122
Views
5
CrossRef citations to date
0
Altmetric
Original Article

The effect of longitudinal noise exposure on behavioral audiograms and transient-evoked otoacoustic emissions

El efecto de la exposición longitudinal a ruido en audiometría conductual y en emisiones otoacústicas evocadas por transitorios

&
Pages 119-127 | Published online: 07 Jul 2009

References

  • ACGIH 2002. Threshold Limit Values for chemical substances and physical agents (2002–2003). American Conference of Governmental Industrial Hygienists, Ohio.
  • ANSI 1999. ANSI S3.1-1999. Maximum permissible ambient noise levels for audiometric test rooms. American National Standards Institute, New York.
  • Attias J., Bresloff I. Noise induced temporary otoacoustic emission shifts. Journal of Basic and Clinical Physiology and Pharmacology 1996; 7: 221–234
  • Attias J., Furst M., Furman V., Haran I. R., Horowitz G., et al. Noise-induced otoacoustic emission loss with or without hearing loss. Ear and Hearing 1995; 16: 612–618
  • Berlin C.I., Hood L.J., Wen H., Szabo P., Cecola R.P., et al. Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hearing Research 1993; 71: 1–11
  • Cohen A., Furst M. Integration of outer hair cell activity in one-dimensional cochlear model. Journal of the Acoustical Society of America 2004; 115: 2185–2192
  • Collet L., Kemp D.T., Veuillet E., Duclaux R., Moulin A., et al. Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hearing Research 1990; 43: 251–262
  • Dancer A.L., Buck K., Parmentier G., Hamery P. The specific problem of noise in the military life. Scand Audiol 1998; 27: 123–130
  • Duvdevany A. 2004. The effect of repetitive noise exposure on human ear. Ph.D. dissertation, Tel Aviv University.
  • Furst M., Lapid M. A cochlear model for acoustic emissions. Journal of the Acoustical Society of America 1988; 84: 222–229
  • Furst, M. & Halmut, Y. 2005. Prediction for audiograms and otoacoustic emissions. The 9th cochlear mechanics workshop proceeding.
  • Henderson D., Campo P., Subramaniam M., Fiorino F. Development of resistance to noise. Noise-Induced Hearing Loss. Mosby year book press. 1992; 476–488
  • Hotz M.A., Probst R., Harris F.P., Hauser R. Monitoring the effects of noise exposure using transiently-evoked otoacoustic emissions. Acta Oto-Laryngology 1993; 113: 472–482
  • Maison S.F., Liberman M.C. Predicting vulnerability to acoustic injury with a non-invasive assay of olivocochlear reflex strength. Journal of Neoroscience 2000; 20: 4701–4707
  • Marshall L., Heller L.M. Transient-evoked otoacoustic emissions as a measure of noise-induced threshold shift. Journal of Speech, Language. and Hearing Research 1998; 41: 1319–1334
  • Marshall, L., Lapsley Miller, J.A., Hughes, L.M., Heller, L. & Westhusin, L.J. 2002. Changes in evoked otoacoustic emissions and hearing thresholds after a six-month deployment on an aircraft carrier. Association for Research in Otolaryngology, annual midwinter research meeting, St. Petersburg, Florida, #772, p. 97.
  • MIL-STD 1998. MIL-STD-1474-D. Military standard noise limits for army materials. Department of Defence, USA.
  • Oeken J., Menz D. Changes in DP-amplitude after acute noise impact. Laryngo-Rhino-Otology 1996; 75: 265–269
  • Prasher D. New strategies for prevention and treatment of NIHL. The Lancet 1998; 352: 1240–1242
  • Puria S., Guinan J.J., Liberman M.C. Olivocochlear reflex assays: Effects of contralateral sound on compound action potential versus ear-canal distortion products. Journal of the Acoustical Society of America 1996; 99: 500–507
  • Shera C.A. Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. Journal of the Acoustical Society of America 2003; 114: 244–262
  • Suckfull M., Schneeweiss S., Dreher A., Schorn K. Evaluation of TEOAE and DPOAE measurements for the assessment of auditory thresholds in sensorineural hearing loss. Acta Oto-Laryngology 1996; 116: 528–533
  • Sutton L.A., Lonsbury-Martin B.L., Martin G.K., Whitehead M.L. Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: Time-course of recovery and effects of lowering L2. Hearing Research 1994; 75: 161–174
  • Talmadge C.L., Tubis A., Long G.L., Piskorski P. Modeling otoacoustic emission and hearing threshold fine structure. Journal of the Acoustical Society of America 1998; 104: 1517–1543
  • Veuillet E., Duverdy-Bertholon F., Collet L. Effect of contralateral acoustic stimulation on the growth of click-evoked otoacoustic emissions in humans. Hearing Research 1996; 93: 128–135
  • Veuillet E., Martin V., Suc B., Vesson J.F., Morgon A., et al. Otoacoustic emissions and medial olivocochlear suppression during auditory recovery from acoustic trauma in humans. Acta Oto-Laryngology 2001; 121: 278–283

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.