199
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Towards understanding the specifics of cochlear hearing loss: A modelling approach

Pages S10-S15 | Received 27 Jun 2008, Published online: 07 Jul 2009

References

  • Aibara R., Welsh J.T., Puria S., Goode R.L. Human middle-ear sound transfer function and cochlear input impedance. Hear Res 2001; 152: 100–109
  • Bagatto M., Moodie S., Scollie S., Seewald R., Moodie S., et al. Clinical protocols for hearing instrument fitting in the desired sensation level method. Trends Amplif 2005; 9: 199–226
  • Bruce I.C., Sachs M.B., Young E.D. An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. J Acoust Soc Am 2003; 113: 369–388
  • Buus S., Musch H., Florentine M. On loudness at threshold. J Acoust Soc Am 1998; 111: 1810–1818
  • Byrne D., Dillon H. The National Acoustic Laboratories’ (NAL) new procedure for selecting the gain and frequency response of a hearing aid. Ear Hear 1986; 7: 257–265
  • Byrne D., Dillion H., Ching T., Katsch R., Keidser G. NAL-NL1 procedure for fitting nonlinear hearing aids: Characteristics and comparisons with other procedures. J Am Acad Audiol 2001; 12: 37–51
  • Carney L.H. A model for the responses of low-frequency auditory-nerve fibres in cat. J Acoust Soc Am 1993; 93: 401–417
  • Cheatham M.A., Dallos P. The dynamic range of inner hair cell and organ of Corti responses. J Acoust Soc Am 2000; 107: 1508–1520
  • Cooper N.P., Dong W. Baseline position shifts and mechanical compression in the apical turns of the cochlea. Biophysics of the Cochlea, A.W. Gummer. World Scientific, Singapore 2003; 261–270
  • de Boer E. Classical and non-classical models of the cochlea. J Acoust Soc Am 1997; 101: 2148–2150
  • Derleth R.P., Dau T., Kollmeier B. Modeling temporal and compressive properties of the normal and impaired auditory system. Hear Res 2001; 159: 132–149
  • Durrant J.D., Wang J., Ding D.L., Salvi R.J. Are inner or outer hair cells the source of summating potentials recorded from the round window?. J Acoust Soc Am 1998; 104: 370–377
  • Edwards B. The future of hearing aid technology. Trends Amplif 2007; 11: 31–45
  • Elliott S.J., Ku E.M., Lineton B. A state space model for cochlear mechanics. J Acoust Soc Am 2007; 122: 2759–2771
  • Evans B.N., Dallos P. Stereocilia displacement induced somatic motility of cochlear outer hair cells. Proc Natl Acad Sci USA 1993; 90: 8247–8351
  • Evans B.N., Hallwort R., Dallos P. Outer hair cell electromotility: The sensitivity and vulnerability of the DC component. Hear Res 1991; 52: 288–304
  • Fukazawa T. A model of cochlear micromechanics. Hear Res 1997; 113: 182–190
  • Gates G.A., Mills J.H. Presbycusis. Lancet 2005; 366: 1111–1120
  • Geisler D.C., Sang C. A cochlear model using feed-forward outer-hair-cell forces. Hear Res 1995; 86: 132–146
  • Giguere C., Woodland P.C. A computational model of the auditory periphery for speech and hearing research. I. Ascending path. J Acoust Soc Am 1994; 95: 331–342
  • Glasberg B.R., Moore B.C.J. Derivation of auditory filter shapes from notched-noise data. Hear Res 1990; 47: 103–138
  • Harding G.W., Bohne B.A., Ahmad M. DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise. Hear Res 2002; 174: 158–171
  • Hato N., Stenfelt S., Goode R.L. Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurootol 2003; 8: 140–152
  • Hinchcliffe R. The threshold of hearing. Textbook of Audiological Medicine – Clinical Aspects of Hearing and Balance, L Luxon. Martin Dunitz, London 2003; 213–247
  • Huettel L.G., Collins L.M. A theoretical analysis of normal and impaired hearing intensity discrimination. IEEE Trans Speech Audio Proc 2004; 12: 323–333
  • Johnson T.A., Neel S.T., Kopu J.G., Dierkin D.M., Ta H., et al. Distortion product otoacoustic emissions: Cochlear-source contributions and clinical test performance. J Acoust Soc Am 2007; 122: 3539–3553
  • Kistler D.J., Wightman F.L. A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. J Acoust Soc Am 1992; 91: 1637–1647
  • Liberman M.C., Dodds L.W. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 1984; 16: 55–74
  • Lim K.M., Steele C.R. A three-dimensional nonlinear active cochlear model analysed by the WKB-numeric method. Hear Res 2002; 170: 190–205
  • Liu X.Z., Yan D. Aging and hearing loss. J Pathol 2007; 211: 188–197
  • Lopez-Poveda E.A., Meddis R. A human nonlinear cochlear filterbank. J Acoust Soc Am 2001; 110: 3107–3118
  • Lyon R.F. A computational model of filtering, detection, and compression in the cochlea. IEEE ICASSP 1982; 82: 1282–1285
  • Mauermann M., Uppenkamp S., van Hengel P.W.J., Kollmeier B. Evidence for the distortion product frequency place as a source of distortion product emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1. J Acoust Soc Am 1999; 106: 3473–3483
  • Meddis R. Simulation of auditory-neural transduction: Further studies. J Acoust Soc Am 1988; 83: 1056–1063
  • Meddis R. Auditory-nerve first-spike latency and auditory absolute threshold: A computer model. J Acoust Soc Am 2006; 119: 406–417
  • Mills D.M., Schmiedt R.A. Metabolic presbycusis: Differential changes in auditory brainstem and otoacoustic emission responses with chronic furosemide application in the gerbil. J Assoc Res Otolaryngol 2004; 5: 1–10
  • Mills D.M. Determining the cause of hearing loss: Differential diagnosis using a comparison of audiometric and otoacoustic emission responses. Ear Hear 2006; 27: 508–525
  • Neely S.T., Gorga M.P., Dorn P.A. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions. J Acoust Soc Am 2003; 114: 1499–1507
  • Nelson D.A., Schroder A.C., Wojtczak M. A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 2001; 110: 2045–2064
  • O'Connor K.N., Puria S. Middle-ear circuit model parameters based on a population of human ears. J Acoust Soc Am 2008; 123: 197–211
  • Patuzzi R. Cochlear micromechanics and macromechanics. The Cochlea, P. Dallos, A.N. Popper, R.R. Fay. Springer, New York 1996; 186–257
  • Pichora-Fuller K.M., Schneider B.A., MacDonald E., Pass H.E., Brown S. Temporal jitter disrupts speech intelligibility: A simulation of auditory aging. Hear Res 2007; 223: 114–121
  • Plack C.J., Oxenham A.J. Basilar-membrane nonlinearity estimated by pulsation threshold. J Acoust Soc Am 2000; 107: 501–507
  • Reyes S., Ding D., Sun W., Salvi R. Effect of inner and outer hair cell lesions on electrically evoked otoacoustic emissions. Hear Res 2001; 158: 139–150
  • Robles L., Ruggero M.A. Mechanics of the mammalian cochlea. Physiol Rev 2001; 81: 1305–1352
  • Ruggero M.A., Rich N.C., Recio A., Narayan S.S., Robles L. Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 1997; 101: 2151–2163
  • Sachs M.B., Bruce I.C., Miller R.L., Young E.D. Biological basis of hearing-aid design. Ann Biomed Eng 2002; 30: 157–168
  • Salvi R.J., Ding D., Wang J., Jiang H.Y. A review of the effects of selective inner hair cell lesion on distortion product otoacoustic emissions, cochlear function and auditory evoked potentials. Noise Health 2000; 6: 9–25
  • Santos-Sacchi J. On the frequency limit and phase of outer hair cell motility: Effects of the membrane filter. J Neurosci 1992; 12: 1906–1916
  • Schmiedt R.A., Lang H., Okamura H.O., Schulte B.A. Effects of furosemide applied chronically to the round window: A model of metabolic presbyacusis. J Neurosci 2002; 22: 9643–9650
  • Schuknecht H.F., Gace M.R. Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 1993; 102: 1–16
  • Scollie S., Seewald R., Cornelisse L., Moodie S., Bagatto M., et al. The desired sensation level multistage input/output algorithm. Trends Amplif 2005; 9: 159–197
  • Sewell W.F. Furosemide selectively reduces one component in rate-level functions from auditory-nerve fibers. Hear Res 1984; 15: 69–72
  • Shaw E.A.G. Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 1974; 56: 1848–1861
  • Stenfelt S., Goode R.L. Bone conducted sound: Physiological and clinical aspects. Otol Neurotol 2005; 26: 1245–1261
  • Stenfelt S., Hato N., Goode R.L. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. J Acoust Soc Am 2004; 115: 797–812
  • Stenfelt S., Puria S., Hato N., Goode R.L. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hear Res 2003; 181: 131–143
  • Summer C.J., O'Mard L.P., Lopez-Poveda E.A., Meddis R. A nonlinear filterbank model of the guinea-pig cochlear nerve: Rate responses. J Acoust Soc Am 2003; 113: 3264–3274
  • Trautwein P., Hofstetter P., Wang J., Salvi R., Nostrant A. Selective inner hair cell loss does not alter distortion product emissions. Hear Res 1996; 96: 71–82
  • Van Eyken E., van Camp G., Van Laer L. The complexity of age-related hearing impairment: Contributing environmental and genetic factors. Audiol Neurotol 2007; 12: 345–358
  • Van Tasell D. Hearing loss, speech, and hearing aids. J Speech Hear Res 1993; 36: 228–244
  • Zilany M.A.S., Bruce I.C. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 2006; 120: 1446–1466

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.