stathopoulou EK, Remondino F. 2020. Multi view stereo with semantic priors. The international archives of the photogrammetry, remote sensing and spatial information sciences. XLII-2/W15:1135–1140.
  • Stava O, Pirk S, Kratt J, Chen B, Měch R, Deussen O, Benes B. 2014. Inverse procedural modelling of trees. Comput Graph Forum. 33(6):118–131. doi:10.1111/cgf.12282.
  • Stock C, Bishop ID. 2006. Linking GIS with real-time visualisation for exploration of landscape changes in rural community workshops. Virtual Real. 9(4):260–270. doi:10.1007/s10055-006-0023-9.
  • Stoltman AM, Radeloff VC, Mladenoff DJ. 2004. Forest visualization for management and planning in Wisconsin. J For. 102(4):7–13.
  • Stoltman AM, Radeloff VC, Mladenoff DJ. 2007. Computer visualization of pre-settlement and current forests in Wisconsin. For Ecol Manage. 246(2–3):135–143. doi:10.1016/j.foreco.2007.02.029.
  • Sutherland IE. 1964. Sketchpad a man-machine graphical communication system.Cambridge, MA, USA: Sage Publications Sage CA.
  • Szabó C, Š K, Sobota B. 2012. Data processing for virtual reality. In: Advances in robotics and virtual reality. Heidelberg, Germany: Springer Berlin Heidelberg; p. 333–361.
  • Talton JO, Lou Y, Lesser S, Duke J, Měch R, Koltun V. 2011. Metropolis procedural modeling. ACM Trans Graph. 30(2):11
  • Tang H, Bishop ID. 2002. Integration methodologies for interactive forest modelling and visualization systems. Cartogr J. 39(1):27–35. doi:10.1179/caj.2002.39.1.27.
  • Thormann -J-J, Allenspach-Schliessbach K, Bugmann H, Frehner M, Junod P, Rosset C, Kühne K. 2019. Bedeutung von Marteloskopen für Praxis und Lehre in der Schweiz. Schweizerische Zeitschrift fur Forstwesen. 170(2):60–68. doi:10.3188/szf.2019.0060.
  • Ullrich T, Schinko C, Fellner W-D. 2010. Procedural modeling in theory and practice. In: Proceeding of the 18th WSCG International Conference on Computer Graphics, Visualization and Computer Vision; Pilsen, Czech Republic. p. 5–8.
  • Uusitalo J, Orland B. 2001. Virtual forest management: possibilities and challenges. Int J For Eng. 12(2):57–66. doi:10.1080/14942119.2001.10702447.
  • Vega C, Hamrouni A, Mokhtari AE, Morel M, Bock J, Renaud JP, Bouvier M, Durrieue S. 2014. PTrees: a point-based approach to forest tree extractionfrom lidar data. Int J Appl Earth Observ Geoinf. 33(1):98–108. doi:10.1016/j.jag.2014.05.001.
  • Wang J, Liu J, LeDoux CB. 2009a. A three-dimensional bucking system for optimal bucking of central appalachian hardwoods. Int J For Eng. 20(2):26–35. doi:10.1080/14942119.2009.10702580.
  • Wang J, Shan J 2009b. Segmentation of LiDAR point clouds for building extraction. In: American Society for Photogramm. Remote Sens. Annual Conference, Baltimore, MD. p. 9–13.
  • Wang J, Sharma BD, Li Y, Miller GW. 2009. Modeling and validating spatial patterns of a 3D stand generator for central Appalachian hardwood forests. Comput Electron Agric. 68(2):141–149. doi:10.1016/j.compag.2009.05.005.
  • Wang L, Chu CH. 2009. 3D building reconstruction from LiDAR data. In: 2009 IEEE International Conference on Systems, Man and Cybernetics; San Antonio, TX, USA. p. 3054–3059.
  • Wang X, Song B, Chen J, Zheng D, Crow TR. 2006. Visualizing forest landscapes using public data sources. Landsc Urban Plan. 75(1–2):111–124. doi:10.1016/j.landurbplan.2004.12.010.
  • Wu C, Agarwal S, Curless B, Seitz SM. 2011. Multicore bundle adjustment. CVPR 2011; Colorado Springs, CO, USA. p. 3057–3064.
  • Yang X, Koehl M, Grussenmeyer P. 2018. Automating parametric modelling from reality-based data by revit api development. In: Remondino F, Georgopoulos A, González-Aguilera D, Agrafiotis P, editors. Latest developments in reality-based 3D surveying and modelling. Basel (Switzerland): MDPI; p. 307–325.
  • Yu CP, Lee HY, Luo XY. 2018. The effect of virtual reality forest and urban environments on physiological and psychological responses. Urban Green. 35:106–114. doi:10.1016/j.ufug.2018.08.013.
  • Zerman E, Ozcinar C, Gao P, Smolic A. 2020. Textured mesh vs coloured point cloud: a subjective study for volumetric video compression. In: 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX); Athlone, Ireland. p. 1–6.
  • Zhou Q-Y, Park J, Koltun V. 2018. Open3D: a modern library for 3D data processing. arXiv preprint. arXiv:1801.09847.