96
Views
0
CrossRef citations to date
0
Altmetric
Miscellaneous

Abstracts of the British Society of Audiology Short Papers Meeting on Experimental Studies of Hearing and Deafness September 2006, Cambridge University, UK

Pages 619-658 | Published online: 07 Jul 2009

References

  • Shannon R.V., Zeng F.-G., Kamath V., Wygonski J., Ekelid M. Speech recognition with primarily temporal cues. Science 1995; 270: 303–304
  • Stone M.A., Moore B.C.J. Effect of the speed of a single-channel dynamic range compressor on intelligibility in a competing speech task. J Acoust Soc Am 2003; 114: 1023–1034
  • Stone M.A., Moore B.C.J. Side effects of fast-acting dynamic range compression that affect intelligibility in a competing speech task. J Acoust Soc Am 2004; 116: 2311–2323
  • Moore B.C.J., Glasberg B.R., Flanagan H.J., Adams J. Frequency discrimination of complex tones: Assessing the role of component resolvability and temporal fine structure. J Acoust Soc Am 2006; 119: 480–490
  • Moore G.A., Moore B.C.J. Perception of the low pitch of frequency-shifted complexes. J Acoust Soc Am 2003; 113: 977–985
  • Kacelnik O., Nodal F.R., Parsons C.H., King A.J. Training-induced plasticity of auditory localization in adult mammals. PLoS Biol 2006; 4: e71
  • Oxenham A.J., Moore B.C.J. Modeling the additivity of nonsimultaneous masking. Hear Res 1994; 80: 105–118
  • Amitay S., Hawkey D.J.C., Moore D.R. Auditory frequency discrimination is affected by stimulus variability. Percept Psychophys 2005; 67: 691–698
  • van de Par S., Kohlrausch A. A new approach to comparing binaural masking level differences at low and high frequencies. J Acoust Soc Am 1997; 101(3)1671–1680
  • Fu Q-J., Galvin J.J., Wang X., Nogaki G. Effects of auditory training on adult cochlear implant patients: A preliminary report. Coch Imps Intl 2004; 5(1)84–90
  • Fu Q-J., Galvin J.J., Wang X., Nogaki G. Moderate auditory training can improve speech performance of adult cochlear implant patients. Acoust Res Lett Online 2005; 6: 106–111
  • Robinson K., Gatehouse S., Browning G.G. Measuring patient benefit from otorhinolaryngological surgery and therapy. Ann Otol Rhinol Laryngol 1996; 105: 415–422
  • Gatehouse S., Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int J Audiol 2004; 43(2)85–99
  • Robertson I.H., Ward T., Ridgeway V., Nimmo-Smith I. The structure of normal human attention: The test of everyday attention. J Int Neuropsych Soc 1996; 2: 525–534
  • Gatehouse S. & Akeroyd M.A. 2006. Two-eared listening in dynamic situations. Int J Audiol (in press).
  • Grantham D.W., Wightman F.L. Detectability of a pulsed tone in the presence of a masker with time-varying interaural correlation. J Acoust Soc Am 1979; 65: 1509–1517
  • Moore B.C.J., Huss M., Vickers D.A., Glasberg B.R., Alcántara J.I. A test for the diagnosis of dead regions in the cochlea. Br J Audiol 2000; 34: 205–224
  • Robinson J.D., Baer T. & Moore B.C.J. 2005. Using FFT-based frequency transposition to improve consonant identification in listeners with severe high-frequency hearing loss. British Society of Audiology Short Papers Meeting on Experimental Studies of Hearing and Deafness, University of Cardiff, September 2005.
  • Sek A., Alcántara J.I., Moore B.C.J., Kluk K., Wicher A. Development of a fast method for determining psychophysical tuning curves. Int J Audiol 2005; 44: 408–420
  • Richards V.M., Moore B.C.J., Launer S. Potential benefits of across-aid communication for bilaterally aided people: Listening in a car. Int J Audiol 2006; 45: 182–189
  • Arbogast T.L., Mason C.R., Kidd G.Jr. The effect of spatial separation on informational and energetic masking of speech. J Acoust Soc Am 2002; 112: 2086–2098
  • Kidd G., Jr, Mason C.R., Gallun F.J. Combining energetic and informational masking for speech identification. J Acoust Soc Am 2005; 118: 982–992
  • Ciocca V., Darwin C.J. Effects of onset asynchrony on pitch perception: Adaptation of grouping?. J Acoust Soc Am 1993; 93: 2870–2878
  • Darwin C.J., Sutherland N.S. Grouping frequency components of vowels: When is a harmonic not a harmonic?. Q J Exp Psychol 1984; 36A: 193–208
  • Roberts B., Holmes S.D. Asynchrony and the grouping of vowel components: Captor tones revisited. J Acoust Soc Am 2006; 119: 2905–2918
  • Bregman A.S. Auditory streaming is cumulative. J Exp Psychol Hum Percept Perform 1978; 4: 380–387
  • Rogers W.L., Bregman A.S. Cumulation of the tendency to segregate auditory streams: Resetting by changes in location and loudness. Percept Psychophys 1998; 60: 1216–1227
  • Barrett D.J.K., Hall D.A. Response preferences for ‘what’ and ‘where’ in human non-primary auditory cortex. NeuroImage 2006; 32(2)968–977
  • Mondor T.A., Zatorre R.J., Terrio N.A. Constraints on the selection of auditory information. J Exp Hum Percept Perform 1998; 24: 66–79
  • Rauschecker J.P., Tian B. Mechanisms and streams for processing of ‘what’ and ‘where’ in auditory cortex. Proc Natl Acad Sci USA 2000; 97: 11800–11806
  • Woods D, Alain C. Conjoining three auditory features: An event related brain potential study. J Cogn Neurosci 2001; 13: 492–509
  • Balaguer-Ballester E., Denham S.L. & Meddis R. 2006. An integrated autocorrelation model accounts for pure temporal pitches. In preparation.
  • Dyson B., Alain C. Representation of concurrent acoustic objects in primary auditory cortex. J Acoust Soc Am 2004; 115: 280–288
  • Kantz H., Schreiber T. Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, MA 1999
  • Meddis R., O'Mard L. A unitary model of pitch perception. J Acoust Soc Am 1997; 102: 1811–1820
  • Roberts B. Spectral pattern, grouping and the pitches of complex tones and their components. Acta Acustica united with Acustica 2005; 91: 945–957
  • Roberts B., Brumstrom J. M. Perceptual fusion and fragmentation of complex tones made inharmonic by applying different degrees of frequency shift and spectral stretch. J Acoust Soc Am 2001; 110: 2479–2490
  • Lorenzi C., Simpson M.I., Millman R.E., Griffiths T.D., Woods W.P., et al. Second-order modulation detection thresholds for pure-tone and narrow- band noise carriers. J Acoust Soc Am 2001; 110: 2470–2478
  • Shofner W.D., Sheft S., Guzman S.J. Responses of ventral cochlear nucleus units in the chinchilla to amplitude modulation by low-frequency, two-tone complexes. J Acoust Soc Am 1996; 99: 3592–3605
  • Viemeister N.F. Temporal modulation transfer functions based on modulation thresholds. J Acoust Soc Am 1979; 66: 1364–1380
  • Bleeck S., Ives D.T., Patterson R.D. Aim-mat: The Auditory Image Model in MATLAB. Acta Acustica 2004; 90: 781–787
  • Kaaresen K.F. Deconvolution of sparse spike trains by iterated window maximization. IEEE Trans Sig Proc 1997; 45(5)1173–1183
  • ANSI 1997. ANSI S3.5-1997, Methods for the calculation of the speech intelligibility index. New York, American National Standards Institute.
  • Baer T., Moore B.C.J. & Huss M. 2005. How do listeners extract information from the transition bands of 1/3-octave-filtered speech? British Society of Audiology Short Papers Meeting on Experimental Studies of Hearing and Deafness, University of Cardiff, September 2005.
  • Moore B.C.J., Glasberg B.R. Use of a loudness model for hearing aid fitting. I. Linear hearing aids. Br J Audiol 1998; 32: 317–335
  • Warren R.M., Bashford J.A., Jr, Lenz P.W. Intelligibility of bandpass filtered speech: Steepness of slopes required to eliminate transition band contributions. J Acoust Soc Am 2004; 115: 1292–1295
  • Carlyon R.P., Deeks J.M., Norris D., Butterfield S. The continuity illusion and vowel identification. Acta Acustica 2002; 88: 408–415
  • Hall D.A., Haggard M.P., Akeroyd M.A., Palmer A.R., Summerfield A.Q., et al. Sparse’ temporal sampling in auditory fMRI. Human Brain Mapping 1999; 7: 213–223
  • Simpson M.I.G., Hadjipapas A., Barnes G.R., Furlong P.L., Witton C. Imaging the dynamics of the auditory steady-state evoked response. Neurosci Lett 2005; 385: 195–197
  • Tesche C.D. Non-invasive detection of ongoing neuronal population activity in normal human hippocampus. Brain Res 1997; 749: 53–90
  • Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.D. Testing for nonlinearity in time-series: The method of surrogate data. Physica D 1992; 58: 77–94
  • Lehtela L., Salmelin R., Hari R. Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neurosci Lett 1997; 222: 111–114
  • Alain C., Schuler B.M., McDonald K.L. Neural activity associated with distinguishing concurrent auditory objects. J Acoust Soc Am 2002; 111: 990–5
  • Ives T., Smith D.R., Patterson R.D. Discrimination of speaker size from syllable phrases. J Acoust Soc Am 2005; 118(6)3816–3822
  • Smith D.R., Patterson R.D., Turner R., Kawahara H., Irino T. The processing and perception of size information in speech sounds. J Acoust Soc Am 2005; 117(1)305–318
  • Bendor D., Wang X. The neuronal representation of pitch in primate auditory cortex. Nature 2005; 436: 1161–1165
  • Cariani P.A. Neural timing nets. Neural Networks 2001; 14: 737–753
  • Cariani P.A. 2003. Recurrent timing nets for auditory scene analysis. In: Proc Intl Conf on Neural Networks (IJCNN).
  • Gardner W.G., Martin K.D. HRTF measurements of a KEMAR. J Acoust Soc Am 1995; 97(6)3907–3908
  • Hu G., Wang D. Monaural speech segregation based on pitch tracking and amplitude modulation. IEEE T Neural Network 2004; 15(5)1135–1150
  • Houtsma A.J.M., Goldstein J.L. The central origin of the pitch of complex tones: Evidence from musical interval recognition. J Acoust Soc Am 1972; 51: 520–529
  • Moore B.C.J., Rosen S.M. Tune recognition with reduced pitch and interval information. J Exp Psychol 1979; 31: 229–240
  • Moore B.C.J., Glasberg B.R., Flanagan H.J., Adams J. Frequency discrimination of complex tones: Assessing the role of component resolvability and temporal fine structure. J Acoust Soc Am 2006; 119: 480–490
  • Schouten J.F. The residue and the mechanisms of hearing. Proc Kon Acad Wentensch (Neth) 1940; 43: 991–999
  • Patterson R.D., Allerhand M., Giguère C. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. J Acoust Soc Am 1995; 98: 1890–1894
  • Smith D.R.R., Patterson R.D. The interaction of glottal-pulse rate and vocal-tract length in judgements of speaker size, sex, and age. J Acoust Soc Am 2005; 118: 3177–3186
  • Dean I., Harper N.S., McAlpine D. Neural population coding of sound level adapts to stimulus statistics. Nature Neurosci 2005; 8: 1684–1689
  • Fairhall A.L., Lewen G.D., Bialek W., de Ruyter van Steveninck R.R. Efficiency and ambiguity in an adaptive neural code. Nature 2001; 412: 787–792
  • Culling J.F., Hodder K.I., Toh C.Y. Effects of reverberation on perceptual segregation of competing voices. J Acoust Soc Am 2003; 114(5)2871–2876
  • Ingham N.J., Bleeck S. & Winter I.M. 2006. The magnitude of forward masking and the time course of its recovery, as a function of unit type in the ventral cochlear nucleus. Assoc Res Otolaryngol Abs, 36–37.
  • Relkin E.M., Turner C.W. A re-examination of forward masking in the auditory nerve. J Acoust Soc Am 1988; 84: 584–591
  • Ulanovsky N., Las L., Nelken I. Processing of low-probability sounds by cortical neurons. Nat Neurosci 2003; 6: 391–398
  • Bonham B. & Snyder R.L. 2004. The Neurophysiological Effects of Simulated Auditory Prosthesis Stimulation: Acoustic Forward Masking. 6th Quarterly Progress Report. Neural Prosthesis Program Contract N01-DC-02-1006.
  • Moore B.C.J., Jorasz U. Comodulation masking release as a function of bandwidth and time delay between on-frequency and flanking-band maskers. J Acoust Soc Am 1996; 100: 2373–2379
  • Patterson R.D., Anderson T.R., Francis K. Binaural auditory images for noise-resistant speech recognition. Listening to Speech: An Auditory Perspective, S. Greenberg, W.A. Ainsworth. Lawrence Erlbaum Associates, New Jersey 2006; 257–269
  • Patterson R.D., Robinson K., Holdsworth J., McKeown D., Zhang C., . Complex sounds and auditory images. Auditory Physiology and Perception – Proc 9th Int Symp Hear, Y Cazals, L. Demany, K. Horner, et al. Pergamon, Oxford 1992; 429–446
  • Jain M., Gallagher D.T., Koehnke J., Colburn H.S. Fringed correlation discrimination and binaural detection. J Acoust Soc Am 1991; 90: 1918–1926
  • Rowan D. & Lutman M.E. 2005. Learning on binaural discrimination tasks in humans. British Society of Audiology Short Papers Meeting on Experimental Studies of Hearing and Deafness, September 12–13, Cardiff, UK.
  • Wright B.A., Fitzgerald M.B. Different patterns of human discrimination learning for two interaural cues to sound-source location. Proc Natl Acad Sci USA 2001; 98: 12307–12
  • Simon J.Z., Wang Y.D. Fully complex magnetoencephalography. J Neurosci Meth 2005; 149: 64–73
  • Luo H., Wang Y.D., Poeppel D. & Simon J.Z. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence. J Neurophysiol (In press).
  • Jeffress L.A. A place theory of sound localization. J Comp Physiol Psychol 1948; 41: 35–39
  • Schroeder M.R. New viewpoints in binaural interactions. Psychophysics and Physiology of Hearing, E.F. Evans, J.P. Wilson. Academic, New York 1977; 455–467
  • Shamma S.A., Shen N.M., Gopalaswamy P. Stereausis: binaural processing without neural delays. J Acoust Soc Am 1989; 86: 989–1006
  • Moore B.C.J., Sek A. Detection of frequency modulation at low modulation rates: Evidence for a mechanism based on phase locking. J Acoust Soc Am 1996; 100: 2320–2331
  • McAlpine D., Jiang D., Schackleton T.M., Palmer A.R. Responses of neurons in the inferior colliculus to dynamic interaural phase cues: Evidence for a mechanism of binaural adaptation. J Neurophysiol 2000; 83: 1356–65
  • Spitzer M.W., Semple M.N. Responses of inferior colliculus neurons to time-varying interaural phase disparity: Effects of shifting the locus of virtual motion. J Neurophysiol 1993; 69: 1245–63
  • Ingham N.J., Bleeck S. & Winter I.M. 2006. The magnitude of forward masking and the time course of its recovery as a function of unit type in the ventral cochlear nucleus. Assoc Res Otolaryngol Abs, 36–37.
  • Jesteadt W., Bacon S.P., Lehman J.R. Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 1982; 71: 950–962
  • Relkin E.M., Pelli D.G. Probe tone thresholds in the auditory nerve measured by two-interval forced-choice procedures. J Acoust Soc Am 1987; 82: 1679–1691
  • Culling J.F., Summerfield A.Q., Marshall D.H. Effects of simulated reverberation on the use of binaural cues and fundamental-frequency differences for separating concurrent vowels. Speech Commun 1994; 14: 71–95
  • Dean I., Harper N.S., McAlpine D. Neural population coding of sound level adapts to stimulus statistics. Nature Neurosci 2005; 8: 1684–9
  • Bahmer A. & Langner G. 2006a. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm. Biol Cybern (in press).
  • Bahmer A. & Langner G. 2006b. Oscillating neurons in the cochlear nucleus: II. Simulation results. Biol Cybern (in press).
  • Langner G. Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 1981; 44: 450–454
  • Langner G. Periodicity coding in the auditory system. Hear Res 1992; 60: 115–142
  • Young E.D., Robert J.M., Shofner W.P. Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 1988; 60: 1–29
  • Florentine M., Fast H., Buus S. Temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking. J Acoust Soc Am 1988; 84: 195–203
  • Guinan J.J., Stankovic K.M. Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers. J Acoust Soc Am 1996; 100: 1680–1690
  • Meddis R., O'Mard L.P., Lopez-Poveda E. A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am 2001; 109: 2852–2861
  • Russell I.J., Murugasu E. Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am 2001; 102: 1734–1738
  • Mulders W.H., Robertson D. Effects on cochlear responses of activation of descending pathways from the inferior colliculus. Hear Res 2000; 149: 11–23
  • Mulders W.H., Robertson D. Inputs from the cochlea and the inferior colliculus converge on olivocochlear neurones. Hear Res 2002; 167: 206–213
  • Spangler K.M., Warr W.B. The descending auditory system. Neurobiology of Hearing: The Central Auditory System, R.A. Altschuler, D.W. Hoffman, R.P. Bobbin, B.M. Clopton. Raven Press, Ltd, New York 1991; 27–45
  • Xiao Z., Suga N. Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 2002; 5: 57–63
  • Douglas R.M., Lai J.C.K., Bian S., Cummins L., Moczydlowski , et al 2006. The calcium-sensitive large-conductance potassium channel (BK/Maxi) is present in the inner mitochondrial membrane of rat. Neurosci, 139, 1249–1261.
  • Hafidi A., Beurg M., Dulon D. Localization and developmental expression of BK channels in mammalian cochlear hair cells. Neurosci 2005; 130: 475–484
  • Pyott S.J., Glowatzki E., Trimmer J.S., Aldrich R.W. Extrasynaptic localization of inactivating calcium-activated potassium channels in mouse inner hair cells. J Neurosci 2004; 24: 9469–9474
  • Hequembourg S. & Liberman M.C. 2001. Spiral ligament pathology: A major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol, 2, 118 LR White resin. 129.
  • Kennedy H.J., Evans M.G., Crawford A.C., Fettiplace R. Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms. J Neurosci 2006; 26: 2757–2766
  • Bonny C., Borsello T., Zine A. Targeting the JNK pathway as a therapeutic protective strategy for nervous system diseases. Rev Neurosci 2005; 15: 57–67
  • Kitajiri S., Fukumoto K., Hata M., Sasaki H., Katsuno T., et al. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J Cell Biol 2004; 166: 559–570
  • Cooper N.P., Dong W. Baseline position shifts and mechanical compression in the apical turns of the cochlea. The Biophysics of the Cochlea: Molecules to Models, A.W. Gummer. World Scientific, Singapore 2003; 261–270
  • Gardner-Medwin A.R. 2006. Viscous damping of acoustic resonance with a restricted zone of wall compliance. Proc Physiol Soc 3 (UCL) DC2, 210P.
  • Gold T. Hearing. II. The physical basis of the action of the cochlea. Proc R Soc Lond B Biol Sci 1948; 135: 492–8
  • Carlyon R.P., Wieringen A., Long C.J., Deeks J.M., Wouters J. Temporal pitch mechanisms in acoustic and electric hearing. J Acoust Soc Am 2002; 112: 621–633
  • Lopez-Poveda E.A., Meddis R. A human nonlinear cochlear filter bank. J Acoust Soc Am 2001; 110: 3107–3118
  • Pressnitzer D., de Chegvenie A., Winter I.M. Physiological correlates of the perceptual pitch shift for sounds with similar waveform autocorrelation. Acoust Res Lett Online 2004; 5: 1–6
  • Yost W.A., Mapes-Riordan D., Shofner W., Dye R., Sheft S. Pitch strength of regular interval click trains with different length ‘runs’ of regular intervals. J Acoust Soc Am 2005; 117: 3054–3068
  • Kawahara H., Masuda-Katsuse I., de Cheveigne′ A. Restructuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F0 extraction. Speech Commun 1999; 27: 187–207
  • Goldstein J.L. An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 1973; 54: 1496–1516
  • Moore B.C.J., Glasberg B.R., Shailer M.J. Frequency and intensity difference limens for harmonics within complex tones. J Acoust Soc Am 1984; 75: 550–561
  • Näätänen R., Pakarinen S., Rinne T., Takegata R. The mismatch negativity (MMN): Towards the optimal paradigm. Clin Neurophysiol 2004; 115: 140–144
  • Smith D.R., Patterson R.D., Turner R., Kawahara H., Irino T. The processing and perception of size information in speech sounds. J Acoust Soc Am 2005; 117: 305–318

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.