1,767
Views
32
CrossRef citations to date
0
Altmetric
Review Article

Functionality of hearing aids: state-of-the-art and future model-based solutions

&
Pages S3-S28 | Received 05 Oct 2016, Accepted 28 Oct 2016, Published online: 13 Dec 2016

References

  • Abrams, H.B., Chisolm, T.H., McManus, M. & McArdle R. 2012. Initial-fit approach versus verified prescription: Comparing self-perceived hearing aid benefit. J Am Acad Audiol, 23, 768–778.
  • Abrams, H.B. & Kihm, J. 2015. An introduction to MarkeTrak IX: A new baseline for the hearing aid market. Hear Rev, 22, 16–21.
  • Agnew, J. & Thornton, J.M. 2000. Just noticeable and objectionable group delays in digital hearing aids. J Am Acad Audiol, 11, 330–336.
  • Akeroyd, M.A. 2006. The psychoacoustics of binaural hearing: La psicoacústica de la audición binaural. Int J Audiol, 45, 25–33.
  • Alexander, J.M., Kopun, J.G. & Stelmachowicz, P.G. 2014. Effects of frequency compression and frequency transposition on fricative and affricate perception in listeners with normal hearing and mild to moderate hearing loss. Ear Hear, 35, 519–532.
  • Allen, J.B., Hall, J.L. & Jeng, P.S. 1990. Loudness growth in 1/2-octave bands (LGOB)-a procedure for the assessment of loudness. J Acoust Soc Am, 88, 745–753.
  • ANSI. 1997. Methods for the calculation of the speech intelligibility index American National Standard S3.5-1997.
  • Arehart, K.H., Kates, J.M. & Anderson, M.C. 2011. Effects of noise, nonlinear processing, and linear filtering on perceived music quality. Int J Audiol, 50, 177–190.
  • Baer, T. & Moore, B.C. 1994. Effects of spectral smearing on the intelligibility of sentences in the presence of interfering speech. J Acoust Soc Am, 95, 2277–2280.
  • Baer, T., Moore, B.C.J. & Gatehouse, S. 1993. Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: Effects on intelligibility, quality and response times. J Rehabil Res Dev, 30, 49–72.
  • Beck, D.L. & Schum, D.J. 2006. Directional hearing aids: Concepts and overview (2005). Hear J, 59: 40–47.
  • Bentler, R., Walker, E., McCreery, R., Arenas, R.M. & Roush, P. 2014. Nonlinear frequency compression in hearing aids: Impact on speech and language development. Ear Hear, 35, e143–e152.
  • Berger, K.W., Hagberg, E.N. & Rane, R.L. 1980. A reexamination of the one-half gain rule. Ear Hear, 1, 223–225.
  • Best, V., Keidser, G., Buchholz, J.M. & Freeston, K. 2015. An examination of speech reception thresholds measured in a simulated reverberant cafeteria environment. Int J Audiol, 54, 682–690.
  • Best, V., Keidser, G., Freeston, K. & Buchholz, J.M. 2016. A dynamic speech comprehension test for assessing real-world listening ability. J Am Acad Audiol, 27, 515–526.
  • Beutelmann, R. & Brand, T. 2006. Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. J Acoust Soc Am, 120, 331–342.
  • Beutelmann, R., Brand, T. & Kollmeier, B. 2010. Revision, extension, and evaluation of a binaural speech intelligibility model. J Acoust Soc Am, 127, 2479–2497.
  • Blau, M., Sankowsky-Rothe, T., Kohler, S. & Schmidt, J.H. 2013. Using inter-individual standard deviation of hearing thresholds as a criterion to compare methods aimed at quantifying the acoustic input to the human auditory system in occluded ear scenarios. J Acoust Soc Am, 133, 3544.
  • Blauert, J. 1983. Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge (MA): MIT Press.
  • Bodden, M. 1993. Modeling human sound-source localization and the cocktail-party effect. Acta Acoustic, 1, 43–55.
  • Brandenburg, K. & Popp, H. 2000. MPEG layer-3. EBU Tech Rev, 1–15.
  • Brimijoin, W.O. & Akeroyd, M.A. 2016. The effects of hearing impairment, age, and hearing aids on the use of self-motion for determining front/back location. J Am Acad Audiol, 27, 588–600.
  • Büchler, M., Allegro, S., Launer, S. & Dillier, N. 2005. Sound classification in hearing aids inspired by auditory scene analysis. EURASIP J Adv Signal Process, 2005, 1–12.
  • Byrne, D. & Dillon, H. 1986. The National Acoustic Laboratories' (NAL) new procedure for selecting the gain and frequency response of a hearing aid. Ear Hear, 7, 257–265.
  • Byrne, D., Dillon, H., Ching, T., Katsch, R. & Keidser, G. 2001. NAL-NL1 procedure for fitting nonlinear hearing aids: Characteristics and comparisons with other procedures. J Am Acad Audiol, 12, 37–51.
  • Campbell, D.R. & Shields, P.W. 2003. Speech enhancement using sub-band adaptive Griffiths–Jim signal processing. Speech Commun, 39, 97–110.
  • Ching, T.Y., Johnson, E.E., Hou, S., Dillon, H., Zhang, V., et al. 2013. A comparison of NAL and DSL prescriptive methods for paediatric hearing-aid fitting: Predicted speech intelligibility and loudness. Int J Audiol, 52, S29–S38.
  • Colburn, H.S. & Durlach, N.I. 1978. Models of binaural interaction. In: Carterette & Friedmann (eds.) Hearing, Vol IV of Handbook of Perception. New York: Academic Press, pp. 467–518.
  • Cornelis, B., Moonen, M. & Wouters, J. 2012. Speech intelligibility improvements with hearing aids using bilateral and binaural adaptive multichannel Wiener filtering based noise reduction. J Acoust Soc Am, 131, 4743–4755.
  • Cornelisse, L.E., Seewald, R.C. & Jamieson, D.G. 1995. The input/output formula: A theoretical approach to the fitting of personal amplification devices. J Acoust Soc Am, 97, 1854–1864.
  • Dau, T., Kollmeier, B. & Kohlrausch, A. 1997. Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am, 102, 2906–2919.
  • Dau, T., Püschel, D. & Kohlrausch, A. 1996. A quantitative model of the “tory system. I. Model structure” signal processing in the auditory system. I. Model. J Acoust Soc Am, 99, 3615–3622.
  • de Cheveigné, A. 2016. Sparse time artifact removal. J Neurosci Methods, 262, 14–20.
  • de Taillez, T., Grimm, G., Neher, T. & Kollmeier, B. 2018. Exploring interaural magnification in a simulated ‘binaural’ hearing aid. Int J Audiol, 57, S81-S91.
  • De Vos, M., Gandras, K. & Debener, S. 2014. Towards a truly mobile auditory brain-computer interface: Exploring the P300 to take away. Int J Psychophysiol, 91, 46–53.
  • Denk, F., Hiipakka, M., Kollmeier, B. & Ernst, S. 2018. An individualised acoustically transparent earpiece for hearing devices. Int J Audiol, 57, S62-S70.
  • Derleth, R.P., Dau, T. & Kollmeier, B. 2001. Modeling temporal and compressive properties of the normal and impaired auditory system. Hear Res, 159, 132–149.
  • Dillon, H. 2012. Hearing Aids. New York: Thieme.
  • Doclo, S., Spriet, A., Wouters, J. & Moonen, M. 2007. Frequency-domain criterion for the speech distortion weighted multichannel wiener filter for robust noise reduction. Speech Commun, 49, 636–656.
  • Durlach, N.I. 1963. Equalization and cancellation theory of binaural masking-level differences. J Acoust Soc Am, 35, 1206–1218.
  • Durlach, N.I. & Pang, X.D. 1986. Interaural magnification. J Acoust Soc Am, 80, 1849–1850.
  • Durlach, N.I., Thompson, C.L. & Colburn, H.S. 1981. Binaural interaction of impaired listeners. A review of past research. Audiology, 20, 181–211.
  • Elberling, C. 1999. Loudness scaling revisited. J Am Acad Audiol, 10, 248–260.
  • Elko, G.W. & Pong, A.T.N. 1995. A simple adaptive first-order differential microphone Applications of Signal Processing to Audio and Acoustics, 1995. IEEE ASSP Workshop on: IEEE, pp. 169–172.
  • Ellis, R.J. & Munro, K.J. 2015. Benefit from, and acclimatization to, frequency compression hearing aids in experienced adult hearing-aid users. Int J Audiol, 54, 37–47.
  • Ephraim, Y. & Malah, D. 1985. Speech enhancement using a minimum mean-square error log spectral amplitude estimator. IEEE Trans Acoust Speech Signal Process, ASSP, 33, 443–445.
  • Falk, T.H., Parsa, V., Santos, J.F., Arehart, K., Hazrati, O., et al. 2015. Objective quality and intelligibility prediction for users of assistive listening devices. IEEE Signal Process Mag, 32, 114–124.
  • Fleßner, J.H., Ewert, S.D., Kollmeier, B. & Huber, R. 2014. Quality assessment of multi-channel audio processing schemes based on a binaural auditory model. Proceedings of ICASSP, 2014.
  • Furman, A.C., Kujawa, S.G. & Liberman, M.C. 2013. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol, 110, 577–586.
  • Gerkmann, T., Krawczyk-Becker, M. & Le Roux, J. 2015. Phase processing for single-channel speech enhancement: History and recent advances. IEEE Signal Process Mag, 32, 55–66.
  • Gerkmann, T. & Krawczyk, M. 2013. MMSE-optimal spectral amplitude estimation given the STFT-phase. IEEE Signal Process Lett, 20, 129–132.
  • Green, D.M. & Swets, J.A. 1966. Signal Detection Theory and Psychophysics. New York: Wiley.
  • Greenberg, J.E., Zurek, P.M. & Brantley, M. 2000. Evaluation of feedback-reduction algorithms for hearing aids. J Acoust Soc Am, 108, 2366–2376.
  • Grimm, G., Ewert, S. & Hohmann, V. 2015. Evaluation of spatial audio reproduction schemes for application in hearing aid research. Acta Acoust United Acoust, 101, 842–854.
  • Grimm, G., Hohmann, V. & Kollmeier, B. 2009. Increase and subjective evaluation of feedback stability in hearing aids by a binaural coherence-based noise reduction scheme. IEEE Trans Audio Speech Lang Proc, 17, 1408–1419.
  • Grimm, G., Kollmeier, B. & Hohmann, V. 2016. Spatial acoustic scenarios in multichannel loudspeaker systems for hearing aid evaluation. J Am Acad Audiol, 27, 557–566.
  • Grose, J.H. & Hall, J.W. 1992. Comodulation masking release for speech stimuli. J Acoust Soc Am, 91, 1042–1050.
  • Hafed, Z.M., Stingl, K., Bartz-Schmidt, K.U., Gekeler, F. & Zrenner, E. 2016. Oculomotor behavior of blind patients seeing with a subretinal visual implant. Vision Res, 118, 119–131.
  • Healy, E.W., Yoho, S.E., Chen, J., Wang, Y. & Wang, D. 2015. An algorithm to increase speech intelligibility for hearing-impaired listeners in novel segments of the same noise type. J Acoust Soc Am, 138, 1660–1669.
  • Hohmann, V. & Kollmeier, B. 1995. The effect of multichannel dynamic compression on speech intelligibility. J Acoust Soc Am, 97, 1191–1195.
  • Hohmann, V. & Kollmeier, B. 2007. A nonlinear auditory filterbank controlled by sub-band instantaneous frequency estimates Hearing – From Sensory Processing to Perception: Springer, pp. 11–18.
  • Holube, I. & Kollmeier, B. 1996. Speech intelligibility prediction in hearing-impaired listeners based on a psychoacoustically motivated perception model. J Acoust Soc Am, 100, 1703–1716.
  • Horwitz, A.R., Ahlstrom, J.B. & Dubno, J.R. 2007. Speech recognition in noise: Estimating effects of compressive nonlinearities in the basilar-membrane response. Ear Hear, 28, 682–693.
  • Houtgast, T. & Steeneken, H.J.M. 1985. A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. J Acoust Soc Am, 77, 1069–1077.
  • Huber, R., Parsa, V. & Scollie, S. 2014. Predicting the perceived sound quality of frequency-compressed speech. PLoS One, 9, e110260.
  • Huber, R. & Kollmeier, B. 2006. PEMO-Q – A new method for objective audio quality assessment using a model of auditory perception. IEEE Trans Audio Speech Lang Process, 14, 1902–1911.
  • ITU-T. 2004. In: IT Union (ed.) P.563 Single Ended Method for Objective Speech Quality Assessment in Narrow-band Telephony Applications. Geneva, Switzerland.
  • ITU-T. 2011. In: I.T. Union. (ed.). P.863 Perceptual Objective Listening Quality Assessment. Geneva, Switzerland.
  • Jenstad, L.M., Seewald, R.C., Cornelisse, L.E. & Shantz, J. 1999. Comparison of linear gain and wide dynamic range compression hearing aid circuits: Aided speech perception measures. Ear Hear, 20, 117–126.
  • Jepsen, M.L. & Dau, T. 2011. Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss. J Acoust Soc Am, 129, 262–281.
  • Jepsen, M.L., Ewert, S.D. & Dau, T. 2008. A computational model of human auditory signal processing and perception. J Acoust Soc Am, 124, 422–438.
  • Johnson, E. 2012. Same or different – Comparing the latest NAL and DSL prescriptive targets. Audiology Online, http://www.audiologyonline.com/articles/20q-same-or-different-comparing-769.
  • Johnson, E.E. 2013. Modern prescription theory and application: Realistic expectations for speech recognition with hearing AIDS. Trends Amplif, 17, 143–170.
  • Jorgensen, S., Ewert, S.D. & Dau, T. 2013. A multi-resolution envelope-power based model for speech intelligibility. J Acoust Soc Am, 134, 436–446.
  • Jurgens, T., Ewert, S.D., Kollmeier, B. & Brand, T. 2014. Prediction of consonant recognition in quiet for listeners with normal and impaired hearing using an auditory model. J Acoust Soc Am, 135, 1506–1517.
  • Kates, J.M. 2005. Principles of digital dynamic-range compression. Trends Amplif, 9, 45–76.
  • Keidser, G., Brew, C. & Peck, A. 2003. Proprietary fitting algorithms compared with one another and with generic formulas. Hear J, 56, 28–38.
  • Keidser, G., Dillon, H., Carter, L. & O'Brien, A. 2012. NAL-NL2 empirical adjustments. Trends Amplif, 16, 211–223.
  • Keidser, G., Dillon, H., Flax, M., Ching, T. & Brewer, S. 2011. The NAL-NL2 prescription procedure. Audiol Res, 1, e24.
  • Kiessling, J., Brenner, B., Jespersen, C.T., Groth, J.A. & Dyrlund, O. 2005. Okklusionseffekt von Otoplastiken mit unterschiedlicher Belüftung – Quantifizierung und Prognose 50. Internationaler Hörgeräte-Akustiker-Kongress. Nürnberg: Europäische Union der Hörgeräteakustiker.
  • Kiessling, J., Brenner, B., Nelson, J., Dyrlund, O. & Groth, J.A. 2007. Feldstudie zum Nutzungsverhalten von Hörgeräten: Datalogging versus Selbsteinschätzung. Z Audiol, 47, 48–55.
  • Kiessling, J., Schubert, M. & Archut, A. 1996. Adaptive fitting of hearing instruments by category loudness scaling (ScalAdapt). Scand Audiol, 25, 153–160.
  • Klasen, T.J., Doclo, S., Van den Bogaert, T., Moonen, M. & Wouters, J. 2006. Binaural multi-channel Wiener filtering for hearing aids: preserving interaural time and level differences 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. New York: IEEE, pp. V–V.
  • Kluk, K. & Moore, B.C. 2006. Dead regions in the cochlea and enhancement of frequency discrimination: Effects of audiogram slope, unilateral versus bilateral loss, and hearing-aid use. Hear Res, 222, 1–15.
  • Kochkin, S. 2010. MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing. Hear J, 63, 27–20.
  • Kollmeier, B. 1996. Computer-controlled speech audiometric techniques for the assessment of hearing loss and the evaluation of hearing aids. In: Kollmeier, B. (ed.) Psychoacoustics, Speech and Hearing Aids: Proceedings of the Summer School and international Symposium, Bad Zwischenahn, 31 August–5 September 1995. Singapore: World Scientific Publishing Co., pp. 57-67.
  • Kollmeier, B. 1999. On the four factors involved in sensorineural hearing loss. Psychophysics, Physiology and Models of Hearing. Singapore: World Scientific, pp. 211–218.
  • Kollmeier, B. & Koch, R. 1994. Speech enhancement based on physiological and psychoacoustical models of modulation perception and binaural interaction. J Acoust Soc Am, 95, 1593–1602.
  • Kollmeier, B., Peissig, J. & Hohmann, V. 1993. Real-time multiband dynamic compression and noise reduction for binaural hearing aids. J Rehabil Res Dev, 30, 82–94.
  • Kollmeier, B., Schädler, M.R., Warzybok, A., Meyer, B.T. & Brand, T. 2016. Sentence recognition prediction for hearing-impaired listeners in stationary and fluctuation noise with FADE: Empowering the Attenuation and Distortion concept by Plomp with a quantitative processing model. Trends in Hearing, 20. pii: 2331216516655795. DOI: 10.1177/2331216516655795
  • Kollmeier, B., Warzybok, A., Ernst, S. & Schädler, M.R. 2016. Objective, individualized benefit prediction for hearing aid algorithms using automatic speech recognition: How far do we get with FADE? International Hearing Aid Conference (IHCON). Lake Tahoe.
  • Kortlang, S. 2016. Characterization and Model-based Compensation of Suprathreshold Auditory Processing Deficits. Oldenburg.
  • Kortlang, S., Grimm, G., Hohmann, V., Kollmeier, B. & Ewert, S.D. 2016. Auditory model-based dynamic compression controlled by subband instantaneous frequency and speech presence probability estimates. IEEE/ACM Trans Audio Speech Lang Process, 24, 1759–1772.
  • Kreikemeier, S., Margolf-Hackl, S., Raether, J., Fichtl, E. & Kiessling, J. 2013. Comparison of different directional microphone technologies for hearing aid users with moderate to severe hearing loss. Hear Rev, 20, 44–45.
  • Kujawa, S.G. & Liberman, M.C. 2009. Adding insult to injury: Cochlear nerve degeneration after “ noise-induced hearing loss” noise-induced hearing. J Neurosci, 29, 14077–14085.
  • Lavandier, M. & Culling, J.F. 2010. Prediction of binaural speech intelligibility against noise in rooms. J Acoust Soc Am, 127, 387–399.
  • Leavitt, R.J. & Flexer, C. 2012. The importance of audibility in successful amplification of hearing loss. Hear Rev, 19, 20–23.
  • Leclere, T., Lavandier, M. & Culling, J.F. 2015. Speech intelligibility prediction in reverberation: Towards an integrated model of speech transmission, spatial unmasking, and binaural de-reverberation. J Acoust Soc Am, 137, 3335–3345.
  • Leifholz, M., Margolf-Hackl, S., Kreikemeier, S. & Kiessling, J. 2013. Wirkung von Frequenzkompression in Hörgeräten auf das Sprachverstehen und das subjektive Klangempfinden der Nutzer. HNO, 61, 335–343.
  • Lunner, T., Rudner, M. & Ronnberg, J. 2009. Cognition and hearing aids. Scand J Psychol, 50, 395–403.
  • Luts, H., Maj, J.B., Soede, W. & Wouters, J. 2004. Better speech perception in noise with an assistive multimicrophone array for hearing AIDS. Ear Hear, 25, 411–420.
  • Lybarger, D.F. 1963. The Crum Family, Notes Concerning the Descendants of Anthony Crum, Sr., of Frederick County, Virginia. Cleveland.
  • Lybarger, S. 1963. Simplified Fitting System for Hearing Aids. Canonsburg (PA): Radioear Corp.
  • Maj, J.B., Royackers, L., Wouters, J. & Moonen, M. 2006. Comparison of adaptive noise reduction algorithms in dual microphone hearing aids. Speech Commun, 48, 957–970.
  • Maj, J.B., Royackers, L., Moonen, M. & Wouters, J. 2005. SVD-based optimal filtering for noise reduction in dual microphone hearing aids: A real time implementation and perceptual evaluation. IEEE Trans Biomed Eng, 52, 1563–1573.
  • Marquardt, D., Hohmann, V. & Doclo, S. 2014. Perceptually motivated coherence preservation in multi-channel Wiener filtering based noise reduction for binaural hearing aids 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE, pp. 3660–3664.
  • Martin, R. 2001. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE Trans Speech Audio Process, 9, 504–512.
  • McCandless, G.A. & Lyregaard, P.E. 1983. Prescription of gain/output (POGO) for hearing aids. Hear Instr, 34, 16–20.
  • McCreery, R.W., Venediktov, R.A., Coleman, J.J. & Leech, H.M. 2012. An evidence-based systematic review of amplitude compression in hearing aids for school-age children with hearing loss. Am J Audiol, 21, 269–294.
  • McCreery, R.W., Venediktov, R.A., Coleman, J.J. & Leech, H.M. 2012. An evidence-based systematic review of directional microphones and digital noise reduction hearing aids in school-age children with hearing loss. Am J Audiol, 21, 295–312.
  • McCreery, R.W., Venediktov, R.A., Coleman, J.J. & Leech, H.M. 2012. An evidence-based systematic review of frequency lowering in hearing aids for school-age children with hearing loss. Am J Audiol, 21, 313–328.
  • Meister, H., Rahlmann, S., Walger, M., Margolf-Hackl, S. & Kiessling, J. 2015. Hearing aid fitting in older persons with hearing impairment: The influence of cognitive function, age, and hearing loss on hearing aid benefit. Clin Interv Aging, 10, 435–443.
  • Meyer, B.T., Brand, T. & Kollmeier, B. 2011. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes. J Acoust Soc Am, 129, 388–403.
  • Meyer, R.M. & Brand T. 2013. Comparison of different short-term speech intelligibility index procedures in fluctuating noise for listeners with normal and impaired hearing. Acta Acoust United Acoust, 99, 442–456.
  • Mirkovic, B., Debener, S., Jaeger, M. & De Vos, M. 2015. Decoding the attended speech stream with multi-channel EEG: Implications for online, daily-life applications. J Neural Eng, 12, 046007.
  • Moore, B.C. 1996. Perceptual consequences of cochlear hearing loss and their implications for the design of hearing aids. Ear Hear, 17, 133–161.
  • Moore, B.C. & Fullgrabe, C. 2010. Evaluation of the CAMEQ2-HF method for fitting hearing aids with multichannel amplitude compression. Ear Hear, 31, 657–666.
  • Moore, B.C., Marriage, J., Alcantara, J. & Glasberg, B.R. 2005. Comparison of two adaptive procedures for fitting a multi-channel compression hearing aid. Int J Audiol, 44, 345–357.
  • Moore, B.C. & Sek, A. 2012. Comparison of the CAM2 and NAL-NL2 hearing aid fitting methods. Ear Hear, 34, 83–95.
  • Moore, B.C.J. 1995. Perceptual Consequences of Cochlear Damage. New York: Oxford University Press Inc.
  • Moore, B.C.J. 2001. Dead regions in the cochlea: Diagnosis, perceptual consequences, and implications for the fitting of hearing aids. Trends Amplif, 5, 1–34.
  • Moore, B.C.J. & Glasberg, B.R. 1983. Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am, 74, 750–753.
  • Moore, B.C.J. & Glasberg, B.R. 1987. Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns. Hear Res, 28, 209–225.
  • Mueller, H.G. 2005. Fitting hearing aids to adults using prescriptive methods: An evidence-based review of effectiveness. J Am Acad Audiol, 16, 448–460.
  • Nordqvist, P. & Leijon, A. 2004. An efficient robust sound classification algorithm for hearing aids. J Acoust Soc Am, 115, 3033–3041.
  • Nowak, J., Liebetrau, J. & Sporer, T. 2013. On the perception of apparent source width and listener envelopment in wave field synthesis. 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX). New York: IEEE, pp. 82–87.
  • Oetting, D., Hohmann, V., Appell, J.E., Kollmeier, B. & Ewert, S.D. 2016. Spectral and binaural loudness summation for hearing-impaired listeners. Hear Res, 335, 179–192.
  • Ostendorf, M., Hohmann, V. & Kollmeier, B. 1998. Klassifikation von akustischen Signalen basierend auf der Analyse von Modulationsspektren zur Anwendung in digitalenHörgeräten Fortschritte der Akustik DAGA '98. Zürich: DEGA, pp. 402–403.
  • Pascoe, D.P. 1988. Clinical measurements of the auditory dynamic range and their relation to formulae for hearing aid gain. In: Jensen, J.H. (ed.) Hearing Aid Fitting, Theoretical and Practical Views. 13th Danavox Symposium. Copenhagen: Danavox, pp. 129–151.
  • Pastoors, A.D., Gebhart, T.M. & Kiessling, J. 2001. A fitting strategy for digital hearing aids based on loudness and sound quality. Scand Audiol, 52, 60–64.
  • Patterson, R.D., Nimmo-Smith, J., Weber, D.L. & Milroy, R. 1982. The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold. J Acoust Soc Am, 72, 1788–1803.
  • Peissig, J., Albani, S., Wittkop, T., Woods, W.S. & Kollmeier, B. 1996. Enhancement of speech signals employing models of binaural interaction. Acoustic, 82, S91–S91.
  • Picou, E.M. & Ricketts, T.A. 2011. Comparison of wireless and acoustic hearing aid-based telephone listening strategies. Ear Hear, 32, 209–220.
  • Picou, E.M. & Ricketts, T.A. 2013. Efficacy of hearing-aid based telephone strategies for listeners with moderate-to-severe hearing loss. J Am Acad Audiol, 24, 59–70.
  • Pieper, I., Mauermann, M., Kollmeier, B. & Ewert, S.D. 2016. Physiological motivated transmission-lines as front end for loudness models. J Acoust Soc Am, 139, 2896–2910.
  • Plomp, R. 1986. A signal-to-noise ratio model for the speech-perception threshold of the hearing impaired. J Speech Hear Res, 29, 146–154.
  • Plomp, R. 1988. The negative effect of amplitude compression in multichannel hearing aids in the light of the modulation-transfer function. J Acoust Soc Am, 83, 2322–2327.
  • Plomp, R. 1994. Evaluating a speech-reception threshold-model for hearing-impaired listeners – Comments. J Acoust Soc Am, 96, 586–587.
  • Polonenko, M.J., Scollie, S.D., Moodie, S., Seewald, R.C., Laurnagaray, D., et al. 2010. Fit to targets, preferred listening levels, and self-reported outcomes for the DSL v5.0 a hearing aid prescription for adults. Int J Audiol, 49, 550–560.
  • Powers, T.A., Branda, E. & Beilin, J. 2014. Clinical comparison of a manufacturer’s proprietary fitting algorithm to the NAL-NL2 prescriptive method. Audiology Online, Article 12708. Retrieved from: http://www.audiologyonline.com.
  • Rennies, J., Brand, T. & Kollmeier, B. 2011. Prediction of the influence of reverberation on binaural speech intelligibility in noise and in quiet. J Acoust Soc Am, 130, 2999–3012.
  • Rhebergen, K.S., Versfeld, N.J. & Dreschler, W.A. 2006. Extended speech intelligibility index for the prediction of the speech reception threshold in fluctuating noise. J Acoust Soc Am, 120, 3988–3997.
  • Robinson, J.D., Stainsby, T.H., Baer, T. & Moore, B.C. 2009. Evaluation of a frequency transposition algorithm using wearable hearing aids. Int J Audiol, 48, 384–393.
  • Rohdenburg, T., Goetze, S., Hohmann, V., Kammeyer, K.D. & Kollmeier, B. 2008. Objective perceptual quality assessment for self-steering binaural hearing aid microphone arrays. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, pp. 2449–2452.
  • Rönnberg, J. 2003. Cognition in the hearing impaired and deaf as a bridge between signal and dialogue: A framework and a model. Int J Audiol, 42, S68–S76.
  • Rönnberg, J., Lunner, T., Zekveld, A., Sorqvist, P., Danielsson, H., et al. 2013. The Ease of Language Understanding (ELU) model: Theoretical, empirical, and clinical advances. Front Syst Neurosci, 7, 31.
  • Sakamoto, S., Goto, K., Tateno, M. & Kaga, K. 2000. Frequency compression hearing aid for severe-to-profound hearing impairments. Auris Nasus Larynx, 27, 327–334.
  • Sanders, J., Stoody, T., Weber, J. & Mueller, H.G. 2015. Manufacturers' NAL-NL2 fittings fail real-ear verification. Hear Rev, 21, 24–30.
  • Schädler, M.R., Warzybok, A., Ewert, S.D. & Kollmeier, B. 2016. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception. J Acoust Soc Am, 139, 2708–2722.
  • Schadler, M.R., Warzybok, A., Hochmuth, S. & Kollmeier, B. 2015. Matrix sentence intelligibility prediction using an automatic speech recognition system. Int J Audiol, 54, 100–107.
  • Schäfer, M., Bahram M. & Vary P. 2013. An extension of the PEAQ measure by a binaural hearing model. Proceedings of ICASSP 2013, pp. 8164–8168.
  • Scollie, S., Seewald, R., Cornelisse, L., Moodie, S., Bagatto, M., et al. 2005. The Desired Sensation Level multistage input/output algorithm. Trends Amplif, 9, 159–197.
  • Seeber, B.U. & Hafter, E.R. 2013. Perceptual equalization of artifacts of sound reproduction via multiple loudspeakers Proceedings of Meetings on Acoustics: Acoustical Society of America, p. 050045.
  • Shannon, R.V., Fu, Q.J. & Galvin, J., III. 2004. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol Suppl, 552, 50–54.
  • Soede, W., Bilsen, F.A. & Berkhout, A.J. 1993. Assessment of a directional microphone array for hearing-impaired listeners. J Acoust Soc Am, 94, 799–808.
  • Soede, W., Bilsen, F.A., Berkhout, A.J. & Verschuure, J. 1993. Directional hearing aid based on array technology. Scand Audiol Suppl, 38, 20–27.
  • Stone, M.A., Moore, B.C., Alcantara, J.I. & Glasberg, B.R. 1999. Comparison of different forms of compression using wearable digital hearing aids. J Acoust Soc Am, 106, 3603–3619.
  • Suelzle, D., Parsa, V. & Falk, T.H. 2013. On a reference-free speech quality estimator for hearing aids. J Acoust Soc Am, 133, EL412–EL418.
  • Sumner, C.J., Lopez-Poveda, E.A., O'Mard, L.P. & Meddis, R. 2002. A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am, 111, 2178–2188.
  • Tchorz, J. & Kollmeier, B. 2003. SNR estimation based on amplitude modulation analysis with applications to noise suppression. IEEE Trans Speech Audio Process, 11, 184–192.
  • Thibodeau, L. 2010. Benefits of adaptive FM systems on speech recognition in noise for listeners who use hearing aids. Am J Audiol, 19, 36–45.
  • Turner, C.W. & Henry, B.A. 2002. Benefits of amplification for speech recognition in background noise. J Acoust Soc Am, 112, 1675–1680.
  • Turner, C.W. & Hurtig, R.R. 1999. Proportional frequency compression of speech for listeners with sensorineural hearing loss. J Acoust Soc Am, 106, 877–886.
  • Uslar, V.N. 2014. Speech Perception, Age, and Hearing Loss: Methods to Assess the Balance Between Bottom-up and Top-down Processing. Oldenburg, Germany.
  • Uslar, V.N., Brand, T. & Kollmeier, B. 2015. Modeling the balance between bottom-up and top-down processing in speech intelligibility tests. J Acoust Soc Am, 137, 2235.
  • Van den Bogaert, T., Doclo, S., Wouters, J. & Moonen, M. 2009. Speech enhancement with multichannel Wiener filter techniques in multimicrophone binaural hearing aids. J Acoust Soc Am, 125, 360–371.
  • Van den Bogaert, T., Wouters, J., Doclo, S. & Moonen, M. 2007. Binaural cue preservation for hearing aids using an interaural transfer function multichannel Wiener filter 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07. New York: IEEE, pp. IV-565–IV-568.
  • van Wijngaarden, S.J. & Drullman, R. 2008. Binaural intelligibility prediction based on the speech transmission index. J Acoust Soc Am, 123, 4514–4523.
  • Verhey, J.L., Dau, T. & Kollmeier, B. 1999. Within-channel cues in comodulation masking release (CMR): Experiments and model predictions using a modulation-filterbank model. J Acoust Soc Am, 106, 2733–2745.
  • Verschuure, J., Maas, A.J., Stikvoort, E., de Jong, R.M., Goedegebure, A., et al. 1996. Compression and its effect on the speech signal. Ear Hear, 17, 162–175.
  • Villchur, E. 1977. Electronic models to simulate the effect of sensory distortions on speech perception by the deaf. J Acoust Soc Am, 62, 665–674.
  • Völker, C., Ernst, S.M. & Kollmeier, B. 2018. Modifications of the MUlti Stimulus test with Hidden Reference and Anchor (MUSHRA) for use in audiology. Int J Audiol, 57, S92–S104.
  • Völker, C., Warzybok, A. & Ernst, S.M. 2015. Comparing binaural pre-processing strategies III: Speech intelligibility of normal-hearing and hearing-impaired listeners. Trends Hear, 19, 2331216515618609.
  • vom Hövel, H. 1984. {Zur Bedeutung der Übertragungseigenschaften des Außenohres sowie des binauralen Hörsystems bei gestörter Sprachübertragung} Dissertation, RWTH Aachen, Germany: RWTH Aachen.
  • von Ilberg, C.A., Baumann, U., Kiefer, J., Tillein, J. & Adunka, O.F. 2011. Electric-acoustic stimulation of the auditory system: A review of the first decade. Audiol Neurootol, 16, 1–30.
  • Warzybok, A., Rennies, J., Brand, T., Doclo, S., Kollmeier, B. 2013. Effects of spatial and temporal integration of a single early reflection on speech intelligibility. J Acoust Soc Am, 133, 269–282.
  • Wesselkamp, M., Margolf-Hackl, S. & Kiessling, J. 2001. Comparison of two digital hearing instrument fitting strategies. Scand Audiol Suppl, 52, 73–75.
  • Widrow, B. 1998. Directional hearing aid: Google Patents.
  • Widrow, B. & Luo, F.L. 2003. Microphone arrays for hearing aids: An overview. Speech Commun, 39, 139–146.
  • Wittkop, T. & Hohmann, V. 2003. Strategy-selective noise reduction for binaural digital hearing aids. Speech Commun, 39, 111–138.
  • Yang, J., Luo, F.L. & Nehorai, A. 2003. Spectral contrast enhancement: Algorithms and comparisons. Speech Commun, 39, 33–46.
  • Zilany, M.S., Bruce, I.C. & Carney, L.H. 2014. Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am, 135, 283–286.
  • Zilany, M.S., Bruce, I.C., Nelson, P.C. & Carney, L.H. 2009. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics. J Acoust Soc Am, 126, 2390–2412.
  • Zurek, P.M. 1990. Binaural advantages and directional effects in speech intelligibility. In: Hockberg, G.A.S.a.I. (ed.) Acoustical Factors Affecting Hearing Aid Performance. Boston: Allyn and Bacon, pp. 255–276.
  • Zwicker, E. 1961. Subdivision of the audible frequency range into critical bands (Frequenzgruppen). J Acoust Soc Am, 33, 248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.